JPS60118066A - Power converter - Google Patents

Power converter

Info

Publication number
JPS60118066A
JPS60118066A JP58225704A JP22570483A JPS60118066A JP S60118066 A JPS60118066 A JP S60118066A JP 58225704 A JP58225704 A JP 58225704A JP 22570483 A JP22570483 A JP 22570483A JP S60118066 A JPS60118066 A JP S60118066A
Authority
JP
Japan
Prior art keywords
thyristor
voltage
reverse bias
time
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225704A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchino
内野 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58225704A priority Critical patent/JPS60118066A/en
Publication of JPS60118066A publication Critical patent/JPS60118066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration

Abstract

PURPOSE:To increase the voltage and capacity of a power converter and to generate high frequency by applying a reverse bias voltage to a normal thyristor by the charge charged to a reverse bias voltage applying capacitor when a self-extinguishing thyristor is turned OFF. CONSTITUTION:A thyristor arm in a power converter 3 is connected in a series with self-extinguishing thyristors 9-14 and a normal thyristor. Reverse bias voltage applying capacitors 15-20 are connected between the thryistor arms. When the thyristors 9-14 are turned OFF, reverse bias voltage is applied to the normal thyristor by the charge changed in the capacitors 15-20.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、サイリスタをブリッジ接続して構成し、交流
側電圧による自然転流により、直流電流を交流に変換す
る電力変換装置に係り、特に、運転周波数限界を向上し
た電力変換装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power conversion device configured by bridge-connecting thyristors and converting direct current to alternating current by natural commutation using an alternating current voltage. The present invention relates to a power conversion device with improved operating frequency limit.

[発明の技術的背景] 第1図は、本発明を適用する電力変換装置の従来の実施
例を示ず構成図で、公知の無整流子電動(幾の一例であ
る。図に於て、1は直流電源で、通常、その出力電流I
。を制御しうる機能を有する。
[Technical Background of the Invention] FIG. 1 is a block diagram showing a conventional example of a power converter to which the present invention is applied. 1 is a DC power supply, usually its output current I
. It has the ability to control.

3は、本発明を適用する電力変換装置で、サイリスタア
ームUP、VP、WP、UN、VN、WNをブリッジ接
続し−C構成される。2は、直流リック1〜ルで直流N
源1及び電力変換装置3のリップル電圧を吸収して直流
電流I。を平滑する。4は同期電動■で、5の電機子巻
線と6の界磁巻線を有している。7は位置検出器で、同
期電動機4の回転角度を検出する。8は電力変換袋@3
の点弧制御回路で、位置検出器7の出力信号に応じてサ
イリスクアームUP、VP、WP、UN、VN。
3 is a power conversion device to which the present invention is applied, which is configured by connecting thyristor arms UP, VP, WP, UN, VN, and WN in a bridge manner. 2 is DC N with DC licks 1 to 1.
A DC current I is generated by absorbing the ripple voltage of the source 1 and the power converter 3. smooth. 4 is a synchronous motor ■, which has 5 armature windings and 6 field windings. A position detector 7 detects the rotation angle of the synchronous motor 4. 8 is a power conversion bag @3
The ignition control circuit controls the cyrisk arms UP, VP, WP, UN, and VN according to the output signal of the position detector 7.

WNの点弧制御を行なう。Performs WN ignition control.

第2図は、第1図に於ける動作を示す波形図で、EU、
EV、EWはそれぞれ第1図の同期電動機4のU相、■
相、W相の誘起電圧、IU、IV。
FIG. 2 is a waveform diagram showing the operation in FIG.
EV and EW are the U phase of the synchronous motor 4 in Fig. 1, and ■
Phase, W phase induced voltage, IU, IV.

