JPS60119334A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS60119334A
JPS60119334A JP22605583A JP22605583A JPS60119334A JP S60119334 A JPS60119334 A JP S60119334A JP 22605583 A JP22605583 A JP 22605583A JP 22605583 A JP22605583 A JP 22605583A JP S60119334 A JPS60119334 A JP S60119334A
Authority
JP
Japan
Prior art keywords
air
engine
signal
vehicle speed
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22605583A
Other languages
Japanese (ja)
Other versions
JPS6336407B2 (en
Inventor
Masayuki Nakamoto
中本 雅之
Minoru Kuriyama
実 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22605583A priority Critical patent/JPS60119334A/en
Publication of JPS60119334A publication Critical patent/JPS60119334A/en
Publication of JPS6336407B2 publication Critical patent/JPS6336407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Abstract

PURPOSE:To improve the economy of fuel consumption, by inhibiting the enrichment of mixture if the vehicle speed is higher than a predetermined value althrough the engine runs under a low load condition. CONSTITUTION:An enrichment control circuit 36 enriches the mixture of an engine in a predetermined running condition. The enrichment control circuit 36 receives a signal corresponding to the rotational speed of the engine detected by a rotational speed sensor 30, a vehicle speed signal from a vehicle speed sensor 32 and a signal issued from a throttle valve full-close switch and indicating that the throttle valve is fully closed, and detects such as condition that the vehicle speed is lower than a predetermined value under low load operation. If this condition is detected, the circuit 36 enriches the mixture, thereby the economy of fuel consumption may be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通常運転時には混合気を理論空燃比付近に制
御するとともに、エンジンの低負荷運転時には混合気を
濃化する制御手段を備えたエンジンの空燃比制御装置の
改良に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention includes a control means that controls the air-fuel mixture to around the stoichiometric air-fuel ratio during normal operation and enriches the air-fuel mixture during low-load engine operation. This invention relates to improvements in air-fuel ratio control devices for engines.

(従来技術) エンジンの空燃比制御においては、燃費を向上させるた
め、また排気ガスの浮化を行う目的で、混合気を理論空
燃比付近に制御することが一般に行なわれる。しかし、
吸気量の少いエンジンの低負荷時において、上述の制御
を行うと燃焼が不安定になりエンジン振動が大きくなっ
て乗員に不快感を与えるため、低負荷時には混合気を濃
化するように空燃比制御を行い燃焼を安定させてエンジ
ン振動を抑制するようにすることが知られている。
(Prior Art) In engine air-fuel ratio control, the air-fuel mixture is generally controlled to around the stoichiometric air-fuel ratio in order to improve fuel efficiency and to float exhaust gas. but,
If the above-mentioned control is performed at low load on an engine with a small amount of intake air, combustion will become unstable and engine vibration will increase, causing discomfort to the passengers. It is known to perform fuel ratio control to stabilize combustion and suppress engine vibration.

特開昭、t t −//991Iq号公訓菱にはアイド
ル運転時以外の運転状態では、02センサを用いて排気
ガス中の02 濃度を検出して、燃料供給のフィードバ
ック制御を行い混合気を理論空燃比付近に維持する空燃
比制御を行うとともに、アイドル運転時には、上記フィ
ードバック制御を解除して混合気を濃化する空燃比制御
装置が開示されている。しかし、上述のような燃焼の不
安定に起因するエンジン振動が問題となるのは、車両全
体の振動が小さいときであり、エンジンの低負荷時にお
いて一様に混合気の濃化を行う特開昭!; g −11
9949号公報に記載される空燃比制御は必ずしも有効
とはいえず、むしろエンジン振動が問題とならない限シ
燃費及び排気浄化の面から混合気を濃化する制御は制限
することが望ましい。
In the operating state other than idling, the 02 concentration in the exhaust gas is detected using the 02 sensor, and the fuel mixture is controlled by feedback control of the fuel supply. An air-fuel ratio control device has been disclosed that performs air-fuel ratio control to maintain the air-fuel ratio near the stoichiometric air-fuel ratio, and also releases the feedback control to enrich the air-fuel mixture during idling operation. However, engine vibration caused by unstable combustion as described above becomes a problem when the vibration of the entire vehicle is small. Akira! ; g-11
The air-fuel ratio control described in Japanese Patent No. 9949 cannot necessarily be said to be effective; rather, it is desirable to limit the control to enrich the air-fuel mixture from the viewpoint of fuel efficiency and exhaust gas purification unless engine vibration becomes a problem.

