JPS60119335A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS60119335A
JPS60119335A JP22438683A JP22438683A JPS60119335A JP S60119335 A JPS60119335 A JP S60119335A JP 22438683 A JP22438683 A JP 22438683A JP 22438683 A JP22438683 A JP 22438683A JP S60119335 A JPS60119335 A JP S60119335A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
signal
input
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22438683A
Other languages
Japanese (ja)
Other versions
JPS6353365B2 (en
Inventor
Fujiyuki Suzuki
鈴木 富士往
Akira Osada
長田 鑑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP22438683A priority Critical patent/JPS60119335A/en
Publication of JPS60119335A publication Critical patent/JPS60119335A/en
Publication of JPS6353365B2 publication Critical patent/JPS6353365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To avoid engine-stall to enhance the operation ability of an engine, by enabling a signal from a exhaust sensor to be effective only when the input time of the signal exceeds a set value, so that the air-fuel ratio is controlled. CONSTITUTION:An exhaust sensor 10 is disposed in the exhaust system of an engine 4. A control circuit parts 2 enables an input signal from the exhaust sensor 10 to be effective only when the input time of the input signal exceeds a set value, and actuates a control valve 14 to adjust the air-fuel ratio in an intake-air pipe 12 to a predetermined air-fuel ratio. Thus, since the air-fuel ratio may be adjusted in accordance with the running condition of the engine, the operation ability of the engine may be enhanced, and as well the components of exhaust gas are made stable to aim at purifying the exhaust gas.

Description

【発明の詳細な説明】 (1) [発明の技術分野] この発明は、内燃機関に供給する混合気の空燃比制御装
置に係り、特に、内燃機関の排気系に設けた排気セン号
から入力する信号の入力時間が設定値以上であるときに
のみこの信号を有効とすることにより所定の空燃比に調
整し得る空燃比制御装置に関する。
Detailed Description of the Invention (1) [Technical Field of the Invention] The present invention relates to an air-fuel ratio control device for a mixture supplied to an internal combustion engine, and particularly relates to an air-fuel ratio control device for an air-fuel mixture supplied to an internal combustion engine. The present invention relates to an air-fuel ratio control device that can adjust the air-fuel ratio to a predetermined air-fuel ratio by validating this signal only when the input time of the signal is equal to or longer than a set value.

し発明の技術的背景」 近年、内燃機関においては、低燃費や排気ガスの有害成
分低減を図るため、最良の燃焼状態を得べき空燃比に収
束させるフィードバック制御方式の空燃比制御装置が提
案されている。空燃比制御装置は、排気系に設けた排気
センサにより排気ガス成分を検出し、この検出信号に基
づく補正信号により供給燃料量や供給空気量を制御して
吸入混合気の空燃比を適正な空燃比に調整する。
TECHNICAL BACKGROUND OF THE INVENTION In recent years, for internal combustion engines, in order to improve fuel efficiency and reduce harmful components in exhaust gas, feedback control type air-fuel ratio control devices have been proposed that converge to the air-fuel ratio that should provide the best combustion state. ing. The air-fuel ratio control device detects exhaust gas components using an exhaust sensor installed in the exhaust system, controls the amount of fuel supplied and the amount of air supplied using a correction signal based on this detection signal, and adjusts the air-fuel ratio of the intake mixture to an appropriate air-fuel ratio. Adjust to fuel ratio.

[背景技術の問題点] ところで、排気センサによる信号に基づき適正な空燃比
にフィードハック制御する方式においては、定常時にあ
っては低燃費や排気ガス清浄化を(2) 充分果すことができる。しかし、非定常時、例えば過渡
運転状態や高負荷状態にあっては、定常時の空燃比より
もリンチに調整しないと運転性の悪化招く。そこで、一
般的には吸気通路負圧や機関回転数などから前記過渡運
転状態などを検知すると、前記排気センサによるフィー
ドバック制御を解除しオーブンループ制御で空燃比をリ
ンチ化している。
[Problems with Background Art] Incidentally, in a system in which feed-hack control is performed to maintain an appropriate air-fuel ratio based on a signal from an exhaust sensor, low fuel consumption and exhaust gas purification (2) can be sufficiently achieved in steady state. However, in unsteady conditions, such as transient operating conditions or high load conditions, drivability will deteriorate unless the air-fuel ratio is adjusted more closely than the steady state. Therefore, generally, when the transient operating state is detected from intake passage negative pressure, engine speed, etc., feedback control by the exhaust sensor is canceled and the air-fuel ratio is controlled by oven loop control.

