JPS60119368A - Throttle type fuel injection nozzle - Google Patents

Throttle type fuel injection nozzle

Info

Publication number
JPS60119368A
JPS60119368A JP22796783A JP22796783A JPS60119368A JP S60119368 A JPS60119368 A JP S60119368A JP 22796783 A JP22796783 A JP 22796783A JP 22796783 A JP22796783 A JP 22796783A JP S60119368 A JPS60119368 A JP S60119368A
Authority
JP
Japan
Prior art keywords
nozzle
hole
boundary
boundary line
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22796783A
Other languages
Japanese (ja)
Inventor
Shoichi Suzuki
鈴木 昭一
Toru Ishibashi
徹 石橋
Takao Imai
今井 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP22796783A priority Critical patent/JPS60119368A/en
Publication of JPS60119368A publication Critical patent/JPS60119368A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/06Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being furnished at seated ends with pintle or plug shaped extensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To perform initial injection with wide angle while main injection with limited angle, by arranging such that the first boundary at the end of nozzle will come at the boundary of valve seat of body and injection hole upon completion of initial lift while come above said boundary under total lift. CONSTITUTION:Fuel is pressure fed through a fuel injection pump, and upon reaching of the fuel pressure to the initial injection valve open level of nozzle needle 1, said needle 1 will start lifting to separate the seat section 1b from the valve seat 3a face of body 3 thus to inject fuel by the amount corresponding with the area of gap (a1). Upon further lifting to the initial lift (l1), the first boder line A will position in the border D of injection hole 3c and valve seat 3a while the third border line C of pin section 2 will position below the opening face 3b of injection hole 3c to complete initial lift thus to inject fuel through injection hole 3c with wide angle. Upon reaching of fuel pressure to main injection valve open level, the needle 1 will further lift to lift the first and third border lines A, C respectively from the border D and the opening face 3b and finally reaches to total lift thus to inject fuel with limited angle.

Description

【発明の詳細な説明】 本発明はディーゼル機関等に使用されるスロットル型燃
料噴射ノズルの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in throttle type fuel injection nozzles used in diesel engines and the like.

一般にディーゼル機関等に使用されるスロットル型燃料
噴射ノズルでは、ノズルニードルの先端にピン部を有し
、このピン部がノズルボデー先端の噴孔に挿入され、ノ
ズルニードルの初期リフトにおいてピン部と噴孔とスロ
ットル作用により燃料の噴射率を抑えて初期噴射を行い
、初期リフトに続くニードルの全リフトまでの間にピン
部と噴孔との間の間隙を太きくして必要量の燃料を噴射
する主噴射を行うようにしてエンジンの燃焼室内での燃
焼を比較釣線やかにし、ディーゼルノックを防ぐように
している5 ところで上記従来のスロットル型燃料噴射ノズルでは一
般に円筒形の噴射壁に沿って燃料が噴射されるために噴
射角度が狭く、かつ、初期噴射、主噴射を通じて燃料の
噴射角度は一定である。しかし燃料の燃焼面から初期噴
射では燃料の着火性を良好にするために噴射角度を広角
度にして燃料を微粒化して空気との混合を良好にし、主
噴射では噴射角度を狭角度にして燃料の貫通力、即ち燃
料粒の到達距離を増大し、燃焼室の全体に噴霧を一様に
分布させる必要がある。
A throttle-type fuel injection nozzle generally used for diesel engines, etc. has a pin section at the tip of the nozzle needle, and this pin section is inserted into the nozzle hole at the tip of the nozzle body, and during the initial lift of the nozzle needle, the pin section and the nozzle hole The fuel injection rate is suppressed by the throttle action to perform initial injection, and the gap between the pin part and the injection hole is widened between the initial lift and the full lift of the needle to inject the required amount of fuel. Injecting the fuel in the combustion chamber of the engine makes it relatively smooth and prevents diesel knock.5 By the way, in the conventional throttle-type fuel injection nozzle mentioned above, fuel is generally injected along the cylindrical injection wall. Since fuel is injected, the injection angle is narrow, and the injection angle of the fuel is constant throughout the initial injection and main injection. However, from the aspect of fuel combustion, in the initial injection, the injection angle is wide to improve the ignitability of the fuel, which atomizes the fuel and improves its mixing with the air, and in the main injection, the injection angle is narrowed to improve the fuel ignitability. It is necessary to increase the penetration power of the fuel particles, that is, the distance that the fuel particles reach, and to uniformly distribute the spray throughout the combustion chamber.