(本発明の目的) 本発明は、上述のような事情を考慮してなされたもので
、エンジン振動が問題とならない範囲で混合気を濃化す
る空燃比制御を制限することによね、燃費を数置する仁
とができるエンジンの空燃比制御装置を提供することで
ある。
(Objective of the present invention) The present invention was made in consideration of the above-mentioned circumstances, and reduces fuel consumption by limiting air-fuel ratio control that enriches the air-fuel mixture within a range where engine vibration is not a problem. It is an object of the present invention to provide an air-fuel ratio control device for an engine that can perform several adjustments.

(本発明の構成) 本発明は上述の目的を達成するために以下のように構成
される。すなわち、本発明は、エンジンの低負荷運転時
に空燃比を小さくして混合気を濃化する制御手段を備え
たエンジンの空燃比制御装置において、エンジンの低負
荷運転時であっても車速か設定値以上であるときには前
記混合気の濃化制御を制限する制限手段を備えたことを
特徴とする。本発明は、エンジン振動が生じても車速か
比較的大きい場合には、他の条件に起因して生じる振動
に打消されるため、特にエンジン振動は問題とならない
ことに着目し、エンジンが低負荷時であっても車速か設
定値以上である場合には、混合気を濃化する制御は行な
わないようにしている。
(Configuration of the present invention) In order to achieve the above-mentioned object, the present invention is configured as follows. That is, the present invention provides an air-fuel ratio control device for an engine that is equipped with a control means that reduces the air-fuel ratio and enriches the air-fuel mixture when the engine is operating at low load. The present invention is characterized in that it includes a limiting means for limiting the enrichment control of the air-fuel mixture when the value is greater than or equal to the value. The present invention focuses on the fact that even if engine vibration occurs, if the vehicle speed is relatively high, engine vibration is not a problem because it is canceled out by vibrations caused by other conditions. Even if the vehicle speed is higher than the set value, control to enrich the air-fuel mixture is not performed.

(本発明の効果) 本発明によれば、上述のように可能な限り、混合気を濃
化する制御を制限し、理論空燃比付近に混合気が維持さ
れるように制御されるので燃費を改善することができる
。そして、低負荷、低車速時には混合気を濃化して燃焼
を安定させるのでエンジン振動による問題も生じない。
(Effects of the present invention) According to the present invention, as described above, the control to enrich the air-fuel mixture is limited to the extent possible, and the air-fuel mixture is controlled to be maintained near the stoichiometric air-fuel ratio, thereby reducing fuel consumption. It can be improved. At low loads and low vehicle speeds, the mixture is enriched to stabilize combustion, eliminating problems caused by engine vibration.