IWはそれぞれ同期電動14のU相、■相、W相電流を
示す。次に、第1図に於て、サイリスタアームupとW
Nが通電している状態からサイリスタアームVPへ転流
を行なうときの動作を説明する。第2図の時刻t1に於
て、サイリスタアームVPに点弧パルスを与えると、こ
のときEUがEVより大であるから、EU−EVの電圧
がサイリスタアームVPに順方向電圧として加わってお
り、サイリスタアームVPがターンオンする。同時に第
1図■に示すような電流変化を生じ、IUが減少し、I
Vが増加する。時刻t2に於て、ILJが零になると、
サイリスタアームUPがオフする。
IW indicates the U-phase, ■-phase, and W-phase currents of the synchronous motor 14, respectively. Next, in Fig. 1, thyristor arms up and W
The operation when commutation is performed from the state where N is energized to the thyristor arm VP will be explained. When a firing pulse is applied to the thyristor arm VP at time t1 in FIG. 2, since EU is larger than EV at this time, the voltage EU-EV is applied to the thyristor arm VP as a forward voltage. Thyristor arm VP turns on. At the same time, a current change as shown in Figure 1 ■ occurs, IU decreases, and I
V increases. At time t2, when ILJ becomes zero,
Thyristor arm UP turns off.

このとき、EUがEVより大であるから、ELJ−EV
の電圧がサイリスタアームUPに逆方向電圧として加わ
る。時刻t3に於て、EUとEVが等しくなると、サリ
スタアームUPに加わる逆方向電圧は零になり、以後サ
イリスタアームUPに加わる電圧の極性が反転し、順方
向電圧が加わるようになる。したがって時刻t3までに
サイリスタアームUPは完全にターンオフして順電圧阻
止能力を回復している必要があり、そのためt3−[2
がサイリスタ素子のターンオフタイムより長くなるよう
に設定する。
At this time, since EU is larger than EV, ELJ-EV
is applied to the thyristor arm UP as a reverse voltage. At time t3, when EU and EV become equal, the reverse voltage applied to the thyristor arm UP becomes zero, and thereafter the polarity of the voltage applied to the thyristor arm UP is reversed and a forward voltage is applied. Therefore, the thyristor arm UP must be completely turned off and have recovered its forward voltage blocking ability by time t3, and therefore t3-[2
is set so that it is longer than the turn-off time of the thyristor element.

[背景技術の問題点] 以上述べた無整流子電動機をより大容量高速の用途へ適
用する需要が高まっている。例えば従来ガスタービンや
蒸気タービンで駆動されていたコンプレッサを、取扱い
と保守が容易で高効率で経済性に優れ、しかも制御性に
優れている無整流子電動機で置換する需要がある。この
ような用途では、例えば電動機容量は30,000 k
W〜10,000 kW。
[Problems with Background Art] There is an increasing demand for applying the above-mentioned commutatorless motor to higher capacity, higher speed applications. For example, there is a demand for replacing compressors conventionally driven by gas turbines or steam turbines with commutatorless electric motors, which are easy to handle and maintain, are highly efficient, economical, and have excellent controllability. In such applications, for example, the motor capacity is 30,000 k
W ~ 10,000 kW.

回転数は、e、ooORP M〜9,0OORP M等
、大容量でしかも、高速回転が必要となり、電動機電圧
も3 kV〜14kV程度の高圧となる。そのため、高
圧、大容量でしかも高い周波数を発生できる電力変換装
置が必要となる。一般にサイリスタ素子は、高圧、大電
流のものほど、ターンオフタイムが長くなる傾向があり
、このような用途に適した高圧、大電流の高速サイリス
タは開発されていない。例えばピーク繰り返しオフ電圧
及びピーク繰り返し逆電圧が4000Vで平均オン電流
が150OAのサイリスタ素子の場合ターンオフタイム
は400μsec程度である。ここでは特に選別して、
ターンオフタイム250μsec g下のサイリスク素
子を使用する場合を例にとり説明する。第2図に於て、
時刻t2からt3までの電気角は、同期電動tli4の
力率を向上し、がっ、1ヘルクリツプルを少なくするた
めに、できるだけ小さ、くすることが望ましい。−例と
して、t2がらt3までの電気角を15°に制御する場
合について説明する。
The rotational speed is large capacity, such as e,ooORP M to 9,0OORPM, and high speed rotation is required, and the motor voltage is also high, about 3 kV to 14 kV. Therefore, a power conversion device that can generate high voltage, large capacity, and high frequency is required. In general, thyristor elements tend to have a longer turn-off time as the voltage and current are higher, and high-voltage, large-current, high-speed thyristors suitable for such uses have not been developed. For example, in the case of a thyristor element with a peak repetitive off voltage and a peak repetitive reverse voltage of 4000 V and an average on current of 150 OA, the turn-off time is about 400 μsec. Here, we specifically select
An example will be explained in which a silice element with a turn-off time of 250 μsec g is used. In Figure 2,
It is desirable that the electrical angle from time t2 to t3 be as small as possible in order to improve the power factor of the synchronous electric motor tli4 and reduce the 1-Herb ripple. - As an example, a case where the electrical angle from t2 to t3 is controlled to 15 degrees will be explained.