上記課題に対し本願出願人により先の実願昭58−34
790号において、スロットル型燃料噴射ノズル先端の
上部ピン部の周側面から下部ピン部の先端面にかけて貫
通する副噴孔を穿設し、該副噴孔の先端開口部を先広が
りのテーパ孔とし、初期噴射期間中は副噴孔から広角の
噴射を行い、主噴射期間中はノズルボデーの噴孔から挟
角の噴射を行うようにしたスロットル型燃料噴射ノズル
が提案された。しかしながらこの提案によると、直径1
mmにも満たないノズルのピン部に副噴孔殻加工しなけ
ればならす、その加工が困難であると共にピン部の強度
を低下させるという問題がある。
Regarding the above-mentioned problem, the applicant filed an earlier application in 1983-34.
In No. 790, a sub-nozzle hole is formed that penetrates from the circumferential side of the upper pin portion at the tip of the throttle type fuel injection nozzle to the tip surface of the lower pin portion, and the tip opening of the sub-nozzle hole is made into a tapered hole that widens toward the tip. , a throttle-type fuel injection nozzle was proposed in which wide-angle injection is performed from a sub-nozzle hole during the initial injection period, and narrow-angle injection is performed from a nozzle hole in the nozzle body during the main injection period. However, according to this proposal, the diameter 1
The pin portion of the nozzle, which is less than mm in diameter, must be processed into a sub-nozzle hole shell, which is difficult and reduces the strength of the pin portion.

本発明は上記問題に鑑み、製作が容易で、かつ初期噴射
域では広角、主噴射域では挟角の燃料噴射を可能にした
スロットル型燃料噴射ノズルを提供することを目的とし
、この目的を達成するため、3− ノズルニードル先端のピン部を、該ノズルニードルのシ
ート部の下部から先端へかけて、円筒部、これと第1境
界線で接する先細の第1円錐部、これと第2境界線で接
する先太の第2円錐部、これと第3境界線で接する先細
の第3円錐部で順次形成する一方、ノズルボデーの弁座
に連なる噴孔を円筒形とし、噴孔の直径よりピン部の円
筒部の直径を小に、該円筒部の直径より前記第3境界線
の直径を小にし、かつ、円筒部が噴孔とノズルニードル
の初期リフト相当長さ重合し、ノズルニードルの初期リ
フト終了時において前記第1境界線がノズルボデーの噴
孔と弁座との境界部に位置すると共に前記第3境界線が
噴孔の開口面より下方に位置し、ノズルニードルの全リ
フト時において第1境界線が噴孔と弁座との境界部より
上方に位置すると共に前記第3境界線が噴孔内に位置す
るごとく各部の寸法を設定したものである。
In view of the above-mentioned problems, an object of the present invention is to provide a throttle type fuel injection nozzle that is easy to manufacture and enables wide-angle fuel injection in the initial injection region and narrow-angle fuel injection in the main injection region, and achieves this object. In order to do this, 3- the pin part at the tip of the nozzle needle is extended from the bottom of the seat part of the nozzle needle to the tip, and the cylindrical part, the tapered first conical part that touches this at the first boundary line, and the second boundary The second conical part has a thicker end and the third conical part has a third taper. The diameter of the cylindrical part of the part is made small, and the diameter of the third boundary line is made smaller than the diameter of the cylindrical part, and the cylindrical part overlaps the nozzle hole and the nozzle needle for a length equivalent to the initial lift, and the initial lift of the nozzle needle is At the end of the lift, the first boundary line is located at the boundary between the nozzle hole of the nozzle body and the valve seat, and the third boundary line is located below the opening surface of the nozzle hole. The dimensions of each part are set so that the first boundary line is located above the boundary between the nozzle hole and the valve seat, and the third boundary line is located within the nozzle hole.

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第3図は第1の実施例を示し、第1図はノズ
ルニードルの着座時、第2図は同初期リフ4− ト終了時、第3図は同全リフト時の状態を夫々示してい
る。
Figures 1 to 3 show the first embodiment. Figure 1 shows the nozzle needle when it is seated, Figure 2 shows the state when the initial lift is completed, and Figure 3 shows the state when the nozzle needle is fully lifted. shown respectively.