ところが、オーブンループ制御では、強制的に一定値に
移行させるため、気温や気圧などの要素により空燃比が
一定にならず、条件によって種々の値をとり得る。この
ため、運転性の悪化や排気ガス成分の変動を招く不都合
を有している。
However, in oven loop control, since the air-fuel ratio is forced to a constant value, the air-fuel ratio is not constant due to factors such as temperature and atmospheric pressure, and can take various values depending on the conditions. This has the disadvantage of causing deterioration in drivability and fluctuations in exhaust gas components.

また、フィードバック制御方式においては、第8図(e
)に示す如く正常時には空燃比の補正信号位置がPna
とPniとの間で行われていたものが、例えば経時変化
による空燃比補正用のスロー系通路の詰りか原因で、あ
るいは高温・高地時などの条件下で、補正範囲が拡大す
ることがある。即ち、前記スロー系通路の詰り等で補正
信号位置がある(3) 回転数Na rpmの正常な位置Pnaよりもリーン側
のPaに、アイドリング回転数Nirpmの正常な位置
Pniよりもリッチ側のPi にそれぞれ移動すること
がある。
In addition, in the feedback control method, Fig. 8 (e
), under normal conditions, the air-fuel ratio correction signal position is Pna
For example, the correction range may expand due to clogging of the slow system passage for air-fuel ratio correction due to changes over time, or under conditions such as high temperatures and high altitudes. . That is, there is a correction signal position due to clogging of the slow system passage, etc. (3) Pa is leaner than the normal position Pna of the rotational speed Na rpm, and Pi is richer than the normal position Pni of the idling rotational speed Nirpm. They may move to each other.

このように、前記スロー系通路の詰り等で補正信号位置
がPaとPi との間の如く正常時よりも離れた場合に
、ある回転数Na rpmからアイドリング回転数Ni
rpmに急激に落す過渡運転時には、機関回転数の降下
に刻し空燃比のリンチ化補正信号制御に遅れを生じた。
In this way, if the correction signal position is farther away than normal, such as between Pa and Pi, due to a blockage in the slow system passage, etc., the idling speed Ni changes from a certain rotation speed Na rpm.
During transient operation where the rpm suddenly drops, there was a delay in the air-fuel ratio correction signal control as the engine speed fell.

このため、空燃比はリーン化が著しく、その結果第8図
(C)に示す如くエンジンストールEsを生じる不都合
があった。
As a result, the air-fuel ratio becomes significantly leaner, resulting in the inconvenience of engine stall Es as shown in FIG. 8(C).

[発明の目的] そこでこの発明は、前記オーブンループ制御による空燃
比変動の不都合や前記空燃比補正用のスロー系通路の詰
りなどによる制御遅れの不都合等を生じることなく、機
関運転状態により所定の空燃比に調整し得る空燃比制御
装置を実現することを目的とする。
[Object of the Invention] Therefore, the present invention provides a method for controlling the air-fuel ratio according to the engine operating condition without causing the inconvenience of air-fuel ratio fluctuation due to the oven loop control or the inconvenience of control delay due to clogging of the slow system passage for air-fuel ratio correction. The purpose of this invention is to realize an air-fuel ratio control device that can adjust the air-fuel ratio.

[発明の構成] (4) この目的を達成するためにこの発明は、内燃機関の排気
系に排気センサを設け、該排気センサから入力する信号
の入力時間が設定値以上であるときにのみ前記入力信号
を有効とし所定の空燃比に調整する制御回路部を設けた
ことを特徴とする。
[Structure of the Invention] (4) In order to achieve this object, the present invention provides an exhaust sensor in the exhaust system of an internal combustion engine, and only when the input time of the signal input from the exhaust sensor is equal to or longer than a set value, the above-mentioned The present invention is characterized in that it includes a control circuit section that validates an input signal and adjusts the air-fuel ratio to a predetermined air-fuel ratio.

さらに、内燃機関の排気系に設けた排気センサと、該排
気センサから入力する信号の入力時間が設定値以上であ
るときにのみ前記入力信号を有効とし所定の空燃比に調
整する制御回路部とを備えた空燃比制御装置に、前記内
燃機関の機関運転状態を検出する検出手段を設け、該検
出手段が所定の機関運転状態を検出しているときに前記
排気センサから前記制御回路部へ入力する信号を有効と
する入力時間の前記設定値を所定の機関運転状態に応じ
て調整する制御手段を設けたことを特徴とする。
Furthermore, an exhaust sensor provided in the exhaust system of the internal combustion engine, and a control circuit unit that validates the input signal and adjusts the air-fuel ratio to a predetermined air-fuel ratio only when the input time of the signal input from the exhaust sensor is equal to or longer than a set value. is provided with a detection means for detecting an engine operating state of the internal combustion engine, and when the detecting means detects a predetermined engine operating state, an input is input from the exhaust sensor to the control circuit section. The present invention is characterized in that a control means is provided for adjusting the set value of the input time for validating the signal according to a predetermined engine operating state.