(実施例の説明) 第7図を8照すれば、エンジン】Oには、該エンジン1
0の燃焼室に吸気を送入するだめの吸気通路12と、燃
焼ガスを排気するための排気通路14が接続されており
、吸気道FPI12には、先端にエアクリーナ16、そ
の下流には吸気量を制御するスロットル弁18及び燃料
噴射ソレノイド弁20が設けられる。スロットル弁18
は該弁18が全閉になったことを検出するスロットル弁
全閉スイッチ22を備えている。排気通路14には、排
気ガス中の特定成分の濃度、例えば02の濃度を検出す
る排気センサ24と、その下流には排気ガス中の不完全
燃焼成分を酸化する触媒を配した触媒装置26が設けら
れる。そして、ソレノイド弁20からの燃料噴射量を制
御するだめのコントローラ28が設けられる。コントロ
ーラ28にはエンジンクランク軸の回転数からエンジン
回転数を検出する回転センサ30、車軸の回転から車速
を検出する車速センサ32、及びスロットル弁全閉スイ
ッチ22からの信号、さらには吸気量を表わす信号等が
入力され、ソレノイド弁20に対して開弁信号を出力す
るようになっている。第2図には、コントローラ28の
制御回路の一例が示されており、コントローラ2Bは通
常のフィードバック制御を行い混合気を理論空燃比付近
に維持するための回路34、所定の条件で混合気を濃化
するための回路36、上記フィードバック制御と混合気
濃化制御とを切換えるための切換回路38、及びソレノ
イド弁20に対し所定のタイミングで所定の開弁信号を
出力するソレノイド駆動回路40を備えている。フィー
ドバック制御回路34は、排気センサ24により排気ガ
スの特定成分、例えば02の濃度を検出し対応する電圧
信号を入力して設定値すなわち理論空燃比付近の混合気
の燃焼後のその特定成分の濃度に対応する電圧信号と比
較する比較回路42、その比較回路42からのON、 
OFF信号を積分して遅れ制御を行うための積分回路4
4.そして切換回路38が濃化制御回路36からの信号
がONになって切換わったとき、積分回路44からの信
号を適当に増巾、反転処理して比較回路42に入力し積
分回路44の出力を一定値に収束するようにするだめの
積分出力保持回路46を備えている。濃化制御回路36
は、回転センサ30からのエンジン回転数に対応する4
M号を入力として所定のエンジン回転数に対応する設定
値信号と比較して設定値よりエンジン回転数入力信号が
小さい場合にはハイレベルの信号を出力する比較回路4
8と、車速センサ32からの車速信号を入力として設定
車速信号値と比較し、設定値より入力車速信号値が小さ
いときハイレベルの信号を出力する比較器50と、スロ
ットルバルブが全閉になっているときハイレベルの信号
を出力するスロットルバルブ全閉スイッチ22からの信
号と比較回路48からの信号とが入力されるAND回路
52と、該AND回路52と比較回路50からの信号が
入力されるAND回路54とを備えている。
(Description of Embodiment) Referring to FIG.
An intake passage 12 for feeding intake air into the combustion chamber 0 and an exhaust passage 14 for exhausting combustion gas are connected to each other. A throttle valve 18 and a fuel injection solenoid valve 20 are provided. Throttle valve 18
is equipped with a throttle valve fully closed switch 22 that detects when the valve 18 is fully closed. In the exhaust passage 14, there is an exhaust sensor 24 that detects the concentration of a specific component in the exhaust gas, for example, the concentration of 02, and downstream thereof a catalyst device 26 that has a catalyst that oxidizes incompletely burned components in the exhaust gas. provided. A controller 28 for controlling the amount of fuel injected from the solenoid valve 20 is provided. The controller 28 includes a rotation sensor 30 that detects the engine rotation speed from the rotation speed of the engine crankshaft, a vehicle speed sensor 32 that detects the vehicle speed from the rotation of the axle, a signal from the throttle valve fully closed switch 22, and a signal representing the intake air amount. Signals and the like are input, and a valve opening signal is output to the solenoid valve 20. FIG. 2 shows an example of the control circuit of the controller 28. The controller 2B includes a circuit 34 for performing normal feedback control to maintain the air-fuel mixture near the stoichiometric air-fuel ratio, and a circuit 34 for maintaining the air-fuel mixture near the stoichiometric air-fuel ratio. It includes a circuit 36 for enriching the mixture, a switching circuit 38 for switching between the feedback control and the mixture enrichment control, and a solenoid drive circuit 40 that outputs a predetermined valve opening signal to the solenoid valve 20 at a predetermined timing. ing. The feedback control circuit 34 detects the concentration of a specific component of the exhaust gas, for example, 02, by the exhaust sensor 24, inputs a corresponding voltage signal, and determines the concentration of the specific component after combustion of the air-fuel mixture near the set value, that is, the stoichiometric air-fuel ratio. A comparison circuit 42 for comparing with a voltage signal corresponding to the voltage signal, an ON state from the comparison circuit 42,
Integration circuit 4 for integrating the OFF signal and performing delay control
4. When the switching circuit 38 is switched as the signal from the concentration control circuit 36 turns ON, the signal from the integrating circuit 44 is appropriately amplified and inverted and inputted to the comparing circuit 42, which outputs the signal from the integrating circuit 44. An integral output holding circuit 46 is provided to converge the output signal to a constant value. Concentration control circuit 36
is 4 corresponding to the engine rotation speed from the rotation sensor 30.
Comparison circuit 4 which inputs No. M and compares it with a set value signal corresponding to a predetermined engine speed, and outputs a high level signal if the engine speed input signal is smaller than the set value.
8, a comparator 50 which inputs the vehicle speed signal from the vehicle speed sensor 32, compares it with a set vehicle speed signal value, and outputs a high level signal when the input vehicle speed signal value is smaller than the set value, and a comparator 50 which outputs a high level signal when the input vehicle speed signal value is smaller than the set value. An AND circuit 52 receives a signal from the throttle valve fully closed switch 22, which outputs a high-level signal when the throttle valve is closed, and a signal from the comparison circuit 48, and a signal from the AND circuit 52 and the comparison circuit 50. and an AND circuit 54.