図においてノズルニードル1はその軸部1aの下部に先
細円錐形のシート部1bが形成され、その下部に段部を
介して減径された小径ピン部2が形成されている。この
ピン部2は基部から先端にかけて円筒部2a、これと第
1境界線Aで接する先細の第1円錐部2b、これと第2
境界線Bで接する先太の円錐部2c、更にこれと第3境
界線Cで接する第3円錐部が順次形成されている。一方
ノズルボデ−3にはノズルニードルIのシート部IJに
対応する円錐面から成る弁座3aと、これに続きノズル
ボデー3の先端面に開口する円筒形の噴孔3cが形成さ
れている。そして噴孔3cの直径doよりピン部2の円
筒部2aの直径d、を小にし、又該円筒部2aの直径d
1より前記第3境界線Cの直径d2を小にしである。又
第1図に示すごとくノズルニードル1のシート部1bが
ノズルボデー3の弁座3aに着座した時、即ちノズルニ
ードル1の着座時には円筒部2aが噴孔3cとノズルニ
ードル1の初期リフト量Q、相当長さ重合し、第2図に
示すごとくノズルニードル1が初期リフトfl、リフト
した時第1境界線Aがノズルボデー3の噴孔3cと弁座
3aとの境界部りに位置すると共に、第2境界線Bは噴
孔3c内に入り、又第3境界線Cは噴孔3cの開口面3
bより下方に位置し、更に第3図に示すごとくノズルニ
ードル1が全リフト量Q、2リフトした時前記第3境界
線Cは噴孔3c内部に入ると共に第1境界線Aが噴孔3
cと弁座3aとの境界部りより上方に位置するように各
部の寸法が設定されている。
In the figure, a nozzle needle 1 has a tapered conical seat part 1b formed at the lower part of its shaft part 1a, and a small diameter pin part 2 whose diameter is reduced through a step part is formed at the lower part thereof. This pin part 2 includes a cylindrical part 2a from the base to the tip, a tapered first conical part 2b that touches this at a first boundary line A, and a second conical part 2b that is in contact with this at a first boundary line A.
A thicker conical portion 2c that contacts at a boundary line B, and a third conical portion that contacts this at a third boundary line C are formed in this order. On the other hand, the nozzle body 3 is formed with a valve seat 3a having a conical surface corresponding to the seat portion IJ of the nozzle needle I, and a cylindrical nozzle hole 3c that opens at the distal end surface of the nozzle body 3 following this valve seat 3a. Then, the diameter d of the cylindrical portion 2a of the pin portion 2 is made smaller than the diameter do of the nozzle hole 3c, and the diameter d of the cylindrical portion 2a is
1, the diameter d2 of the third boundary line C is made smaller. Further, as shown in FIG. 1, when the seat portion 1b of the nozzle needle 1 is seated on the valve seat 3a of the nozzle body 3, that is, when the nozzle needle 1 is seated, the cylindrical portion 2a moves between the nozzle hole 3c and the initial lift amount Q of the nozzle needle 1. When the nozzle needle 1 is lifted by the initial lift fl as shown in FIG. The second boundary line B enters the nozzle hole 3c, and the third boundary line C enters the opening surface 3 of the nozzle hole 3c.
Further, as shown in FIG. 3, when the nozzle needle 1 lifts by a total lift amount Q, the third boundary line C enters the inside of the nozzle hole 3c, and the first boundary line A enters the inside of the nozzle hole 3c.
The dimensions of each part are set so that they are located above the boundary between valve seat 3a and valve seat 3a.

上記構成の第1の実施例の作用を第4図に示す噴孔流量
特性図を併せて参照して説明する。ノズルニードル1の
閉弁時ノズルニードル1のシート部1bはノズルボデー
3の弁座3aに着座し、円筒部2aが噴孔3cとノズル
ニードル1の初期リフト量Ω1相当長さ重合し、この時
燃料噴射はなされない。(第1図) 次に図示しない燃料噴射ポンプより燃料が圧送され、そ
の燃料圧がノズルニードル1の初期噴射開弁圧に達する
とノズルニードルlはリフトを始め、ノズルニードル1
のシート部tbはノズルボデー3の弁座3a面がら離間
し、その間隙a、の面積が噴孔3cとピン部2の円筒部
2aとの間隙a2の面積と等しくなるまでの間は間隙a
1の面積に対応した量の燃料が噴射される。この間の流
量特性は第4図の線Pである。
The operation of the first embodiment having the above configuration will be explained with reference to the nozzle hole flow rate characteristic diagram shown in FIG. When the nozzle needle 1 is closed, the seat portion 1b of the nozzle needle 1 is seated on the valve seat 3a of the nozzle body 3, and the cylindrical portion 2a overlaps with the nozzle hole 3c by a length corresponding to the initial lift amount Ω1 of the nozzle needle 1, and at this time, the fuel No injection is made. (Fig. 1) Next, fuel is fed under pressure from a fuel injection pump (not shown), and when the fuel pressure reaches the initial injection valve opening pressure of the nozzle needle 1, the nozzle needle l starts to lift, and the nozzle needle 1
The seat portion tb is separated from the valve seat 3a surface of the nozzle body 3, and the gap a remains until the area of the gap a becomes equal to the area of the gap a2 between the nozzle hole 3c and the cylindrical portion 2a of the pin portion 2.
An amount of fuel corresponding to the area of 1 is injected. The flow rate characteristic during this period is shown by line P in FIG.

、ノズルニードル1が更にリフトし、初期リフト量Q1
リフトした時、第1境界線Aがノズルボデー3の噴孔3
cと弁座3aとの境界部りに位置すると共にピン部2の
第3境界線が噴孔3cの開口面3bの下方に位置し初期
リフトが終了する(第2図)。この間1間隙alの面積
は増加するが、間隙a2の面積は円筒部2aが噴孔3c
と重合しているため変らず、燃料は該間隙a2の面積に
対応した一定量で噴孔3cがら噴射される。この間の流
量特性は第4図の線Qである。そしてこのノズルニード
ル1の初期リフトの間燃料は間隙a1がら間隙a2を通
じてピン部2の第1円錐部2bに沿って流れ、最後に先
太の第2円錐部2cによって判径方向外方へ流れが偏向
されて噴孔3cがら7− 広角で噴射される。
, the nozzle needle 1 further lifts, and the initial lift amount Q1
When lifted, the first boundary line A is the nozzle hole 3 of the nozzle body 3.
c and the valve seat 3a, and the third boundary line of the pin part 2 is located below the opening surface 3b of the nozzle hole 3c, and the initial lift ends (FIG. 2). During this time, the area of 1 gap al increases, but the area of gap a2 is smaller than that of the cylindrical part 2a and the nozzle hole 3c.
The fuel is injected from the nozzle hole 3c in a constant amount corresponding to the area of the gap a2. The flow rate characteristic during this period is shown by line Q in FIG. During this initial lift of the nozzle needle 1, the fuel flows from the gap a1 to the gap a2 along the first conical part 2b of the pin part 2, and finally flows outward in the radial direction through the second conical part 2c having a thicker taper. is deflected and injected from the nozzle hole 3c at a wide angle.