[発明の実施例] 次に、この発明による第1発明の実施例を図に基づいて
詳細に説明する。
[Embodiments of the Invention] Next, embodiments of the first invention according to the present invention will be described in detail based on the drawings.

この発明は、内燃機関の排気系に設けた排気セ(5) ンザ、例えば排気ガス中の酸素濃度を検出する02セン
サから人力する信号の人力時間が設定値以上であるとき
にのみこの入力信号を有効として所定の空燃比に制御す
る空燃比制御装置であり、この設定値を運転状態に応じ
て調整すべくフィルタ定数を設定している。
In this invention, an input signal is generated from an exhaust sensor (5) installed in the exhaust system of an internal combustion engine, for example, when a signal is manually input from an 02 sensor that detects the oxygen concentration in exhaust gas. This is an air-fuel ratio control device that controls the air-fuel ratio to a predetermined value by activating the air-fuel ratio, and a filter constant is set to adjust this set value according to the operating state.

第1図は、この発明の概略系統図を示すものである。2
は制御回路部で、内燃機関4に設けた気化器6の空燃比
をフィードバック制御する中枢部をなす。この制御回路
部2は、排気通路8に設けた排気ガス中の酸素濃度を検
出する02センサ10からの入力信号を前記した如くフ
ィルタ定数で取入れ、吸気通路12内の空燃比を所定の
空燃比に調整すべく制御弁14を動作する。この制御弁
14は、気化器6の燃料通路あるいは空気通路を開閉制
御し、空燃比を調整する。
FIG. 1 shows a schematic system diagram of the present invention. 2
is a control circuit section, which is a central section that performs feedback control of the air-fuel ratio of the carburetor 6 provided in the internal combustion engine 4. The control circuit section 2 takes in an input signal from the 02 sensor 10 provided in the exhaust passage 8 and detects the oxygen concentration in the exhaust gas using a filter constant as described above, and adjusts the air-fuel ratio in the intake passage 12 to a predetermined air-fuel ratio. The control valve 14 is operated to adjust the temperature. This control valve 14 controls opening and closing of the fuel passage or the air passage of the carburetor 6, and adjusts the air-fuel ratio.

第2図は、前記制御回路部2のブロック図である。制御
回路部2は、前記02センサ10から入力する信号を基
準値と比較する比較回路16と、各種の信号を入力とし
て取入れる入力回路18と、(6) この入力回路18から入力した信号により判断するc 
p o 20と、及びこのCPU20の判断に基づき前
記制御弁14に制御信号を送る駆動回路22とから成る
。この制御回路部2は、02センサ10から入力するリ
ッチ信号およびリーン信号のフィルタ定数を設定し、空
燃比を所定の空燃比に調整する。
FIG. 2 is a block diagram of the control circuit section 2. As shown in FIG. The control circuit section 2 includes a comparison circuit 16 that compares the signal input from the 02 sensor 10 with a reference value, an input circuit 18 that takes in various signals as input, and (6) judge c
P o 20 , and a drive circuit 22 that sends a control signal to the control valve 14 based on the judgment of the CPU 20 . The control circuit unit 2 sets filter constants for the rich signal and lean signal input from the 02 sensor 10, and adjusts the air-fuel ratio to a predetermined air-fuel ratio.

第3図は、このフィルタ定数に対する空燃比変化の一例
を示し、02センサ10のリーンP 号に対するフィル
タ定数TJL を一定とし、リッチ信号に対するフィル
タ定数Trを変化させたものである。例えば、02セン
サ10のリッチ信号を有効とするフィルタ定数Trを大
きく、即ち有効とする入力時間を長く設定すると、リッ
チ信号は長い入力時間の信号でないと有効とならないた
め、有効となるリーン信号の方が多くなる。これら有効
となったリッチ信号およびリーン信号の入力により前記
制御回路部2は空燃比の補正信号をリンチ側に傾け、駆
動回路22により制御弁14を動作して空燃比をリンチ
化する。
FIG. 3 shows an example of the air-fuel ratio change with respect to this filter constant, in which the filter constant TJL for the lean P of the 02 sensor 10 is kept constant, and the filter constant Tr for the rich signal is varied. For example, if the filter constant Tr for validating the rich signal of the 02 sensor 10 is set large, that is, the valid input time is set to be long, the rich signal will only be valid if it is a signal with a long input time, so the lean signal will be valid. There will be more people. Upon input of these effective rich and lean signals, the control circuit section 2 inclines the air-fuel ratio correction signal to the lynch side, and the drive circuit 22 operates the control valve 14 to lynch the air-fuel ratio.

(7) 反対に、フィルタ定数Trを小さく設定すると、リッチ
信号は短い時間の入力信号でも有効となるため、リーン
信号よりも多くなる。このため、前記制御回路部2は空
燃比の補正信号をリーン側に傾げ、制御弁14を動作し
て空燃比をリーン化する。
(7) On the other hand, if the filter constant Tr is set to a small value, the rich signal becomes effective even when the input signal is short-term, so the rich signal becomes larger than the lean signal. Therefore, the control circuit section 2 tilts the air-fuel ratio correction signal toward the lean side and operates the control valve 14 to make the air-fuel ratio lean.

一方、図示しないが第1図と逆に02センサ10のリッ
チ信号に対するフィルタ定数Trを一定とし、リーン信
号に対するフィルタ定数Tl を変化させた場合、フィ
ルタ定数TAを大きく設定すると有効となるリッチ信号
が多くなり、前記制御回路部2は空燃比をリーン化する
。反対に、フィルタ定数Ti を小さく設定すると有効
となるリーン信号が多くなり、空燃比をリンチ化する。
On the other hand, although not shown, if the filter constant Tr for the rich signal of the 02 sensor 10 is constant and the filter constant Tl for the lean signal is changed, contrary to FIG. The control circuit section 2 makes the air-fuel ratio leaner. On the other hand, if the filter constant Ti is set to a small value, the number of effective lean signals increases, and the air-fuel ratio becomes lean.

このように、02センサ10から制御回路部2に入力す
るリッヂ信号およびリーン信号のフィルタ定数Tr −
Tzを変化させることにより、空燃比はリンチ側あるい
はリーン側に変動する。従って、前記各リッチ信号およ
びリーン信号のフィルタ定数Tr−Tzを種々組合せて
設定することに(8) より、運転状態に対応する種々の空燃比に調整すること
ができる。
In this way, the filter constant Tr − of the ridge signal and lean signal input from the 02 sensor 10 to the control circuit section 2
By changing Tz, the air-fuel ratio changes to the lynch side or the lean side. Therefore, by setting the filter constants Tr-Tz of each rich signal and lean signal in various combinations (8), it is possible to adjust to various air-fuel ratios corresponding to the operating conditions.

このため、フィルタ定数を変化させることにより、例え
ば定常時には所定の空燃比に、非定常時には対応するリ
ンチ側あるいはリーン側の空燃比にそれぞれ調整すべく
フィルタ定数を変化させることにより、運転状態に対応
する空燃比に調整し、運転性を向上しまた排気ガス成分
を安定させて清浄化を図ることができる。
Therefore, by changing the filter constant, for example, in steady state, the air-fuel ratio is adjusted to a predetermined value, and in unsteady state, the air-fuel ratio is adjusted to the corresponding lynch side or lean side. The air-fuel ratio can be adjusted to improve drivability, and exhaust gas components can be stabilized and cleaned.

もちろん、前述高温・高地の条件下など運転状態により
自動的に、あるいは手動でフィルタ定数を変化させるこ
ともできる。
Of course, the filter constant can also be changed automatically or manually depending on the operating conditions such as the above-mentioned high temperature and high altitude conditions.

第4.5図は、この発明の第2発明の構成を示し、第1
.2図と同一構成部分には同一符号を付しである。
Figure 4.5 shows the configuration of the second invention of this invention, and
.. The same components as in FIG. 2 are given the same reference numerals.

第4.5図において、02センサ10と、この02セン
サ10から入力する信号の入力時間が設定値以上である
ときにのみこの入力信号を有効とするフィルタ定数によ
り所定の空燃比に調整する制御回路部2とから成る空燃
比制御装置に、さら(9) に機関運転状態を検出する検出手段と、運転状態に応じ
て前記フィルタ定数を調整する制御手段とを設けている
In Fig. 4.5, control is performed to adjust the air-fuel ratio to a predetermined value using the 02 sensor 10 and a filter constant that makes the input signal valid only when the input time of the signal input from the 02 sensor 10 is equal to or greater than a set value. The air-fuel ratio control device comprising the circuit section 2 is further provided with (9) a detection means for detecting the engine operating state and a control means for adjusting the filter constant according to the operating state.

図においては、検出手段として回転数センサ24とアイ
ドルスイッチ26とを設けている。回転数センサ24は
、内燃機関4の回転数を検出し、検出した信号は入力回
路18を経て制御回路部2に入力する。前記アイドルス
イッチ26は、絞り弁28の開度から機関がアイドリン
グ状態であるか否かを検出する。このアイドルスイッチ
26は、機関がアイドリング状態になるとオンになり、
この信号は前記回転数センサ16の信号と同様に前記制
御回路部2に入力する。
In the figure, a rotation speed sensor 24 and an idle switch 26 are provided as detection means. The rotation speed sensor 24 detects the rotation speed of the internal combustion engine 4, and the detected signal is input to the control circuit section 2 via the input circuit 18. The idle switch 26 detects whether the engine is in an idling state based on the opening degree of the throttle valve 28. This idle switch 26 is turned on when the engine is in an idling state,
This signal is input to the control circuit section 2 in the same manner as the signal from the rotation speed sensor 16.

これら内燃機関4の運転状態を検出する回転数センサ2
4およびアイドルスイッチ26からの信号が後述する所
定の機関運転状態を検出しているときに、前記制御回路
部2は運転状態に応じた空燃比に調整すべく前記02セ
ンサ10から入力する信号のフィルタ定数を変化させる
A rotation speed sensor 2 that detects the operating state of these internal combustion engines 4
When the signals from the 02 sensor 10 and the idle switch 26 detect a predetermined engine operating state, which will be described later, the control circuit section 2 detects the signal input from the 02 sensor 10 in order to adjust the air-fuel ratio according to the operating state. Vary the filter constant.

この実施例においては、回転数センサ24か所(10) 定の回転数Nlrpm以下であるか、またはアイドルス
イッチ26がオフである定常時には、最良の燃焼状態を
得べき空燃比に収束させるべく制御回路部2は02セン
サ10から入力するリッチ信号およびリーン信号のフィ
ルタ定数をともにT、に調整する。一方、前記回転数セ
ンサ24が所定の回転数N1rpm以上であり、かつ前
記アイドルスイッチ26がオンである過渡運転状態など
の非定常時には、第6図に示す如く空燃比をリッチ化す
べく制御回路部2は02センサ10から入力するリッチ
信号のフィルタ定数をT2に、リーン信号のフィルタ定
数をT3にそれぞれ調整する。このフィルタ定数T2お
よびT3は、’r2>T、、に設定しであるので、02
センザセンサ10から人力するリッチ信号は長い時間の
信号でないと有効とならず、またリーン信号は短い時間
の信号でも有効となる。このため、第6図に示す如く非
定常時には、制御回路部2は空燃比補正信号をリッチ側
に傾け、空燃比をリッチ化する。
In this embodiment, 24 rotational speed sensors (10) are used to control the air-fuel ratio in order to converge to the air-fuel ratio that should provide the best combustion state when the rotational speed is below a certain rpm or when the idle switch 26 is off. The circuit unit 2 adjusts the filter constants of both the rich signal and the lean signal input from the 02 sensor 10 to T. On the other hand, in an unsteady state such as a transient operating state where the rotational speed sensor 24 is higher than the predetermined rotational speed N1rpm and the idle switch 26 is on, the control circuit unit is configured to enrich the air-fuel ratio as shown in FIG. 2 adjusts the filter constant of the rich signal input from the 02 sensor 10 to T2 and the filter constant of the lean signal to T3. The filter constants T2 and T3 are set to 'r2>T, so 02
The rich signal manually inputted from the sensor sensor 10 is not valid unless it is a long time signal, and the lean signal is valid even if it is a short time signal. Therefore, as shown in FIG. 6, in an unsteady state, the control circuit section 2 inclines the air-fuel ratio correction signal to the rich side to enrich the air-fuel ratio.

この構成による運転状態に応じてフィルタ定数(11) を変化させる空燃比制御装置の動作を説明する。Filter constant (11) depending on the operating state with this configuration The operation of the air-fuel ratio control device that changes the air-fuel ratio will be explained.

定常時には、02センサセンザ10からの入力信号をフ
ィルタ定数Tlで取入れ、所定の空燃比にfl整してい
る。一方、例えば、空燃比補正用のスロー系通路の詰り
ゃ、あるいは高温・高地時の条件下では、前述の如く第
8図<e>に示ずように空燃比補正信号の位置が、ある
回転数Narpmでは正常位置Pnaよりもリーン側の
位置Paに、アイドリング回転数Nirpmでは正常位
置Pniよりもリッチ側の位置Pi に移動することが
ある。
During steady state, the input signal from the 02 sensor sensor 10 is taken in with a filter constant Tl, and the air-fuel ratio fl is adjusted to a predetermined air-fuel ratio. On the other hand, for example, if the slow system passage for air-fuel ratio correction is clogged, or under high-temperature/high-altitude conditions, the position of the air-fuel ratio correction signal may change at a certain rotational speed as shown in FIG. At several Narpm, the engine may move to a position Pa on the leaner side than the normal position Pna, and at an idling speed Nirpm, it may move to a position Pi on the richer side than the normal position Pni.

このように補正信号の位置Pa −Piが離れた場合に
、ある回転数Na rpmからアイドリング回転数Nj
に落とす過渡運転時には、前記した如く補正信号の遅れ
から第8図(a)に実線で示すように空燃比のオーバー
リーンを生じ、フィトリング回転数Ni rpmになっ
たときにエンジンストールを生じる(第8図(C))。
In this way, when the position Pa - Pi of the correction signal is far apart, the idling rotation speed Nj changes from a certain rotation speed Na rpm.
During transient operation when the engine speed is lowered to 1, the delay in the correction signal causes the air-fuel ratio to become over-lean as shown by the solid line in FIG. Figure 8(C)).

この場合、オープンループ制御によりリッチな空燃比に
設定することもできるが、前述の如く条件によって一定
値に収束させることが困難である。
In this case, it is possible to set a rich air-fuel ratio by open-loop control, but as described above, it is difficult to converge to a constant value depending on the conditions.

(12) そこで、この発明はこのような状況下での過渡運転時に
前述の如くフィルタ定数を変化させることにより、第8
図(e)の破線に示す如く空燃比をフィードバック制御
しオーバーリーンを防止してエンジンスi・−ルを防止
し得る。
(12) Therefore, the present invention changes the filter constant as described above during transient operation under such conditions.
As shown by the broken line in Figure (e), the air-fuel ratio is feedback-controlled to prevent over-lean and engine stall.

この動作を第7図のフローチャー1・により説明する。This operation will be explained using flowchart 1 in FIG.

アイドルスイッチ26がオフであるか、あるいは機関回
転数が所定の回転数N1 rpm以下である(第8図(
b)(c)参照)定常時には、前述の如<02センザ1
0から人力するりソチ信号およびリーン信号のフィルタ
定数をT1に調整し、所定の空燃比に制御する。
Either the idle switch 26 is off or the engine speed is below the predetermined speed N1 rpm (see Figure 8).
b) (See (c)) During steady state, <02 sensor 1 as described above.
The filter constants of the Sochi signal and Lean signal are manually adjusted from 0 to T1 to control the air-fuel ratio to a predetermined value.

一方、前記空燃比補正用のスロー系通路の詰りなどの条
件下でアクセルを戻し過渡運転状態になると、第8図(
b)に示すように時間t1でアイドルスイッチ26はオ
ンになる。また、回転数センサ24が検出している回転
数Na rpmが、所定の回転数Nl rpm以上であ
るか否かを判断する。
On the other hand, if the accelerator is returned under conditions such as the slow system passage for air-fuel ratio correction being clogged, and a transient operation state occurs, as shown in Fig. 8 (
As shown in b), the idle switch 26 is turned on at time t1. Further, it is determined whether the rotational speed Na rpm detected by the rotational speed sensor 24 is equal to or higher than a predetermined rotational speed Nl rpm.

時間t1で回転数Ma rpmから下降する機関回転(
13) 数は、所定の回転数N1以」二であるので、前述の如く
制御回路部2ば02センサセン+10から入力するリッ
チ信号のフィルタ定数をT2に、リーン信号のフィルタ
定数をT3に調整する。
The engine speed decreases from the rotation speed Ma rpm at time t1 (
13) Since the number is greater than or equal to the predetermined rotation speed N1, the filter constant of the rich signal input from the control circuit unit 2 and sensor sensor +10 is adjusted to T2 and the filter constant of the lean signal is adjusted to T3 as described above. .

この結果、第8図に示す如く02センサ10の短いリッ
チ信号R8は取入れられないため、制御回路部2は空燃
比補正信号をリッチ側に傾け、空燃比をリッチ化する。
As a result, as shown in FIG. 8, the short rich signal R8 from the 02 sensor 10 is not taken in, so the control circuit section 2 inclines the air-fuel ratio correction signal to the rich side to enrich the air-fuel ratio.

この空燃比のリッチ化は、第8図(b)に示す如く時間
T、から入力するりソチ信号Raの入力時間Traがフ
ィルタ定数のT2よりも短いので取入れられないため、
時間t1直前のリーン信号Laから継続することになる
This enrichment of the air-fuel ratio cannot be incorporated because the input time Tra of the Sochi signal Ra is shorter than the filter constant T2, as shown in FIG. 8(b).
This continues from the lean signal La immediately before time t1.

このため、第8図(e)に破線で示す如く空燃比補正信
号は時間t1からt2までの間リッチ側に移動し、時間
1,2ではアイドリング回転数Nirpmでの補正信号
位置Piに至っている。時間t2以隆は、アイドリング
回転数Nirpmの補正信号位置Piにあるので、空燃
比は第8図(a)に破線で示す如くオーバーリーンが防
止される。
Therefore, as shown by the broken line in FIG. 8(e), the air-fuel ratio correction signal moves to the rich side from time t1 to t2, and at times 1 and 2, it reaches the correction signal position Pi at the idling speed Nirpm. . After time t2, the idling rotational speed Nirpm is at the correction signal position Pi, so that the air-fuel ratio is prevented from becoming over-lean as shown by the broken line in FIG. 8(a).

(14) 従って、過渡運転時におけるオーバーリーンに起因する
エンジンストールEsを防止することができる。
(14) Therefore, engine stall Es due to over-lean during transient operation can be prevented.

[発明の効果] このようにこの発明によれば、排気センサから入力する
信号の入力時間が設定値以上であるときにのみこの信号
を有効として空燃比を調整するので、前記設定値により
様々に空燃比を調整することができる。また、機関運転
状態を検出し、所定の運転状態に対応させて設定値によ
り空燃比をリッチ側あるいはリーン側に調整することが
できる。
[Effects of the Invention] As described above, according to the present invention, the air-fuel ratio is adjusted by making the signal valid only when the input time of the signal input from the exhaust sensor is equal to or longer than the set value. Air fuel ratio can be adjusted. Further, the engine operating state can be detected and the air-fuel ratio can be adjusted to the rich side or lean side using a set value corresponding to the predetermined operating state.

そこで、例えば過渡運転状態において、オープンループ
制御による空燃比の変動の不都合を生じることなく、ま
た空燃比補正用スロー系通路の詰りゃ高温・高地時の条
件下で補正範囲が拡大した場合の制御遅れから生じるオ
ーバーリーンを防止し、このオーバーリーンに起因する
エンジンストールを回避することができる。
Therefore, for example, in transient operating conditions, open-loop control does not cause the inconvenience of air-fuel ratio fluctuations, and if the slow system passage for air-fuel ratio correction is clogged, control can be performed when the correction range is expanded under conditions of high temperature and high altitude. Over-lean caused by delay can be prevented, and engine stall caused by this over-lean can be avoided.

また、空燃比を運転状態によりリッチ側あるいはリーン
側に調整できるので、運転性を向上させ(15) ることができるとともに、排気ガス成分を安定させて清
浄化を図ることができる。さらに、空燃比を調整できる
ことから排気センサの取付位置の選定や燃料の分配など
の適合が容易になる。
Furthermore, since the air-fuel ratio can be adjusted to the rich side or lean side depending on the operating conditions, drivability can be improved (15), and exhaust gas components can be stabilized and purified. Furthermore, since the air-fuel ratio can be adjusted, it becomes easy to select the mounting position of the exhaust sensor and adapt the fuel distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例を示し、第1図は概略系統図、第
2図はブロック図、第3図はフィルタ定数と空燃比との
関係を示す図、第4.5図は第2発明の概略系統図とブ
ロック図、第6図は02センサ信号と空燃比補正信号電
圧を示す図、第7図はフローチャート、第8図はタイミ
ング図である。 図において、2は制御回路部、4は内燃機関、6は気化
器、IOは02センサ、14は制御弁、24は回転数セ
ンサ、26はアイドルスイッチである。 代理人 弁理士 西 郷 義 美 〃 弁理士原田幸男 (16) 第1図 第2図 第3図 小← →六 すッライさ@に対するフィlしZに&(Tr)第4図 −−−− ■ \ 1 − CJy 「 「 2 6 826 24 1 y ノ
The figures show an embodiment of the present invention, Fig. 1 is a schematic system diagram, Fig. 2 is a block diagram, Fig. 3 is a diagram showing the relationship between filter constant and air-fuel ratio, and Fig. 4.5 is a diagram showing the second invention. FIG. 6 is a diagram showing the 02 sensor signal and air-fuel ratio correction signal voltage, FIG. 7 is a flowchart, and FIG. 8 is a timing diagram. In the figure, 2 is a control circuit, 4 is an internal combustion engine, 6 is a carburetor, IO is an 02 sensor, 14 is a control valve, 24 is a rotation speed sensor, and 26 is an idle switch. Agent Patent attorney Yoshimi Nishigo Patent attorney Yukio Harada (16) Figure 1 Figure 2 Figure 3 Small ← →Fill for Rokusuraisa @ and (Tr) Figure 4---- ■ \ 1 - CJy `` 2 6 826 24 1 y ノ

Claims (1)

【特許請求の範囲】 1、内燃機関の排気系に排気センサを設け、該排気セン
サから入力する信号の入力時間が設定値以上であるとき
にのみ前記人力信号を有効とし所定の空燃比に調整する
制御回路部を設けたことを特徴とする空燃比制御装置。 2、内燃機関の排気系に設けた排気センサと、該排気セ
ンサから入力する信号の入力時間が設定値以上であると
きにのみ前記入力信号を有効とし所定の空燃比に調整す
る制御回路部とを備えた空燃比制御装置に、前記内燃機
関の機関運転状態を検出する検出手段を設け、該検出手
段が所定の機関運転状態を検出しているときに前記排気
センサから前記制御回路部へ入力する信号を有効とする
入力時間の前記設定値を所定の機関運転状態に応じて調
整する制御手段を設けたことを特徴とする空燃比制御装
置。
[Claims] 1. An exhaust sensor is provided in the exhaust system of the internal combustion engine, and the human input signal is enabled only when the input time of the signal input from the exhaust sensor is equal to or longer than a set value, and the air-fuel ratio is adjusted to a predetermined value. What is claimed is: 1. An air-fuel ratio control device comprising: a control circuit section for controlling the air-fuel ratio; 2. An exhaust sensor provided in an exhaust system of an internal combustion engine, and a control circuit unit that validates the input signal and adjusts the air-fuel ratio to a predetermined air-fuel ratio only when the input time of the signal input from the exhaust sensor is equal to or longer than a set value. is provided with a detection means for detecting an engine operating state of the internal combustion engine, and when the detecting means detects a predetermined engine operating state, an input is input from the exhaust sensor to the control circuit section. An air-fuel ratio control device comprising: a control means for adjusting the set value of the input time for validating the signal according to a predetermined engine operating state.
JP22438683A 1983-11-30 1983-11-30 Air-fuel ratio control device Granted JPS60119335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22438683A JPS60119335A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22438683A JPS60119335A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS60119335A true JPS60119335A (en) 1985-06-26
JPS6353365B2 JPS6353365B2 (en) 1988-10-24

Family

ID=16812932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22438683A Granted JPS60119335A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS60119335A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156433A (en) * 1980-05-06 1981-12-03 Nissan Motor Co Ltd Air/fuel ratio control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156433A (en) * 1980-05-06 1981-12-03 Nissan Motor Co Ltd Air/fuel ratio control device

Also Published As

Publication number Publication date
JPS6353365B2 (en) 1988-10-24

Similar Documents

Publication Publication Date Title
JP2526591B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04342847A (en) Air fuel ratio control device of internal combustion engine
JPS6215750B2 (en)
US20030150208A1 (en) Air-fuel ratio control apparatus for engine
JPH0158334B2 (en)
JPS63195351A (en) Air-fuel ratio control device for internal combustion engine
JPS60119335A (en) Air-fuel ratio control device
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JPH01106936A (en) Control device for air-fuel ratio of internal combustion engine
JP2521039B2 (en) Engine air-fuel ratio control device
JPS61232340A (en) Air-fuel ratio controller for engine
JP2526595B2 (en) Air-fuel ratio control device for internal combustion engine
JP2694272B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60162041A (en) Air fuel ratio controller of internal-combustion engine
JP2556002B2 (en) Air-fuel ratio control device
JPH03124949A (en) Air-fuel ratio compensation controller of carburetor
JPS60111051A (en) Air-fuel ratio controller
JPH031496B2 (en)
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPH0510172A (en) Fuel injection controller of internal combustion engine
JPH01300034A (en) Air-fuel ratio controller of internal combustion engine
JPS63179119A (en) Exhaust gas purifier for engine
JPH0826803B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01190939A (en) Air-fuel ratio controller for internal combustion engine
JPH01190936A (en) Air-fuel ratio controller for internal combustion engine