以上の回路構成を有するコントローラ28の制御につい
て説明すれば、第3図Iに示す時間T1までの領域では
アクセルペダルは踏み込まれておシ、スロットル弁18
は所定の開度を有しており、この場合濃化制御回路36
からの出力はローレベルであるので切換回路38は排気
センサ24からの信号を比較回路42に入力する。比較
回路42はこの入力信号を混合気を理論空燃比付近に維
持するだめの設定値と比較して入力信号が大きいときは
、ハイレベルの信号を出力し、小さいときはローレベル
の信号を出力する。この信号は積分回路44に入力され
、積分される。積分回路44からの積分信号はソレノイ
ド駆動回路40に入力され、該回路40は積分信号のレ
ベルに応じてソレノイド弁20の噴射パルス巾を決定し
、ソレノイド弁20に対して所定のタイミングでそのノ
4ルス巾に応じた所定期間だけ開弁するように命令信号
を出力する。この制御は、排気ガス中の特定成分の濃度
による燃料噴射量のフィードバック制御が行なわれてお
り、第3図■で示すように積分回路44からの積分値出
力は、ある一定値付近に維持されるとともに、第3図V
で示すように、混合気は理論空燃比付近に保持される。
To explain the control of the controller 28 having the above circuit configuration, in the region up to time T1 shown in FIG. 3I, the accelerator pedal is depressed and the throttle valve 18
has a predetermined opening degree, and in this case, the concentration control circuit 36
Since the output from the exhaust sensor 24 is at a low level, the switching circuit 38 inputs the signal from the exhaust sensor 24 to the comparison circuit 42. The comparison circuit 42 compares this input signal with a set value for maintaining the air-fuel mixture near the stoichiometric air-fuel ratio, and when the input signal is large, it outputs a high level signal, and when it is small, it outputs a low level signal. do. This signal is input to the integration circuit 44 and integrated. The integral signal from the integral circuit 44 is input to the solenoid drive circuit 40, which determines the injection pulse width of the solenoid valve 20 according to the level of the integral signal, and injects the solenoid valve 20 with the injection pulse width at a predetermined timing. A command signal is output to open the valve only for a predetermined period according to the 4-rus width. In this control, the fuel injection amount is feedback-controlled based on the concentration of a specific component in the exhaust gas, and the integral value output from the integrating circuit 44 is maintained near a certain constant value, as shown in Fig. 3 (■). Figure 3 V
As shown in , the air-fuel mixture is maintained near the stoichiometric air-fuel ratio.