続いて燃料噴射ポンプの燃料圧がノズルニードル1の主
噴射開弁圧に達するとノズルニードル1は更にリフトし
、第1境界線Aは噴孔3cと弁座3aとの境界部りより
、第3境界線Cは噴孔3cの開口面3bより夫々上昇し
て最後に全リフト量Q2に達する。(第3図)この間第
1円錐部2bと噴孔3cとの間隙a3はその面積を拡大
し、燃料はこの間隙a3の面積に対応した量で噴孔3c
から噴射される。この間の流量特性は第4図の線Rであ
る。
Subsequently, when the fuel pressure of the fuel injection pump reaches the main injection valve opening pressure of the nozzle needle 1, the nozzle needle 1 further lifts, and the first boundary line A becomes the first boundary line from the boundary between the injection hole 3c and the valve seat 3a. The three boundary lines C each rise from the opening surface 3b of the nozzle hole 3c and finally reach the total lift amount Q2. (Fig. 3) During this time, the area of the gap a3 between the first conical portion 2b and the nozzle hole 3c is expanded, and the fuel is supplied to the nozzle hole 3c in an amount corresponding to the area of this gap a3.
is injected from. The flow rate characteristic during this period is shown by line R in FIG.

この主噴射リフトの間、燃料は間隙a1がら間隙a3を
通じてピン部2の第1円錐部2bに沿って流れ、第2円
錐部2bに至り半径方向へ流れが偏向されるが、第2円
錐部2cと第3円錐部2dとによって形成される第3境
界線Cを含む凸面は噴孔3cの内部にあるため燃料流は
噴孔3cの円筒形の内壁によって誘導されて挟角となっ
て噴孔3cから噴射される。
During this main injection lift, the fuel flows from the gap a1 to the gap a3 along the first conical part 2b of the pin part 2, and reaches the second conical part 2b, where the flow is deflected in the radial direction. Since the convex surface including the third boundary line C formed by the third conical portion 2c and the third conical portion 2d is inside the nozzle hole 3c, the fuel flow is guided by the cylindrical inner wall of the nozzle hole 3c and is injected at an included angle. It is injected from the hole 3c.

尚ノズルニードルlの初期リフト終了時におけ8− る第3境界線Cと噴孔3cの開口面3bとの間隔m1と
、全リフト終了時における第3境界線Cと噴孔3の開口
面3bとの間隔m2とをほぼ等しく設定した時、即ち第
4図においてノズルニードル1が初期リフト量Q1から
全リフト量Q2まで変位する間のほぼ中点位置で第3境
界線Cと開口面3bとが一致するようにした時に、燃料
噴射を初期噴射時に広角に、主噴射時に挟角にするのに
最も有効であることが実験により確かめられた。
The distance m1 between the third boundary line C and the opening surface 3b of the nozzle hole 3c at the end of the initial lift of the nozzle needle l, and the distance m1 between the third boundary line C and the opening surface 3b of the nozzle hole 3 at the end of the entire lift. When the distance m2 between the two and It has been confirmed through experiments that it is most effective to make the fuel injection a wide angle at the initial injection and a narrow angle at the main injection when the angles are made to match.

第5図は第2の実施例をノズルニードル1の初期リフト
終了時の状態で示し、かつ第1の実施例と対応する構成
要素は同一の符号を付して示しである。
FIG. 5 shows the second embodiment in a state at the end of the initial lift of the nozzle needle 1, and components corresponding to those of the first embodiment are designated by the same reference numerals.

この実施例ではノズルボデー3の噴孔3cと弁座3aと
の境界部D′をノズルニードル1の円錐面とほぼ平行な
円面にて形成したものであって、その他の構成は第1の
実施例と同様である。この構成によれば、初期リフト期
間中ノズルニードル1のシート部と弁座3aとの間隙&
1がら噴孔3cに流入する燃料は円錐形の境界部D′に
よって流路抵抗が減少されるため強い流勢で第2円錐部
2cに衝突して半径方向外方に偏向され、噴孔3cから
の広角噴射が一層確実になされる。
In this embodiment, the boundary D' between the nozzle hole 3c of the nozzle body 3 and the valve seat 3a is formed by a circular surface substantially parallel to the conical surface of the nozzle needle 1, and the other configuration is the same as that of the first embodiment. Similar to the example. According to this configuration, during the initial lift period, there is a gap between the seat portion of the nozzle needle 1 and the valve seat 3a.
Since the flow path resistance of the fuel flowing into the nozzle hole 3c is reduced by the conical boundary portion D', the fuel collides with the second cone portion 2c with a strong flow force and is deflected radially outward, and the fuel flows into the nozzle hole 3c. Wide-angle jetting is made more reliable.