サイリスタ素子のターンオフタイムが250μsecの
場合、制御のバラツキ等を考慮して、t2から13まで
の時間を、500μsec以上を目標に制= 12.0
00.czsec =12m5ec −(1)したがっ
て、出力周波数の最大値j1は、となり、無整流子電動
機の回転数は、4極機の場合250ORPM、2極機を
使用しても5000RPMが限界であり、必要な回転数
を得るために増速ギアが必要となる。特に、大容量で高
速回転の増速ギアは製作が困難であり、無整流子電動機
をこの様な用途に適用するのに限界を生じていた。
When the turn-off time of the thyristor element is 250 μsec, the time from t2 to t13 is controlled to a target of 500 μsec or more, taking into account variations in control, etc. = 12.0
00. czsec = 12m5ec - (1) Therefore, the maximum value j1 of the output frequency is, and the rotation speed of the non-commutator motor is 250ORPM in the case of a 4-pole machine, and 5000RPM is the limit even if a 2-pole machine is used, and the necessary A speed increasing gear is required to obtain the desired rotational speed. In particular, it is difficult to manufacture a large-capacity, high-speed speed-up gear, which limits the application of commutatorless motors to such applications.

[発明の目的] 本発明は、上述した従来方式の欠点を除去するためにな
されたものであり、高圧、大容量でしかも高い周波数を
発生できる電力変換装置を得ることを目的としている。
[Object of the Invention] The present invention has been made in order to eliminate the drawbacks of the above-mentioned conventional system, and an object of the present invention is to obtain a power conversion device that can generate high voltage, large capacity, and high frequency.

[発明の概要] この目的を達成するために、本発明はサイリスクアーム
を、自己消弧形サイリスタと通常のサイリスタを直列に
接続して構成し、更に、サイリスタアーム間に逆バイア
ス電圧印加用コンデンサを接続し、自己消弧形サイリス
タをオフしたときに逆バイアス電圧印加用コンデンサに
充電される電荷により、通常のサイリスタに逆バイアス
電圧が印加されるようにしたことを特徴とするものであ
る。
[Summary of the Invention] In order to achieve this object, the present invention comprises a thyristor arm configured by connecting a self-extinguishing thyristor and a normal thyristor in series, and further includes a thyristor arm for applying a reverse bias voltage between the thyristor arms. The device is characterized in that when a capacitor is connected and the self-extinguishing thyristor is turned off, a reverse bias voltage is applied to the normal thyristor by the charge charged in the reverse bias voltage applying capacitor. .

[発明の実施例] 第3図は本発明の一実施例を示す構成図で、1〜8は第
1図と同一のものであり、その説明は省略する。9〜1
4は自己消弧形サイリスタ(以下、ゲートターンオフサ
イリスタ略して、GTOと記す)、15〜20は逆バイ
アス電圧印加用コンデンサ(以下、単にコンデンサと記
す)、21はru、rv、IWの瞬時値を検出する電流
検出器、22はGTO9〜11のゲート制御回路、23
はGTO12〜14のグー]・制御回路である。
[Embodiment of the Invention] FIG. 3 is a block diagram showing an embodiment of the present invention, and 1 to 8 are the same as those in FIG. 1, and the explanation thereof will be omitted. 9-1
4 is a self-extinguishing thyristor (hereinafter referred to as a gate turn-off thyristor, abbreviated as GTO), 15 to 20 are capacitors for applying reverse bias voltage (hereinafter simply referred to as capacitors), and 21 is an instantaneous value of ru, rv, and IW. 22 is a gate control circuit for GTOs 9 to 11; 23 is a current detector for detecting
is the control circuit of GTO12-14.