そして、時間T1のときアクセルペダルの踏み込みが解
除され、スロットル弁18が閉じられると、車速、エン
ジン回転数は第3図■、第3図1■に示すように低下す
る。この場合クラッチが接続されていれば、エンジン回
転数は第3図Inの想像線で示すように車速とほぼ同様
な傾向で低下するか、クラッチが接続されていない場合
には、エンジン回転数は、第3図■の実線で示すように
車速の傾向とは異なる低下傾向を示す。そして、時間T
2で車速か設定値以下になると、比較回路50がハイレ
ベルの信号を出力するようになる。そして、これより早
い時間において、すなわち、時間T1においてスロット
ル弁全閉スイッチ22が、時間Ts 、hるいは時間T
3′において比較器48がそれぞれハイレベルの信号を
出力するようになっているので、時間T2 において濃
化制御回路36はハイレベルの信号を出力するようにな
る。これによって切換回路38は、排気センサ24から
の信号をカットし、積分出力保持回路46からの信号を
比較回路42に入力するようにする。積分出力保持回路
46は、積分回路44の出力値の一定値を基準として反
転増巾処理を行い積分回路44の出力が一定値に保持さ
れるようにする。この一定値は、例えば第3図■のレベ
ルaで示されるような値に保持されるようになっており
、従って第3図Vで示すように空燃比はこれに応じて小
さくされ、混合気は濃化される。そして、時間T4のと
き、アクセルペダルが踏み込まれるとスロットル弁全閉
スイッチ22がOFFになるので濃化制御回路36の出
力がローレベルになシ、濃化制御が解除されて排気セン
サ24からの信号の基づくフィードバック制御が再び行
なわれる。
Then, at time T1, when the accelerator pedal is released and the throttle valve 18 is closed, the vehicle speed and engine speed decrease as shown in FIG. 3 (2) and FIG. 3 (1). In this case, if the clutch is engaged, the engine speed will decrease in a similar manner to the vehicle speed, as shown by the imaginary line in Figure 3 In, or if the clutch is not engaged, the engine speed will decrease. , as shown by the solid line in Fig. 3 (■), shows a decreasing tendency different from the tendency of the vehicle speed. And time T
2, when the vehicle speed becomes less than the set value, the comparator circuit 50 outputs a high level signal. Then, at an earlier time, that is, at time T1, the throttle valve fully closed switch 22 is activated at time Ts, h, or time T1.
Since the comparators 48 each output a high level signal at time T2, the concentration control circuit 36 outputs a high level signal at time T2. As a result, the switching circuit 38 cuts the signal from the exhaust sensor 24 and inputs the signal from the integral output holding circuit 46 to the comparison circuit 42 . The integral output holding circuit 46 performs inversion and amplification processing using the fixed value of the output value of the integrating circuit 44 as a reference, so that the output of the integrating circuit 44 is held at a constant value. This constant value is maintained, for example, at a value shown by level a in Figure 3 (■), and therefore the air-fuel ratio is reduced accordingly as shown in Figure 3 (V), and the air-fuel mixture is is concentrated. Then, at time T4, when the accelerator pedal is depressed, the throttle valve fully closed switch 22 is turned off, so the output of the enrichment control circuit 36 becomes low level, the enrichment control is canceled, and the output from the exhaust sensor 24 is turned off. Feedback control based on the signal is performed again.

以上のような制御では、エンジン回転数が低下して、設
定値以下になる1時間T、(T3’)を経過しても濃化
制御は行なわれず、車速か設定値以下になる時間T2を
経過した場合にはじめて濃化制御が行われる。これによ
って従来よυ燃費を改善することができる。このような
制御を行った場合において、たとえエンジン振動が生じ
たとしても、車速か比較的高いので、乗員に不快感を与
えるといった実害は生じない。
In the above control, the enrichment control is not performed even after one hour T, (T3') when the engine speed decreases and becomes below the set value, and the enrichment control is not performed until the time T2 when the vehicle speed becomes below the set value. Concentration control is performed only after the lapse of time. This makes it possible to improve υ fuel efficiency compared to the conventional model. When such control is performed, even if engine vibration occurs, since the vehicle speed is relatively high, no actual harm such as discomfort to the occupants will occur.