第6図は上記第2の実施例の噴孔流量特性を示し、シー
ト部]、bと弁座3aとの間隙a1に対応する流量増加
特性線Pに続くピン部2の円筒部2aと噴孔3cとの間
隙a2に対応する流量一定の特性線Qの後、円錐面によ
る境界部D′と第1円錐部2bとの間隙a 、1に対応
する流量増加の特性線Sが続き、この後噴孔3cと第1
円錐部2bとの間隙a3に対応する流量増加の特性線R
が続く。
FIG. 6 shows the flow rate characteristics of the nozzle hole of the second embodiment. The characteristic line Q of constant flow rate corresponding to the gap a2 with the hole 3c is followed by the characteristic line S of increasing flow rate corresponding to the gap a,1 between the boundary part D' and the first conical part 2b formed by the conical surface. The rear nozzle hole 3c and the first
Characteristic line R of increase in flow rate corresponding to the gap a3 with the conical part 2b
continues.

ところでこの実施例によると、ノズルニードル1の初期
リフト終了時、ピン部2の第1境界線Aの位置が円錐面
を形成する境界部D′内にあるため。
According to this embodiment, at the end of the initial lift of the nozzle needle 1, the position of the first boundary line A of the pin part 2 is within the boundary part D' forming the conical surface.

ノズルニードルlの初期リフト終了位置の公差によりス
ロットル噴射量に差が生じる。
A difference occurs in the throttle injection amount due to the tolerance of the initial lift end position of the nozzle needle l.

第3の実施例はノズルニードル1の初期、リフト終了位
置の公差の有無にかかわらずスロットル噴射量に差が生
じないようにしたもので、第7図は第3の実施例をノズ
ルニードル】の初期リフト終了時の状態で示し、かつ前
記実施例と対応する構成要素は同一の符号を付して示し
である。
The third embodiment is designed so that there is no difference in the throttle injection amount regardless of whether there is a tolerance between the initial and lift end positions of the nozzle needle 1, and FIG. Components shown in the state at the end of the initial lift and corresponding to those in the previous embodiment are designated by the same reference numerals.

この実施例ではノズルボデー3の噴孔3cと弁座3aと
の境界部D”を弁座3aに続く噴孔3cよりやや大径の
円筒孔D1″と、該円筒孔D1″と噴孔3cとを接続す
る円錐孔D2″形成し、かつノズルニードル1の初期リ
フト終了時にピン部2の第1境界線Aが境界部D”の円
筒孔D1″部に位置するごとく構成する。ここでノズル
ニードル1が閉弁位置からリフトを始め、ノズルニード
ル1のシート部1bと弁座3aとの間隙a1と噴孔3c
とピン部2の円筒部2aとの間隙a2の両面積が等しく
なった時ピン部2の第1境界線Aが丁度円錐孔D2″と
噴孔3cとの境界部Eに一致するように構成すればその
噴孔流量特性は第8図に示すごとくなる。即ちノズルニ
ードルlのシート部1bと弁座3aとの間隙a1に対応
する流量増加特性線P、ピン部2の円筒部2aと円錐孔
D2″との間隙a5に対応する流電増加特性線T、円筒
部2aと円筒孔り、″との間隙a6に対応す 11− る流量一定時性線U、ピン部2の第1円錐部2bと円筒
孔り、″との間隙a7に対応する流量増加特性線Vとで
成る噴孔流量特性となる。
In this embodiment, the boundary D'' between the nozzle hole 3c and the valve seat 3a of the nozzle body 3 is connected to a cylindrical hole D1'' which has a slightly larger diameter than the nozzle hole 3c following the valve seat 3a, and the cylindrical hole D1'' and the nozzle hole 3c. A conical hole D2'' is formed to connect the nozzle needle 1, and the first boundary line A of the pin portion 2 is located at the cylindrical hole D1'' portion of the boundary portion D'' at the end of the initial lift of the nozzle needle 1. Here, the nozzle needle 1 starts to lift from the valve closed position, and the gap a1 between the seat part 1b of the nozzle needle 1 and the valve seat 3a and the nozzle hole 3c
and the cylindrical part 2a of the pin part 2, and when the areas of the gap a2 become equal, the first boundary line A of the pin part 2 exactly coincides with the boundary part E between the conical hole D2'' and the nozzle hole 3c. Then, the flow rate characteristics of the nozzle hole will be as shown in Fig. 8. That is, the flow rate increase characteristic line P corresponds to the gap a1 between the seat part 1b of the nozzle needle l and the valve seat 3a, and the flow rate increase characteristic line P corresponds to the cylindrical part 2a of the pin part 2 and the conical part 2a. A current increase characteristic line T corresponding to the gap a5 with the hole D2'', a constant flow rate characteristic line U corresponding to the gap a6 between the cylindrical part 2a and the cylindrical hole 2'', and the first cone of the pin part 2. The nozzle hole flow rate characteristic is formed by a flow rate increase characteristic line V corresponding to the gap a7 between the portion 2b and the cylindrical hole.