次に第4図により、本発明の動作を詳細に説明する。図
に於て、EU、EV、EWはそれぞれ第3図に示す同期
電動機4のU相、■相、W相の誘起電圧、IU、IV、
IWはそれぞれ同期電動機4のU相、■相、W相電流、
cup、cvp、cWPはそれぞれコンデンサ15.1
6.17の電圧を示す。
Next, the operation of the present invention will be explained in detail with reference to FIG. In the figure, EU, EV, and EW are the induced voltages of the U phase, ■ phase, and W phase of the synchronous motor 4 shown in FIG. 3, respectively, and IU, IV,
IW is the U-phase, ■-phase, and W-phase current of the synchronous motor 4, respectively.
cup, cvp, cWP are each capacitor 15.1
6.17 voltage.

ここで、第5図に示すようにサイリタアームUPとWN
が通電している状態からサイリスクアーム■Pへ転流を
行なうときの動作を説明する。
Here, as shown in Fig. 5, the thyristor arms UP and WN
The operation when commutation is performed from the state in which the current is energized to the thyrisk arm ■P will be explained.

第4図に示す時刻t4に於て、オンパルス信号をサイリ
スクアームvPに与えると、アームVPのGTO及びサ
イリスタが点弧し第6図に示すようにIUがコンデンサ
15及びコンデンサ16゜17へ分流し、GTO9は逆
バイアスがががりオフする。このとき、EU−EV−C
UPの電圧により、■で示す電流変化を生じ、U相から
V相への転流がはじまる。GTO9には、引き続き、オ
ン信号が与えられているものとすれば、第4図時刻t5
に於てコンデンサ15の電圧が零になったときにGTO
9が再びオンして、第7図に示す状態になる。EU−E
Vの電圧により■で示す電流変化を生じ、U相からV相
への転流が継続する。
At time t4 shown in FIG. 4, when an on-pulse signal is applied to the thyristor arm vP, the GTO and thyristor of the arm VP are fired, and the IU is divided into the capacitors 15 and 16 and 17 as shown in FIG. As a result, the reverse bias of GTO9 is turned off. At this time, EU-EV-C
The voltage at UP causes a current change shown by ■, and commutation from the U phase to the V phase begins. Assuming that the on signal is still being given to GTO9, at time t5 in FIG.
When the voltage of capacitor 15 becomes zero, GTO
9 is turned on again, resulting in the state shown in FIG. EU-E
The voltage V causes a current change shown by ■, and the commutation from the U phase to the V phase continues.

第4図時刻t5に於て、IUが零に近い値△Iに減少し
たことを電流検出器21で検出しグー1〜制御回路22
により、GTO9にオフパルスを与えて、GTO9をオ
フすると、第8図に示すようにIUは、GTOloから
コデンサ15及びコンデンサ16.17へ分流し、EU
−EV−CUPの電圧により、■で示す電流変化を生じ
、転流が継続する。第4図時刻t7に於て、IUが零に
なると第9図に示すようにサイリスタアームUPがオフ
して、U相からV相への転流が完了する。以下同様にし
て60°経過するごとに、WNからUNへの転流、VP
からWPへの転流、・・・が行われる。
At time t5 in FIG. 4, the current detector 21 detects that IU has decreased to a value △I close to zero, and the control circuit 22
When the GTO9 is turned off by giving an off pulse to the GTO9, the IU is shunted from the GTOlo to the capacitor 15 and the capacitor 16.17 as shown in FIG.
The voltage of -EV-CUP causes the current change shown by ■, and commutation continues. At time t7 in FIG. 4, when IU becomes zero, the thyristor arm UP is turned off as shown in FIG. 9, and the commutation from the U phase to the V phase is completed. Similarly, every 60 degrees, commutation from WN to UN, VP
The commutation from WP to WP is performed.

このようにして、コンデンサ15,16.17の電圧波
形はそれぞれ第4図cup、cvp、cwPで示す波形
となる。ここで、cup、cvp。
In this way, the voltage waveforms of the capacitors 15, 16, and 17 become the waveforms shown by cup, cvp, and cwP in FIG. 4, respectively. Here, cup, cvp.