なお、本例では、濃化制御を行なわない場合の制御は、
排気センサ24からの信号に基づくフィードバック制御
を行うようにしているが、必ずしもそのようにする必要
はなく吸気量に基づくオープン制御のような制御であっ
ても良い。
In addition, in this example, the control when concentration control is not performed is as follows.
Although feedback control is performed based on the signal from the exhaust sensor 24, it is not necessary to do so, and control such as open control based on the intake air amount may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本発明のl実施例に係るエンジンの概略図、第
二図は、第1図のエンジンのコントローラの制御回路図
、第3図Iはスロットル弁開度と時間、第3図■は車速
と時間、第3図111はエンジン回転数と時間、第3図
1■は積分回路の出力と時間、第3図■は空燃比と時間
との関係をそれぞれ示すグラフである。 符号の説明 10・・・・・・・・・エンジン、 12・・・・・・
・・・吸気通路、14・・・・・・・・・ 排気通路、
]8・・・・・・・・・ スロットル弁、22・・・・
・・・・・スロットル弁全閉スイッチ、28・・・・・
・・・・ コントローラ、30・・・・・・・・・回転
センサ、 32・・・・・・・・・車速センサ、
FIG. 7 is a schematic diagram of an engine according to an embodiment of the present invention, FIG. 2 is a control circuit diagram of the controller of the engine in FIG. 1, FIG. 3 I is a throttle valve opening degree and time, and FIG. is a graph showing the relationship between vehicle speed and time, FIG. 3 111 is a graph showing the relationship between engine rotation speed and time, FIG. 3 1■ is a graph showing the relationship between the output of the integrating circuit and time, and FIG. Explanation of symbols 10... Engine, 12...
... Intake passage, 14... Exhaust passage,
]8... Throttle valve, 22...
...Throttle valve fully closed switch, 28...
... Controller, 30 ...... Rotation sensor, 32 ...... Vehicle speed sensor,

Claims (1)

【特許請求の範囲】[Claims] エンジンの低負荷運転時に空燃比を小さくして混合気を
濃化する制御手段を備えたエンジンの空燃比制御装置に
おいて、エンジンの低負荷運転時であっても車速が設定
値以上であるときには前記混合気の濃化制御を制限する
制限手段を備えたことを特徴とするエンジンの空燃比制
御装置。
In an engine air-fuel ratio control device equipped with a control means for enriching the air-fuel mixture by reducing the air-fuel ratio during low-load operation of the engine, when the vehicle speed is equal to or higher than a set value even during low-load operation of the engine, An air-fuel ratio control device for an engine, comprising a limiting means for limiting air-fuel mixture enrichment control.
JP22605583A 1983-11-30 1983-11-30 Air-fuel ratio control device Granted JPS60119334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22605583A JPS60119334A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22605583A JPS60119334A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS60119334A true JPS60119334A (en) 1985-06-26
JPS6336407B2 JPS6336407B2 (en) 1988-07-20

Family

ID=16839085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22605583A Granted JPS60119334A (en) 1983-11-30 1983-11-30 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS60119334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169640A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Control device of multi-cylinder internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119310U (en) * 1990-03-15 1991-12-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169640A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Control device of multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JPS6336407B2 (en) 1988-07-20

Similar Documents

Publication Publication Date Title
JPS6215750B2 (en)
JPS5996454A (en) Engine air-fuel ratio control device
US4697559A (en) Method of controlling an air-fuel ratio for an internal combustion engine
JPS60119334A (en) Air-fuel ratio control device
JPH09112308A (en) Air-fuel ratio controller for internal combustion engine
JPS61101640A (en) Air-fuel ratio controlling apparatus
JP4103334B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62342B2 (en)
JPS5877153A (en) Air-fuel ratio controller in internal-combustion engine
JP2557517B2 (en) Air-fuel ratio control device for vaporizer
JPH0323734B2 (en)
JPS6121557Y2 (en)
JPS6244108Y2 (en)
GB2169111A (en) Air-fuel ratio control method for an internal combustion engine
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JP2866468B2 (en) Air-fuel ratio control method for internal combustion engine
JP2816438B2 (en) Acceleration control device for internal combustion engine
JPS61108854A (en) Method for controlling air-fuel ratio of internal-combustion engine
JPH029926A (en) Air-fuel ratio controller for internal combustion engine
JPS6241941A (en) Engine control device
JPS62129553A (en) Air-fuel ratio controller
JPH02286847A (en) Air-fuel ratio control method for engine
JPH0364703B2 (en)
JPH02181057A (en) Intake secondary air supplying device for internal combustion engine
JPS6469745A (en) Air-fuel ratio control for vehicle-mounted internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees