JPS60117735A - Pattern transfer method - Google Patents

Pattern transfer method

Info

Publication number
JPS60117735A
JPS60117735A JP58227459A JP22745983A JPS60117735A JP S60117735 A JPS60117735 A JP S60117735A JP 58227459 A JP58227459 A JP 58227459A JP 22745983 A JP22745983 A JP 22745983A JP S60117735 A JPS60117735 A JP S60117735A
Authority
JP
Japan
Prior art keywords
light
laser beam
exposed
wavelength
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58227459A
Other languages
Japanese (ja)
Inventor
Masao Yamada
雅雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58227459A priority Critical patent/JPS60117735A/en
Publication of JPS60117735A publication Critical patent/JPS60117735A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To offer the transfer of high resolution without light diffraction by irradiating a substance to be exposed with a laser beam combined with a supersaturation absorber. CONSTITUTION:A laser beam source 1 passed through an image forming optical system 2 which is adapted for a wavelength. In the image forming optical system 2, there is a patterned mask the whole surface of which is scanned by a laser beam (LB). A supersaturation absorber 3 is, e.g., a cyanine dye and changes the transmittance keenly to increase it only for the specific wavelength of the incident light. And the transmittance changes rapidly to be increased at a certain limiting value of the light intensity. A resist film 4 has a characteristic that it is exposed to light by a wavelength of about 4,000A. The supersaturation absorber 3 is arranged between the image forming optical system 2 and the substance to be exposed 4 thereby utilizing the property of selective transmission of the absorber 3 to expose the substance to be exposed 4 with the light beam of an acute angled wave form of a peak in a wide zone width.

Description

【発明の詳細な説明】 (a)1発明の技術分野 本発明は、パターン転写方法に係り、特にレーザー光線
と過飽和吸収体との組み合わせによる高解像度パターン
転写に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) 1 Technical Field of the Invention The present invention relates to a pattern transfer method, and more particularly to high-resolution pattern transfer using a combination of a laser beam and a supersaturated absorber.

(b)、技術の背景 近年、半導体ウェハーをはしめ、微細で緻密なバターニ
ングが必要とされる技術分野が拡大している。
(b) Background of the Technology In recent years, the field of technology that requires fine and precise patterning of semiconductor wafers has expanded.

一般にパターン転写方法として、光レジスト膜が塗布さ
れた被転写体に、紫外線で露光する方法が採用されてい
るが、光の回折現象による散乱のため、微細で緻密なパ
ターンを転写する場合には解像度に限界が有り、より高
解像度のパターン転写方法が要望されている。
Generally, the pattern transfer method is to expose the transferred object coated with a photoresist film with ultraviolet light, but due to scattering due to light diffraction phenomenon, it is difficult to transfer fine and dense patterns. There is a limit to resolution, and a pattern transfer method with higher resolution is desired.

(C)、従来技術と問題点 一般に従来からパターン転写方式として、光レジスト膜
で被覆された基板を、予めバターニングしたマスクを用
いて光学的に露光する、所謂ホトリソグラフィーの技術
が採用されている。
(C), Prior Art and Problems Conventionally, so-called photolithography technology has been adopted as a pattern transfer method, in which a substrate coated with a photoresist film is optically exposed using a patterned mask. There is.

このホトリソグラフィーは、半導体や金属の基板面に予
め光レジスト膜を塗布し、その上にバターニングされた
マスクを通して紫外線を照射する方法である。
This photolithography is a method in which a photoresist film is applied in advance to the surface of a semiconductor or metal substrate, and ultraviolet rays are irradiated onto the photoresist film through a patterned mask.

例えばネガ型レジスト膜の場合を例にとると、光レジス
ト膜の紫外線で照射された部分のみが感光して高分子化
されて、この部分が現像液に熔解せずに残り、反対に露
光されない光レジスト膜の部分は現像液に溶けて、現像
後の基板上に必要なパターンを転写することができる。
For example, in the case of a negative resist film, only the part of the photoresist film that is irradiated with ultraviolet light is exposed to light and becomes polymerized, and this part remains undissolved in the developer and is not exposed to light. A portion of the photoresist film is dissolved in a developer, and a desired pattern can be transferred onto the developed substrate.

然しなから、このホトリソグラフィーについては露光光
線の回折現象のため、光が拡散し解像度の点で限界があ
る。
However, this photolithography is limited in terms of resolution because of the diffraction phenomenon of exposure light, which causes the light to be diffused.

Railejgh氏の理論によれば、解像度の限界は次
のように表現できる。
According to Railejgh's theory, the resolution limit can be expressed as follows.

0.61λ/NA (11 λ;光の波長 間;開口数 (1)式で判るように、解像度を小にするためには、開
口数NAを大きくして、光の波長λを小にすればよい。
0.61λ/NA (11 λ; between wavelengths of light; numerical aperture As shown in formula (1), in order to reduce the resolution, increase the numerical aperture NA and decrease the wavelength λ of light. Bye.

普通行われる紫外線の露光の場合は、開口数NA=0.
3程度であり、又露先の光波長は紫外線であるからλ−
0,4μmとなり、解像度の限界は約1μ汀1に制限さ
れることになる。
In the case of commonly performed ultraviolet light exposure, the numerical aperture NA=0.
3, and since the wavelength of the light at the exposed point is ultraviolet, λ-
0.4 .mu.m, and the resolution limit is about 1 .mu.m.

従ってこの解像度の限界i解決するためには、他の新し
い転写する方法が必要である。
Therefore, to overcome this resolution limitation, other new transfer methods are needed.

一方、ホトリソグラフィーの技術の欠点を改善する新し
い方法として、電子線による露光技術が実用化されてい
る。
On the other hand, electron beam exposure technology has been put into practical use as a new method to improve the drawbacks of photolithography technology.

電子線によるレジスト膜の露光技術は電子レンズ系で電
子ビームを細く絞ることができ、焦点深度も深いという
特徴があるが、電子ビームが電子レンズの収差の影響を
敏感に受けるため、比較的大きな面積を走査するとパタ
ーンが歪むことになり、高精度のパターンを得るには小
面積に限定される欠点がある。
The electron beam exposure technology for resist films is characterized by the ability to focus the electron beam narrowly using an electron lens system and the depth of focus is deep, but because the electron beam is sensitive to the aberrations of the electron lens, If the area is scanned, the pattern will be distorted, and the disadvantage is that obtaining a highly accurate pattern is limited to a small area.

(d)0発明の目的 本発明は、上記従来の欠点に鑑み、レーザー光線と可飽
和吸収体を用いることによって、高解像度のパターン転
写方法を提供することを目的とする。
(d)0Object of the Invention In view of the above-mentioned drawbacks of the conventional method, an object of the present invention is to provide a high-resolution pattern transfer method by using a laser beam and a saturable absorber.

(e)9発明の構成 この目的は、本発明によれば、パターンを転写すべき基
板に対し、所定パターンのマスクを含む結像光学系から
パルス波出方のレーザー光線を照射するに際し、前記レ
ーザー光線を可飽和吸収体を通して照射するようにした
ことをり・ヲ徴とするパターン転写方法を提供すること
によって達成できる。
(e) 9 Structure of the Invention According to the present invention, when a substrate to which a pattern is to be transferred is irradiated with a laser beam in the form of a pulse wave from an imaging optical system including a mask having a predetermined pattern, the laser beam is This can be achieved by providing a pattern transfer method characterized by irradiation through a saturable absorber.

(f)8発明の実施例 以下、本発明の実施例を第1図について説明す第1図は
本発明を説明する模式図である。
(f) 8 Embodiments of the Invention Hereinafter, embodiments of the present invention will be explained with reference to FIG. 1. FIG. 1 is a schematic diagram illustrating the present invention.

図で、パルス波のレーザー光を発振するレーザー光源1
と、発射されたレーザー光線を最適に結像する結像光学
系2と、可飽和吸収体3及び光レジストで塗布された被
露光体4とで構成されている。
In the figure, laser light source 1 that oscillates pulsed wave laser light
, an imaging optical system 2 that optimally images the emitted laser beam, a saturable absorber 3, and an exposed object 4 coated with a photoresist.

レーザー光源1はレーザーの種類で異なるが波長が約3
00OAから5000Δ程度のレーザー光を発振し、こ
のレーザー光は波長に適合した結像光学系2を通過する
Laser light source 1 has a wavelength of approximately 3, although it varies depending on the type of laser.
Laser light of about 00OA to 5000Δ is oscillated, and this laser light passes through an imaging optical system 2 that matches the wavelength.

結像光学系2の内には、バターニングされたマスクがあ
り、このマスクの全面がレーザー光線で走査される。
Inside the imaging optical system 2 is a patterned mask, the entire surface of which is scanned with a laser beam.

可飽和吸収体3は、シアニン系の色素であって、可飽和
吸収体に入射する光の特定波長に対してのみ透過率が尖
鋭に変化して透過をよくする特性や、又第2図に示すよ
うに可飽和吸収体に入射する光強度に対しては、光強度
の成る限界値(しきい値)で急激に透過率が変化して透
過が良くなるという二種類の性質を有する物質である。
The saturable absorber 3 is a cyanine-based dye, and has the property of sharply changing the transmittance only for a specific wavelength of light incident on the saturable absorber, improving the transmission, and also having the property shown in FIG. As shown in the figure, the saturable absorber is a material that has two types of properties: the transmittance changes rapidly at the limit value (threshold) of the light intensity, and the transmittance improves. be.

このような可飽和吸収体の上記の特徴は、その理由とし
て可飽和吸収体の光励振によってエネルギーレベルが励
起され、無放射遷移過程を経て、或いは叉全く別種の波
長の光エネルギーに変換されたエネルギーとして放散さ
れるもので、可飽和吸収体の重要な特性である。
The above-mentioned characteristics of such saturable absorbers are due to the fact that the energy level is excited by optical excitation of the saturable absorber and converted through a non-radiative transition process or into optical energy of a completely different wavelength. It is dissipated as energy, which is an important property of saturable absorbers.

レジスト膜4は光波長が4000A程度で感光するよう
な特性になっている。
The resist film 4 has a characteristic that it is sensitive to a light wavelength of about 4000A.

一般にレーザー光線による露光の照射帯域幅は、第3図
に示すように光回折のために広い帯域幅の照射パターン
になる。
Generally, the irradiation bandwidth of laser beam exposure becomes a wide irradiation pattern due to light diffraction, as shown in FIG.

本発明は、パルス状のレーザー光線が強力な出力を有す
るため、結像光学系2と被露光体4との間に、可飽和吸
収体3を設置することにより、本来は第3図に示すよう
な光回折によって広帯域幅になるレーザー光線の照射パ
ターンを、可飽和吸収体をその光路に挿入することによ
り、可飽和吸収体は第3図の光強度a−a以下のレーザ
ー光線に対しては不透明となり、a−3以上のレーザー
光線に対しては透明となる選択透過の性質を利用して、
第4図に示すように広帯域幅のピークの波形a−a上の
尖鋭な光ビームで被露光体4を露光するものである。
Since the pulsed laser beam has a strong output, the present invention originally uses a saturable absorber 3 installed between the imaging optical system 2 and the object 4 to be exposed, as shown in FIG. By inserting a saturable absorber into the optical path of the laser beam irradiation pattern that has a wide bandwidth due to optical diffraction, the saturable absorber becomes opaque to the laser beam with a light intensity of less than a-a shown in Figure 3. , Utilizing the property of selective transmission, which becomes transparent to laser beams of a-3 or higher,
As shown in FIG. 4, the object to be exposed 4 is exposed with a sharp light beam having a peak waveform a-a with a wide bandwidth.

ここで具体的な動作を説明すると、レーザー光源として
キセノン(Xe)塩素(C1)などのエキシマ、レーザ
ー(Excimer 1.aser) 、ヘリウム、カ
ドミウム(lie−Cd )レーザー、アルゴン(八r
)イオン、レーザー、又は色素、レーザー(Dye L
a5er)等が使用され、レーザーの波長は略4000
A程度である。
To explain the specific operation here, laser light sources include excimers such as xenon (Xe), chlorine (C1), lasers (Excimer 1.aser), helium, cadmium (lie-Cd) lasers, and argon (8r) lasers.
) ions, lasers, or dyes, lasers (Dye L
a5er) etc., and the wavelength of the laser is approximately 4000.
It is about A.

又、可飽和吸収体3には、多くの可飽和吸収体の種類が
あり、それらの種類によって、光の吸収、変換波長とエ
ネルギー効率等が異なるが、上記のシアニン系色素など
は最も使用される一例である。
In addition, there are many types of saturable absorbers 3, and the light absorption, conversion wavelength, energy efficiency, etc. differ depending on the type, but the cyanine dyes mentioned above are the most used. This is an example.

いずれにしても、可飽和吸収体を選択する基準として、
可飽和吸収体に照射される光エネルギーの内、可飽和吸
収体の限界値(しきい値)以下の光エネルギーについて
は、その変換される光エネルギーの波長が、光レジスト
膜に感光しないような光波長を有していることが必要で
あって、一般に光レジスト膜が感光する光波長4000
A程度よりも遥かに長波長である黄(波長5500M 
)から赤く波長7000A )の発光スペクトルを有す
るような可飽和吸収体であることが条件である。
In any case, as a criterion for selecting a saturable absorber,
Of the light energy irradiated to the saturable absorber, for the light energy below the limit value (threshold value) of the saturable absorber, the wavelength of the converted light energy is such that it is not sensitive to the photoresist film. It is necessary to have a light wavelength, which is generally a light wavelength of 4000 to which a photoresist film is sensitive.
Yellow, which has a much longer wavelength than A (wavelength 5500M)
) to 7000 A).

このようにレーザー光線の波長によって、可飽和吸収体
が或限界(しきい値)を有する透過性の性質を利用して
尖鋭なレーザー光線のビームで露光することにより、従
来の解像度の限界である約1μmに対し本発明では解像
度が約0.5μmと向上させることが出来る。
In this way, depending on the wavelength of the laser beam, the saturable absorber has a certain limit (threshold value) of transmittance and is exposed to a sharp laser beam. On the other hand, in the present invention, the resolution can be improved to about 0.5 μm.

(g)3発明の効果 以上詳細に説明したように、本発明のレーザー光線と可
飽和吸収体を組合せて被露光体に照射し、パターン転写
法を行うことにより、光回折の無い高解像度の転写を供
し得るという効果大なるものがある。
(g) 3 Effects of the Invention As explained in detail above, by irradiating the exposed object with a combination of the laser beam of the present invention and the saturable absorber and performing the pattern transfer method, high-resolution transfer without light diffraction can be achieved. It has the great effect of providing the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する模式図、第2図は可飽
和吸収体の光特性図、第3図は可飽和吸収体が無い従来
のレーザー光の回折を説明する図、第4図は可飽和吸収
体でレーザー光の回折部分を除去したレーザービームの
ピークを示す図である。 図面において、1はパルスレーザ−の光源、2は結像光
学系、3は可飽和吸収体、4は被露光体である。 第 1図 第3図 支薙度
Fig. 1 is a schematic diagram explaining the present invention in detail, Fig. 2 is an optical characteristic diagram of a saturable absorber, Fig. 3 is a diagram explaining the diffraction of a conventional laser beam without a saturable absorber, and Fig. 4 is a diagram explaining the diffraction of a conventional laser beam without a saturable absorber. The figure shows the peak of a laser beam after the diffraction portion of the laser beam is removed by a saturable absorber. In the drawing, 1 is a pulsed laser light source, 2 is an imaging optical system, 3 is a saturable absorber, and 4 is an exposed object. Figure 1 Figure 3 Support level

Claims (1)

【特許請求の範囲】[Claims] パターンを転写すべき基板に対し、所定パターンのマス
クを含む結像光学系からパルス波出力のレーザー光線を
照射するに際し、前記レーザー光線を可飽和吸収体を通
して照射するようにしたことを特徴とするパターン転写
方法。
A pattern transfer characterized in that when a substrate to which a pattern is to be transferred is irradiated with a pulsed wave output laser beam from an imaging optical system including a mask with a predetermined pattern, the laser beam is irradiated through a saturable absorber. Method.
JP58227459A 1983-11-30 1983-11-30 Pattern transfer method Pending JPS60117735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227459A JPS60117735A (en) 1983-11-30 1983-11-30 Pattern transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227459A JPS60117735A (en) 1983-11-30 1983-11-30 Pattern transfer method

Publications (1)

Publication Number Publication Date
JPS60117735A true JPS60117735A (en) 1985-06-25

Family

ID=16861200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227459A Pending JPS60117735A (en) 1983-11-30 1983-11-30 Pattern transfer method

Country Status (1)

Country Link
JP (1) JPS60117735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750253A (en) * 1984-06-21 1995-02-21 At & T Corp Deep ultraviolet lithography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123890A (en) * 1976-04-09 1977-10-18 Nec Corp Equipment for mode synchronizing laser
JPS5317873A (en) * 1976-05-20 1978-02-18 Nissan Motor Co Ltd Master cylinder
JPS5440092A (en) * 1977-09-05 1979-03-28 Mitsubishi Electric Corp Pulse laser device
JPS5752573A (en) * 1980-09-17 1982-03-29 Matsushita Electric Ind Co Ltd Pulse arc welding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123890A (en) * 1976-04-09 1977-10-18 Nec Corp Equipment for mode synchronizing laser
JPS5317873A (en) * 1976-05-20 1978-02-18 Nissan Motor Co Ltd Master cylinder
JPS5440092A (en) * 1977-09-05 1979-03-28 Mitsubishi Electric Corp Pulse laser device
JPS5752573A (en) * 1980-09-17 1982-03-29 Matsushita Electric Ind Co Ltd Pulse arc welding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750253A (en) * 1984-06-21 1995-02-21 At & T Corp Deep ultraviolet lithography

Similar Documents

Publication Publication Date Title
US4458994A (en) High resolution optical lithography method and apparatus having excimer laser light source and stimulated Raman shifting
US7713684B2 (en) System and method for absorbance modulation lithography
CA1173889A (en) High resolution optical lithography method and apparatus having excimer laser light source and stimulated raman shifting
US4348105A (en) Radiation shadow projection exposure system
US4521087A (en) Optical system with diffuser for transformation of a collimated beam into a self-luminous arc with required curvature and numerical aperture
US20050254035A1 (en) Multi-photon lithography
TWI330764B (en) Method of photolithographic exposure
JPH06300989A (en) Method and device for curved surface machining
US5436114A (en) Method of optical lithography with super resolution and projection printing apparatus
US5147742A (en) Photomask and fabrication of the same
JPH10270330A (en) Method and device for forming pattern
JPS60117735A (en) Pattern transfer method
US6295123B1 (en) Multiple photon absorption for high resolution lithography
US6252662B1 (en) Projection exposure apparatus and device manufacturing method using the same
JP3164565B2 (en) Photoresist system
EP0154932A2 (en) Multilayer photoresist process
JPS60158449A (en) Exposing device
US5948578A (en) Photoresist
EP0282201A2 (en) Pattern forming method
JPS60257521A (en) Exposure apparatus for forming pattern
JP2009524216A (en) Absorbance modulation lithography system and method
JP2553545B2 (en) Pattern forming method
JPH07106235A (en) Formation of pattern
RU1788532C (en) Method of manufacture of template
KR970004421B1 (en) Photolithography apparatus in semiconductor