CWPに充電される電圧の大きさは、Δ1の値と出力側
の転流インダクタンスとコンデンサの静電容量できまり
、Δ丁の値を変えて電圧の大きさを変えることができる
。例えば、第3図に示すように各サイリスタアームを1
個のGTOと、3個の通常のサイリスタを直列に接続し
て構成し、GTOと、通常のサイリスタの素子耐圧を同
一のものとずれば、GTOは、負荷側の線間電圧の最大
値の1/4を分担すればよいことがらΔIの値を調節し
て、コンデンサに充電される電圧が負荷側の線間電圧の
最大値の1/4に等しくなるようにすれば良い。このと
きのサイリスタアームにかる電圧を第4図により説明す
る。図に於て、VUPはサイリスタアームUPにかかる
電圧で時刻t7に於て、IUが零になり、サイリスタが
オフするとEV−EUの電圧が加わる。また、VSCR
は、通常のサイリスタにかかる電圧で、VUP+CUP
の電圧が加わる。時刻℃8に於てサイリスタアームWP
が点弧されると、vup−cwpの電圧が加わる。時刻
teが、サイリスタアームUPに最大の順電圧が加わる
点で、このときGTO9には、電圧V1=CWPが加わ
り、通常のサイリスタニハ、V2=VtJP−CWPが
加わる。vlがVUPの1/4になるようにすれば、G
’TOと通常のサイリスタがバランス良く電圧を分担す
ることになる。次に、通常のサイリスタに逆圧のががっ
ている期間について説明する。第4図、時刻tloに於
て、EUとEVが等しくなるとサイリスクアームUPに
加わる逆圧は零になるが、通常のサイリスタにはCLI
Pの逆圧が加わっており、通常のサイリスタの逆圧が零
になる時刻はtitまで延長される。CUPが線間電圧
最大値の1/4すなわち0.25であるとすれば、tl
The magnitude of the voltage charged to the CWP is determined by the value of Δ1, the commutation inductance on the output side, and the capacitance of the capacitor, and the magnitude of the voltage can be changed by changing the value of Δ1. For example, as shown in Figure 3, each thyristor arm is
If GTO and three normal thyristors are connected in series and the element breakdown voltages of the GTO and normal thyristors are the same, then the GTO can handle the maximum value of the line voltage on the load side. Since it is sufficient to share 1/4 of the voltage, the value of ΔI may be adjusted so that the voltage charged in the capacitor is equal to 1/4 of the maximum value of the line voltage on the load side. The voltage applied to the thyristor arm at this time will be explained with reference to FIG. In the figure, VUP is the voltage applied to the thyristor arm UP, and at time t7, IU becomes zero, and when the thyristor is turned off, the voltage of EV-EU is applied. Also, VSCR
is the voltage applied to a normal thyristor, VUP+CUP
voltage is applied. Thyristor arm WP at time ℃8
When ignited, a voltage of vup-cwp is applied. At time te, the maximum forward voltage is applied to the thyristor arm UP, and at this time, the voltage V1=CWP is applied to the GTO 9, and the normal thyristor voltage V2=VtJP-CWP is applied. If vl is set to 1/4 of VUP, G
'TO and the normal thyristor will share the voltage in a well-balanced manner. Next, a period during which a normal thyristor is exposed to back pressure will be explained. In Fig. 4, at time tlo, when EU and EV become equal, the back pressure applied to the thyristor arm UP becomes zero, but the normal thyristor has a CLI
A back pressure of P is applied, and the time when the normal back pressure of the thyristor becomes zero is extended to tit. If CUP is 1/4 of the maximum line voltage, or 0.25, then tl
.

からtllまでの電気角はs i n”10.25 =
14.5゜であるから従来の実施例で説明したのと同様
に時刻t7からtioまでの電気角を15°に制御する
ものとすれば、t7から111までの電気角は15°+
14.5°=29.5°となる。
The electrical angle from to tll is s i n”10.25 =
Since the electrical angle is 14.5°, if the electrical angle from time t7 to tio is controlled to 15° as explained in the conventional embodiment, the electrical angle from t7 to 111 is 15°+
14.5°=29.5°.

[発明の効果] 以上説明のように本発明によれば従来の実施例で説明し
たのと同様に通常のサイリスタとして、ターンオフタイ
ムが250μsec以下の素子を使用するものどじ、制
御のバラツキ等を考慮して、t7からtllまでの時間
を、 500 μ’sec以上を目標に制御するものと
すれば、出力側周期の最小値T2は 360゜ T2 = 500 μsec x 2g、5゜=610
2μSeO= 6 、102 m5ec ・(3)した
がって、出力周波数の最大値f2は、000 !2 ’=6102 = 164Hz ・−・(zL)
したがって無整流子電動機の回転数は4極機の場合49
20RPM、2極機を使用すtLば9840RPMが得
られる。従来の方式では、前述したように、4極機で2
50ORPM、2極機で500ORPMが限界であった
ため、必要な回転数を得るために増速ギアが必要になり
、特に、大容量で高速回転の増速ギアの製作が困難なた
め、ガスタービンや蒸気タービンを使用せざるを得なか
った。
[Effects of the Invention] As explained above, according to the present invention, in the same way as explained in the conventional embodiment, even if an element with a turn-off time of 250 μsec or less is used as a normal thyristor, variations in control, etc. are taken into consideration. If the time from t7 to tll is controlled to a target of 500 μ'sec or more, the minimum value T2 of the output side cycle is 360°T2 = 500 μsec x 2g, 5° = 610
2 μSeO = 6, 102 m5ec (3) Therefore, the maximum value f2 of the output frequency is 000! 2'=6102=164Hz ・-・(zL)
Therefore, the rotational speed of a commutatorless motor is 49 in the case of a 4-pole motor.
If you use 20 RPM and a two-pole machine, you will get 9840 RPM. In the conventional system, as mentioned above, a 4-pole machine has two
50 ORPM, 500 ORPM was the limit for a two-pole machine, so a speed-up gear was required to obtain the required rotation speed.In particular, it was difficult to manufacture a speed-up gear for large capacity and high speed rotation, so it was Steam turbines had to be used.

本発明によれば、このような用途に、取扱いと保守が容
易で、高効率で経済性に優れ、しかも制御性に優れてい
る無整流子電動機を適用することが可能になり、工業的
効果が大きい。
According to the present invention, it is possible to apply a commutatorless motor that is easy to handle and maintain, is highly efficient, economical, and has excellent controllability to such applications, and has industrial effects. is large.

以上、通常のサイリスタと直列にGTOを接続した場合
について説明したが、他の公知の強制転流回路を用いて
構成しても良い。
Although the case where the GTO is connected in series with a normal thyristor has been described above, it may be configured using other known forced commutation circuits.

又、本発明の電力変換装置の負荷として同期電動機を接
続して無整流子電動機を構成した場合について説明した
が、本発明の電力変換装置はより高い周波数で運転し得
る高圧入容量の口変換装置として他の用途にも適用でき
る。また、本発明の電力変換装置は、転流余裕角を小さ
くできるからより高力率の運転が可能である。
Furthermore, although a case has been described in which a synchronous motor is connected as a load of the power converter of the present invention to form a non-commutator motor, the power converter of the present invention is a high-pressure input capacity motor that can be operated at a higher frequency. It can also be applied to other uses as a device. Further, since the power conversion device of the present invention can reduce the commutation margin angle, it is possible to operate at a higher power factor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を示す構成図、第2図は従来の実
施例の動作を示す波形図、第3図は本発明の一実施例を
示す構成図、第4図は本発明の詳細な説明するための波
形図、第5図乃至第9図は、本発明の詳細な説明するた
めの主回路図である。 1・・・直流電源、2・・・直流リアクトル、3・・・
電力変換装置、4・・・同期電動機、5・・・電機子巻
線、6・・・界磁巻線、7・・・位置検出器、8・・・
点弧制御回路、9.10,11.12,13.14・・
・自己消弧形サイリスタ、15,16.17,18.1
9゜20・・・逆バイアス電圧印加用コンデンサ、−2
1・・・電流検出器、22.23・・・ゲート制御回路
。 出願人代理人 弁理士 鈴江武彦 第5図 第6図
Fig. 1 is a block diagram showing a conventional embodiment, Fig. 2 is a waveform diagram showing the operation of the conventional embodiment, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram showing an embodiment of the present invention. Waveform diagrams for explaining the present invention in detail, and FIGS. 5 to 9 are main circuit diagrams for explaining the present invention in detail. 1...DC power supply, 2...DC reactor, 3...
Power converter, 4... Synchronous motor, 5... Armature winding, 6... Field winding, 7... Position detector, 8...
Ignition control circuit, 9.10, 11.12, 13.14...
・Self-extinguishing thyristor, 15, 16.17, 18.1
9゜20... Capacitor for applying reverse bias voltage, -2
1... Current detector, 22.23... Gate control circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 少数のサイリスタアームをブリッジ接続して構成し、交
流側電圧による自然転流により、直流電流を交流に変換
する電力変換装置に於て、前記サイリスタアームを、自
己消弧形サイリスタと通常のサイリスタを直列に接続し
て構成し、前記サイリスタアーム間に逆バイアス電圧印
加用コンデンサを接続し、前記自己消弧形サイリスタを
オフしたときに前記逆バイアス電圧印加用コンテサに充
電される電荷により、前記通常のサイリスタ)こ逆バイ
アス電圧が印加されるようにしたことを特徴とづ′る電
圧変換装置。
In a power conversion device that is configured by connecting a small number of thyristor arms in a bridge manner and converts direct current to alternating current through natural commutation due to the alternating current voltage, the thyristor arm is composed of a self-extinguishing thyristor and a normal thyristor. A reverse bias voltage applying capacitor is connected between the thyristor arms, and when the self-extinguishing thyristor is turned off, the charge charged in the reverse bias voltage applying capacitor causes the normal A voltage conversion device characterized in that a reverse bias voltage is applied to the thyristor.
JP58225704A 1983-11-30 1983-11-30 Power converter Pending JPS60118066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225704A JPS60118066A (en) 1983-11-30 1983-11-30 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225704A JPS60118066A (en) 1983-11-30 1983-11-30 Power converter

Publications (1)

Publication Number Publication Date
JPS60118066A true JPS60118066A (en) 1985-06-25

Family

ID=16833488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225704A Pending JPS60118066A (en) 1983-11-30 1983-11-30 Power converter

Country Status (1)

Country Link
JP (1) JPS60118066A (en)

Similar Documents

Publication Publication Date Title
US5005115A (en) Forced-commutated current-source converter and AC motor drive using the same
JPS5840918B2 (en) Electric motor operation control device
JPH01222664A (en) Method of operating ac driving apparatus with parallel dc link power converter
US7262982B2 (en) Power conversion apparatus
US3582756A (en) Polyphase power converter circuits having a high frequency transformer link
JPS5947559B2 (en) Inverse conversion device for synchronous motor drive
JP2821181B2 (en) Inverter device
JPS60118066A (en) Power converter
US3984752A (en) Electrical valve circuit apparatus
JPS59127575A (en) Single-phase/3-phase converter circuit
Aghasi et al. A novel direct torque control for doubly fed induction machine based on indirect matrix converter
Moati et al. Fixed switching DTC of DSIM powered by NPC-matrix converter
JPS6238959B2 (en)
JPH07222462A (en) Power converter
JPH11196582A (en) Single-phase input three-phase output power converter
Karthikeyan et al. Hybrid Control of Single-Phase to Three-Phase Reduced Switch Converter for PMSM Drive
JPS60245471A (en) Inverter device
JPS5911785A (en) Power converter
JP2549101B2 (en) Power converter
JPS5826273B2 (en) Inverter device
Nabae Pulse-Amplitude-Modulated Current-Source Inverters for AC Drives
CN111641354A (en) Independent double-bridge-arm variable-frequency soft starter and control method thereof
RU2025889C1 (en) Method of formation of voltage across stator windings of three-phase motor in controlled electric drive
JP2001145390A (en) Motor drive controller
JPH0284038A (en) Engine generator