又ノズルニードル1のシート部1bと弁座3aとの間隙
a1と、噴孔3cとピン部2の円筒部2aとの間隙a2
の両面積が等しくなった時、尚ピン部2の円筒部2aが
噴孔3cと重合しているように構成すれば、その噴孔流
量特性は第9図に示すようになる。即ち、第8図におけ
る線Pと線Tとの間に円筒部2aと噴孔3cとの間隙a
2に対応する流量一定の特性線Qが介在される。そして
上記の何れの構成にしてもノズルニードル1の初期リフ
ト終了時、ピン部2の第1境界線Aの位置が境界部D”
の円筒孔D1″内にあって、この位置は第8図及び第9
図の流量一定時性線U上にあるからノズルニードル1の
初期リフト終了位置に公差があってもスロットル噴射量
に差が生しない。
Also, a gap a1 between the seat portion 1b of the nozzle needle 1 and the valve seat 3a, and a gap a2 between the nozzle hole 3c and the cylindrical portion 2a of the pin portion 2.
If the cylindrical portion 2a of the pin portion 2 overlaps the nozzle hole 3c when both areas become equal, the flow rate characteristic of the nozzle hole will be as shown in FIG. 9. That is, there is a gap a between the cylindrical portion 2a and the nozzle hole 3c between the line P and the line T in FIG.
A characteristic line Q with a constant flow rate corresponding to 2 is interposed. In any of the above configurations, when the initial lift of the nozzle needle 1 is completed, the position of the first boundary line A of the pin part 2 is the boundary part D''
This position is within the cylindrical hole D1'' of FIGS. 8 and 9.
Since it is on the constant flow rate line U in the figure, even if there is a tolerance in the initial lift end position of the nozzle needle 1, there will be no difference in the throttle injection amount.

又前記構成の境界部D”によって第1円錐部2bに向っ
て流れる燃料量の流路抵抗が減少される効果は前記第2
の実施例と同様である。
Further, the effect that the flow path resistance of the amount of fuel flowing toward the first conical portion 2b is reduced by the boundary portion D'' of the above-mentioned structure is the same as that of the second conical portion 2b.
This is similar to the embodiment.

12− 以上説明したように本発明によれば、ノズルニードル先
端のピン部を、該ノズルニードルのシート部の下部から
先端へかけて1円筒部、これと第1境界線で接する先細
の第1円錐部、これと第2境界線で接する先太の第2円
錐部、これと第3境界線で接7する先細の第3円錐部で
順次形成する一方、ノズルボデーの弁座に連なる噴孔を
円筒形とし。
12- As explained above, according to the present invention, the pin portion at the tip of the nozzle needle has a cylindrical portion extending from the bottom of the seat portion of the nozzle needle to the tip, and a tapered first portion that contacts this at the first boundary line. A conical part, a second conical part with a thicker taper that contacts this at a second boundary line, and a third tapered conical part that contacts this at a third boundary line are sequentially formed, while a nozzle hole that connects to the valve seat of the nozzle body is formed. Make it cylindrical.

噴孔の直径よりピン部の円筒部の直径を小に、該円筒部
の直径より前記第3境界線の直径を小にし。
The diameter of the cylindrical portion of the pin portion is made smaller than the diameter of the nozzle hole, and the diameter of the third boundary line is made smaller than the diameter of the cylindrical portion.

かつ、円筒部が噴孔とノズルニードルの初期リフト相当
長さ重合し、ノズルニードルの初期リフト終了時におい
て前記第1境界線がノズルボデーの噴孔と弁座との境界
部に位置すると共に前記第3境界線が噴孔の開口面より
下方に位置し、ノズルニードルの全リフト時において第
1境界線が噴孔と弁座との境界部より上方に位置すると
共に前記第3境界線が噴孔内に位置するごとく各部の寸
法を設定したことにより、初期噴射では広角度の燃料噴
射が行われて燃料が微粒化し空気とよく混合されて着火
性が高められ、主噴射では挟角噴射が行われて燃料の貫
通力が増大し燃焼室の全体に噴霧を一様に分布させ燃料
の燃焼性を向上させ機関の静粛、無煙運転を達成するこ
とができる。
The cylindrical portion overlaps the nozzle hole and the nozzle needle for a length equivalent to the initial lift, and when the initial lift of the nozzle needle ends, the first boundary line is located at the boundary between the nozzle hole and the valve seat of the nozzle body, and the first boundary line is located at the boundary between the nozzle hole and the valve seat of the nozzle body. The third boundary line is located below the opening surface of the nozzle hole, and the first boundary line is located above the boundary between the nozzle hole and the valve seat when the nozzle needle is fully lifted, and the third boundary line is located below the opening surface of the nozzle hole. By setting the dimensions of each part so that the fuel is located within the center, a wide-angle fuel injection is performed during the initial injection, which atomizes the fuel and mixes well with the air, improving ignitability, and a narrow-angle injection is performed during the main injection. As a result, the penetration power of the fuel is increased, the spray is uniformly distributed throughout the combustion chamber, the combustibility of the fuel is improved, and quiet and smokeless operation of the engine can be achieved.

尚、本考案によるスロットル型燃料噴射ノズルは、特に
実開昭57−186657号に開示された二段噴射式の
ノズルホルダに適用するのに好適である。
The throttle type fuel injection nozzle according to the present invention is particularly suitable for application to the two-stage injection type nozzle holder disclosed in Japanese Utility Model Application No. 57-186657.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は第1の実施例の先端拡大図で、第1
図はノズルニードルの閉弁時、第2図は同初期すフト終
了時、第3図は同全リフト時の状態を夫々示し、第4図
は同実施例の噴孔流量特性を示すグラフ、第5図及び第
7図は夫々第2及び第3の実施例の先端拡大図で共に初
期リフト終了時の状態を示し、第6図は第2の実施例の
噴孔流量特性を示すグラフ、第8図及び第9図は第3の
実施例の2種類の構成の噴孔流量特性を夫々示すグラフ
である。 1・・・ノズルニードル、 lb・・・シート部、2・
・・ビン部、2a・・・円筒部、2b・・・第1円錐部
、2c・・・第2円錐部、2d・・・第3円錐部、3a
・・・弁座、 3b・自問口面、3c・・・噴孔、A・
・・第1境界線、B・・・第2境界線、C・・・第3境
界線、 D、D’ 、D”・・・境界部、D1″・・・
円筒孔、D2″・・・円錐孔。 出願人 ヂーゼル機器株式会社 代理人 弁理士 渡部敏彦 第5図 第7図 特開昭GO−119368(6) 第8図 1厘7 ・/
Figures 1 to 3 are enlarged views of the tip of the first embodiment;
The figure shows the state when the nozzle needle is closed, FIG. 2 shows the state at the end of the initial stage, and FIG. 3 shows the state at the full lift. FIG. 4 is a graph showing the nozzle flow rate characteristics of the same example. 5 and 7 are enlarged views of the tips of the second and third embodiments, respectively, showing the state at the end of the initial lift, and FIG. 6 is a graph showing the nozzle flow rate characteristics of the second embodiment, FIGS. 8 and 9 are graphs showing the nozzle flow rate characteristics of two types of configurations of the third embodiment, respectively. 1... Nozzle needle, lb... Seat part, 2...
... Bottle part, 2a... Cylindrical part, 2b... First conical part, 2c... Second conical part, 2d... Third conical part, 3a
... Valve seat, 3b. Self-mouthing surface, 3c.. Nozzle hole, A.
...First boundary line, B...Second boundary line, C...Third boundary line, D, D', D"...Boundary part, D1"...
Cylindrical hole, D2''...conical hole. Applicant: Diesel Kikai Co., Ltd. Agent Patent Attorney: Toshihiko Watanabe

Claims (1)

【特許請求の範囲】 1、 ノズルニードル先端のピン部を、該ノズルニード
ルのシート部の下部から先端へかけて、円筒部、これと
第1境界線で接する先細の第1円錐部、これと第2境界
線で接する先太の第2円錐部、これと第3境界線で接す
る先細の第3円錐部で順次形成する一方、ノズルボデー
の弁座に連なる噴孔を円筒形とし、噴孔の直径よりピン
部の円筒部の直径を小に、該円筒部の直径より前記第3
境界線の直径を小にし、かつ、円筒部が噴孔とノズルニ
ードルの初期リフト相当長さ重合し、ノズルニードルの
初期リフト終了時において前記第1境界線がノズルボデ
ーの噴孔と弁座との境界部に位置すると共に前記第3境
界線が噴孔の開口面より下方に位置し、ノズルニードル
の全リフト時において第1境界線が噴孔と弁座との境界
部より上方に位置すると共に前記第3境界線が噴孔内に
位置するととく各部の寸法を設定したことを特徴とする
スロットル型燃料噴射ノズル。 2、前記ノズルボデーの噴孔と弁座との境界部は。 前記ノズルニードルの第1円錐部の円錐面とほぼ平行な
円錐面にて形成したことを特徴とする特許請求の範囲第
1項記載のスロットル型燃料噴射ノズル。 3、 前記ノズルボデーの噴孔と弁座との境界部は、噴
孔よりやや大径の円筒孔と、該円筒孔と噴孔とを接続す
る円錐孔とで形成し、かつ、ノズルニードルの初期リフ
ト終了時にノズルニードルの前記第1境界線が前ira
境界部の円筒形孔内に位置するごとく構成したことを特
徴とする特許請求の範囲第1項記載のスロットル型燃料
噴射ノズル。 4、 前記ノズルボデーの噴孔の開口面を、ノズルニー
ドルの初期リフト終了時と全リフト終了時とにおける前
記ピン部の第3境界線の同位置のほぼ中点位置に一致さ
せたことを特徴とする特許請求の範囲第1項乃至第3項
のいずれかに記載のスロットル型燃料噴射ノズル。
[Claims] 1. The pin portion at the tip of the nozzle needle extends from the bottom of the seat portion of the nozzle needle to the tip, and connects the cylindrical portion, the tapered first conical portion that contacts this at the first boundary line, and the cylindrical portion. The second conical part has a thicker taper that touches the second boundary line, and the third conical part has a tapered taper that touches the third boundary line. The diameter of the cylindrical part of the pin part is smaller than the diameter of the third part.
The diameter of the boundary line is made small, and the cylindrical part overlaps the nozzle hole and the nozzle needle for a length equivalent to the initial lift, and at the end of the initial lift of the nozzle needle, the first boundary line becomes the line between the nozzle body nozzle hole and the valve seat. The third boundary line is located at the boundary and is located below the opening surface of the nozzle hole, and the first boundary line is located above the boundary between the nozzle hole and the valve seat when the nozzle needle is fully lifted. A throttle type fuel injection nozzle, characterized in that the dimensions of each part are set such that the third boundary line is located within the nozzle hole. 2. The boundary between the nozzle hole and the valve seat of the nozzle body. 2. The throttle-type fuel injection nozzle according to claim 1, wherein the throttle-type fuel injection nozzle is formed with a conical surface substantially parallel to the conical surface of the first conical portion of the nozzle needle. 3. The boundary between the nozzle hole and the valve seat of the nozzle body is formed by a cylindrical hole with a slightly larger diameter than the nozzle hole, and a conical hole connecting the cylindrical hole and the nozzle hole, and At the end of the lift, the first boundary line of the nozzle needle is
2. The throttle type fuel injection nozzle according to claim 1, wherein the throttle type fuel injection nozzle is configured to be located within the cylindrical hole at the boundary. 4. The opening surface of the nozzle hole of the nozzle body is made to coincide with approximately the midpoint position of the same position of the third boundary line of the pin portion at the end of the initial lift of the nozzle needle and at the end of the full lift. A throttle type fuel injection nozzle according to any one of claims 1 to 3.
JP22796783A 1983-12-02 1983-12-02 Throttle type fuel injection nozzle Pending JPS60119368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22796783A JPS60119368A (en) 1983-12-02 1983-12-02 Throttle type fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22796783A JPS60119368A (en) 1983-12-02 1983-12-02 Throttle type fuel injection nozzle

Publications (1)

Publication Number Publication Date
JPS60119368A true JPS60119368A (en) 1985-06-26

Family

ID=16869060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22796783A Pending JPS60119368A (en) 1983-12-02 1983-12-02 Throttle type fuel injection nozzle

Country Status (1)

Country Link
JP (1) JPS60119368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000583A1 (en) * 1985-07-19 1987-01-29 Orbital Engine Company Proprietary Limited Direct fuel injection by compressed gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000583A1 (en) * 1985-07-19 1987-01-29 Orbital Engine Company Proprietary Limited Direct fuel injection by compressed gas

Similar Documents

Publication Publication Date Title
JP3788275B2 (en) In-cylinder direct injection internal combustion engine
JPH11117831A (en) Fuel injection valve for internal combustion engine
JPH08226363A (en) Fuel injection nozzle
JPS59116572U (en) Throttle type fuel injection nozzle
US4715540A (en) Fuel-injection nozzle
JP2976973B1 (en) Fuel injection valve for internal combustion engine
JPS60119368A (en) Throttle type fuel injection nozzle
JP2841768B2 (en) Fuel injection nozzle for diesel engine
JP2584728B2 (en) Fuel injection nozzle
JP2841770B2 (en) Fuel injection nozzle for diesel engine
USRE32703E (en) Throttling-pintle nozzle for fuel injection in an internal-combustion engine
JPS6327092Y2 (en)
JPH08277765A (en) Fuel injection nozzle
JP2750715B2 (en) Fuel injection nozzle
JPH08144895A (en) Fuel injection nozzle
JP2000145584A (en) Fuel injection nozzle
JP2000320429A (en) Fuel injection nozzle
JPH06159197A (en) Fuel injection nozzle
JP2001065431A (en) Fuel injection valve for internal combustion engine
JP4062049B2 (en) In-cylinder direct injection internal combustion engine
JPH08144762A (en) Direct injection type spark ignition internal combustion engine
JPH08338343A (en) Fuel injection nozzle
JPH0599099A (en) Fuel injection nozzle
JP2000130291A (en) Fuel injection nozzle
JP2521057Y2 (en) Fuel injection nozzle