JPS60117219A - Device for controlling polarization of optical fiber - Google Patents

Device for controlling polarization of optical fiber

Info

Publication number
JPS60117219A
JPS60117219A JP22432083A JP22432083A JPS60117219A JP S60117219 A JPS60117219 A JP S60117219A JP 22432083 A JP22432083 A JP 22432083A JP 22432083 A JP22432083 A JP 22432083A JP S60117219 A JPS60117219 A JP S60117219A
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
voltages
fixing member
impressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22432083A
Other languages
Japanese (ja)
Inventor
Shigefumi Masuda
増田 重史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22432083A priority Critical patent/JPS60117219A/en
Publication of JPS60117219A publication Critical patent/JPS60117219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides

Abstract

PURPOSE:To enable desired control of polarization at a high speed with low electric power consumption, small size and light weight by providing two plain-sliding and oscillating members to an optical fiber fixed to a fixing member so as to intersect orthogonally said members and impressing prescribed frequencies and prescribed voltages thereto at a prescribed phase difference. CONSTITUTION:When input light Oi of orthogonal components are inputted to an optical fiber 1 from one end thereof, the pulse voltages V1, V2 generated from power sources 10, 11 are attenuated by attenuators 12, 13 to voltages V1', V2' which are impressed to oscillating members 3, 7. The members, 3, 7 impressed with the voltages V1', V2' of the same frequency as the own resonance frequency generate stress strains. The strains are applied to the fiber 1 thereby pressing the core part. A difference in refractive index is generated in the pressed part and non-pressed part of the core part by which the light is polarized. The rate of polarization, i.e., the change in the refractive index is changed by the magnitude of the voltages V1' and V2'. The output light O0 of a fixing member 6 yields therefore the output light subjected to desired polarization when the polarization is controlled. The effect similar to the effect obtainable when a high voltage DC voltage is impressed is equivalently obtd. and since the voltage level to be impressed may be a TTL level signal, electric power consumption as well as the size and weight are reduced.

Description

【発明の詳細な説明】 発明の技術分野 本発明は光フアイバケーブル内を伝播する光波の偏光方
向を制御する装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an apparatus for controlling the polarization direction of light waves propagating within an optical fiber cable.

技術の背景 例えばシングルモードファイバ内を伝播する光波は、直
交する2つの成分の値が同じ場合はそれらが合成されて
円偏光となり、それらの値が異なるとその割合に応じて
楕円偏光となる。一般に楕円偏光が行なわれるが、所望
の偏光を高速且つ低電力消費で実現し得ることが要望さ
れている。
Background of the Technology For example, in a light wave propagating in a single mode fiber, if the values of two orthogonal components are the same, they are combined and become circularly polarized light, and if their values are different, the light waves become elliptically polarized light depending on the ratio. Generally, elliptically polarized light is used, but it is desired to be able to realize desired polarized light at high speed and with low power consumption.

従来技術と問題点 上述の偏光制御を行うものとしては、従来光ファイバー
の通路上の一部に2つの電磁石を直交して隣接して設け
、これら電磁石の電磁力により光ファイバーに偏移を生
じさぜることに工り光ファイバーの屈折率ケ変化させて
偏光制御するものが知られている(例えば、Appli
ed・physicsletter VOl 35.&
11(1979年11月1日号第84(J〜842頁)
)。しかしこの方法は、電1社石を駆動させるものであ
るから′電力消費が犬@<、t7v応答性に限界があり
1寸法的に大きくなる。屯磁石の発熱音生ずる等の問題
がある。
Prior Art and Problems Conventionally, the above-mentioned polarization control is performed by installing two electromagnets adjacent to each other orthogonally in a part of the path of an optical fiber, and the electromagnetic force of these electromagnets causes a deviation in the optical fiber. In particular, devices are known that control polarization by changing the refractive index of engineered optical fibers (for example, Appli
ed・physicsletter VOl 35. &
11 (November 1, 1979 issue No. 84 (J~842 pages)
). However, in this method, since one electric power is driven, the power consumption is limited, and the t7v response is limited and becomes larger by one dimension. There are problems such as the generation of heat generation noise from the ton magnet.

また電磁石に代えて圧it累素子例えばPZTを直交し
て隣接して設け、圧電素子に直流高電圧を印加し、圧電
素子の振動により光ファイバーを偏移6せ、光ファイバ
ーの屈折率を変化させて偏光制御するものも知られてい
る(例えば、 Electronics1e口er19
83年9月29日Vol 9.高20第816〜818
ページ)。しかしながらこの方法も、予圧制御を行う上
で直流高電圧1例えば数KV程度、を必要とするという
問題点がある。
In addition, instead of electromagnets, piezoelectric elements such as PZT are provided adjacent to each other at right angles, a DC high voltage is applied to the piezoelectric elements, the optical fiber is deflected by the vibration of the piezoelectric element, and the refractive index of the optical fiber is changed. Polarization control devices are also known (for example, Electronics
September 29, 1983 Vol 9. High school 20th class 816-818
page). However, this method also has a problem in that it requires a high DC voltage, for example, several kilovolts, to perform preload control.

発明の目的 本発明の目的は、低消費1u力で、小型、軽量。Purpose of invention The purpose of the present invention is to reduce power consumption by 1U, and to make it small and lightweight.

かつ高速に応答し得り、所望の偏光制御を行ない得る光
フアイバー偏光制御装置を提供することにある。
Another object of the present invention is to provide an optical fiber polarization control device that can respond quickly and perform desired polarization control.

発明の構成 本発明の上記目的は、先ず(A日戒的振動方式葡採らず
、固定部材に固定された光ファイバーに2つの面すべり
振動部材全1h交するように隣接させて設け、これらの
振動部材に振動部材の共振周波数を有し、偏光制御に応
答する大きさのパルスでそれぞれ所定の位相差を持つ信
号全印加することにより達成される。
Structure of the Invention The above-mentioned object of the present invention is as follows: Firstly, without using the standard vibration method, two plane-slip vibrating members are provided adjacently to the optical fiber fixed to the fixed member so as to intersect with each other for 1 h, and these vibrations are This is achieved by applying to the member all the signals having the resonant frequency of the vibrating member and having a predetermined phase difference in pulses having a magnitude responsive to polarization control.

本発明においては、光ファイバの長軸に沿って。In the present invention, along the long axis of the optical fiber.

光ファイバの外面形状に一致し光ファイバが半径方向に
所定量埋設される凹面?有する第1の固定部材、光ファ
イバ金はさんで前記固定部拐と対向して設けられた少く
とも1つの第1の而すべり振動部材、前記第1の固定部
材と同一形状を有し。
A concave surface that matches the external shape of the optical fiber and allows the optical fiber to be buried a predetermined amount in the radial direction? at least one first sliding vibration member provided opposite to the fixing part with the optical fiber metal sandwiched therebetween, and having the same shape as the first fixing member.

直交するように設けられ光ファイバを固定する第2の固
定部材、及び、光ファイバ盆はさんで前記第2の固定部
材と対向して設けられ前記第1の面すべり振動部拐と直
交する少くとも1つの第2の面すべり振動部材、を具備
し、前記第1及び第2の面すべり振動部拐に所定の周波
数、所定の電圧を所定の位相差を持って印加することを
特徴とする。光フアイバ偏光制御装置が提供される。
a second fixing member that is orthogonal to each other and fixes the optical fiber; and a second fixing member that is provided to face the second fixing member across the optical fiber tray and that is orthogonal to the first plane-sliding vibration part. and a second plane-sliding vibrating member, and a predetermined frequency and a predetermined voltage are applied to the first and second plane-sliding vibrating members with a predetermined phase difference. . An optical fiber polarization control device is provided.

発明の実施例 本発明の実施例について下記に述べる。Examples of the invention Examples of the present invention will be described below.

第1図に本発明の第1の実施例を示す。第1図において
、光)lイバ1はその一部が第1の固定部材21例えば
アルミナ(Al2O2)で固定され、対向的に面すべり
振動部材31例えばPZTが付着されている。また上記
第1の固定部It2及び面すペリ振動部材3とそれぞれ
同じ拐料であるが、それらと光ファイバ1のEk ll
’l11方向において直交するように第2の固定部材6
及び第2の面すべり振動部拐8が隣接して設けられでい
る。以下第1の面すべり振動部@3が股0られている方
向をX方向と呼び、これと直交する方向(iY方向と呼
ぶ。振動部材3.7にはそれぞれ、振動部材3゜7の共
振周波数fol/)発振周波数を有し1位相差が逆であ
るパルス電圧v1 + V2 f発する嘱源10 、1
1 (7)磁圧vt + V2が減R器12,13tl
−通して印加されている。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, a part of the optical fiber 1 is fixed with a first fixing member 21 such as alumina (Al2O2), and a plane sliding vibration member 31 such as PZT is attached on the opposite side. Furthermore, the first fixing part It2 and the facing peri-vibrating member 3 are made of the same material, but they and the Ekll of the optical fiber 1 are made of the same material.
The second fixing member 6 is disposed orthogonally in the l11 direction.
and a second plane-sliding vibration section 8 are provided adjacently. Hereinafter, the direction in which the first plane-slip vibrating part @3 is oriented will be referred to as the X direction, and the direction perpendicular to this (referred to as the iY direction). A source 10, 1 that emits a pulse voltage v1 + V2 f having an oscillation frequency and an opposite phase difference (frequency fol/)
1 (7) Magnetic pressure vt + V2 is R reducer 12, 13tl
− is applied through.

減衰器12.13の減衰率は図示しない回路により変化
させることかでさる。
The attenuation factors of the attenuators 12 and 13 are changed by a circuit not shown.

第1図の光ファイバーl、固足部拐2.振動部材3の断
面図を第2図に示す。光ファイバ1は中心部に光が伝播
するコア部1゜がある。コア部の直径は例えば10μm
程度であり、光ファイバ1の外径は1例えば120μm
程度である。固定部材2は、光ファイバ1の外径形状と
一致する凹面形状9を有し、光ファイバ1が直径方向に
おいてはソ半分程度埋設される程度の深さを有している
。面すべり振動部材3は固定部材2に固定さ扛た光ファ
イバ1を抑圧できるように取付けられている。
Optical fiber 1 in Figure 1, fixed foot part 2. A cross-sectional view of the vibrating member 3 is shown in FIG. The optical fiber 1 has a core portion 1° at the center through which light propagates. The diameter of the core part is, for example, 10 μm.
For example, the outer diameter of the optical fiber 1 is 120 μm.
That's about it. The fixing member 2 has a concave shape 9 that matches the outer diameter shape of the optical fiber 1, and has a depth that allows the optical fiber 1 to be buried approximately halfway in the diameter direction. The plane sliding vibration member 3 is attached to the fixed member 2 so as to be able to suppress the twisted optical fiber 1.

固定部材2.6の長手方向の長さLは任意長とすること
ができるが1例えば、20解程度であり。
The length L in the longitudinal direction of the fixing member 2.6 can be any length, for example, about 20 lengths.

第1.第2の固定部材を合せても数十岨程度である。ま
た固定部材2.6の幅Wも任意長とすることができるが
1例えば10mm前後でおる。これらの寸法は主として
加工性と保持性を考慮して定めるものである。しかしな
がら、凹面形状9は光ファイバ1の外径に精密に回着し
1好る工うに加工しておく必要がある。後述する面すべ
9振動部材による圧縮力に加えられた場合、常に一定の
屈折率変化が生ずるように一定の変位を生じ、且つ、長
期間使用する場合変位のむらに伴う必要以上の応力が光
ファイバのコア部に印加され、コア部の破損を生じさせ
ないようにするためである。
1st. Even if the second fixing member is included, the total length is about several tens of thousands of feet. Further, the width W of the fixing member 2.6 can be set to any length, for example, around 10 mm. These dimensions are determined mainly by considering workability and retainability. However, the concave shape 9 needs to be precisely rotated around the outer diameter of the optical fiber 1 and processed in a preferred manner. When compressive force is applied to the optical fiber by the flat surface 9 vibrating member described later, a constant displacement occurs so that a constant refractive index change occurs, and when used for a long period of time, unnecessary stress due to uneven displacement is applied to the optical fiber. This is to prevent damage to the core portion due to the applied voltage being applied to the core portion.

光ファイバ1.固定部材6.振動部材7の位置関係及び
条件は、直交して設けられることを除けば、第2図及び
上記の通りである。
Optical fiber 1. Fixed member 6. The positional relationship and conditions of the vibrating members 7 are as shown in FIG. 2 and above, except that they are orthogonally provided.

以下、上記実施例の動作について述べる。光ファイバ1
の一端から直交する成分の入力光Oiが入力された場合
、電源10により発生したパルス電圧v1が減衰器12
により所定の値に減衰された電圧■1′が振動部材3に
印加される。振動部材3は自己の共振振動数fOと同じ
周波数の電圧■1′が印加されたことにより所定の応力
歪を生じ、この歪が光ファイバ1に加えられ、コア部1
1を押圧する。コア部11は押圧された部分とされない
部分とに屈折率の差異を生じ、X成分の光を偏光させる
。偏光量、すなわち屈折率の変化は電圧vl′の大きさ
に依存する。すなわち減衰器12の減衰率により一変化
する。
The operation of the above embodiment will be described below. optical fiber 1
When the input light Oi of orthogonal components is input from one end, the pulse voltage v1 generated by the power supply 10 is applied to the attenuator 12.
A voltage 1' attenuated to a predetermined value is applied to the vibrating member 3. The vibrating member 3 generates a predetermined stress strain by applying a voltage 1' having the same frequency as its own resonant frequency fO, and this strain is applied to the optical fiber 1, causing the core portion 1
Press 1. The core portion 11 produces a difference in refractive index between the pressed portion and the unpressed portion, thereby polarizing the X-component light. The amount of polarization, ie, the change in refractive index, depends on the magnitude of voltage vl'. That is, it changes depending on the attenuation rate of the attenuator 12.

上記偏光は偏光面を変化させることを主目的としており
、極力損失を生じさせない範囲で行う。
The main purpose of the polarization is to change the plane of polarization, and the polarization is performed within a range that causes as little loss as possible.

Y方向についても、上記同様にY方向成分の光について
偏光面を所望量だけ変化させる。
Regarding the Y direction, the polarization plane of the Y direction component light is changed by a desired amount in the same manner as described above.

固定部材6の出力光00は上記偏光されたX成分の光と
上記偏光されたX成分の光との合成されたものとなるの
で、X成分、X成分の偏光を制御することにより所望の
楕円偏光又は円偏光させた出力光00を得ることができ
る。
The output light 00 of the fixing member 6 is a combination of the polarized X component light and the polarized X component light, so by controlling the X component and the polarization of the X component, a desired ellipse can be created. Polarized or circularly polarized output light 00 can be obtained.

尚、パルス電圧V、、V2は、又はv、’、 ■2/は
通常所定の予圧を振動部材3.7から光コアイノく1に
印加できるように、直流成分にパルス成分を重畳した信
号としている。
Note that the pulse voltage V,, V2 is, or v,', 2/ is usually a signal in which a pulse component is superimposed on a DC component so that a predetermined preload can be applied from the vibrating member 3.7 to the optical core inode 1. There is.

このように面すべり振動部材3.4を用い、これらの振
動部材に相補的な信号、すなわち位相差が180°のパ
ルス電圧V 1/ 、 V 2/を印加することにより
1等価的に、従来の高電圧直流電圧−q PZTに印加
しPZTを励振させるのと同様の効果を得ることができ
る。本発明において印加する′胤圧レベルはTTLレベ
ル信号で良いから、電力消費は少なくてすみ、電源系統
の寸法は小形化され、軽に化することができる。
In this way, by using the plane sliding vibrating member 3.4 and applying complementary signals to these vibrating members, that is, pulse voltages V 1/ and V 2/ with a phase difference of 180°, the conventional It is possible to obtain the same effect as applying a high voltage DC voltage -q to the PZT to excite the PZT. Since the pressure level applied in the present invention can be a TTL level signal, power consumption can be reduced, and the power supply system can be made smaller and lighter.

また従来の電磁石で偏光させる方式に比べると。Also, compared to the conventional method of polarizing light using electromagnets.

機械的作動部がなく信頼性の高い装置にすることができ
1本発明における減衰器12,13の減衰率の変化は回
路により高速に応答し得るので1例えば数十Ml−12
.程度、高速化を図ることができる。
Since there is no mechanical operating part, the device can be made highly reliable.1 Changes in the attenuation factors of the attenuators 12 and 13 in the present invention can be responded to faster by the circuit.1 For example, several tens of Ml-12
.. It is possible to speed up the process to a certain extent.

また電磁石使用に伴う電力消費が比較的大きくなること
、そのための電源系統i、L+t+〕素化することがで
き、また装置全体として小形化される。
In addition, since the power consumption due to the use of electromagnets is relatively large, the power supply system i, L+t+] can be simplified, and the device as a whole can be made smaller.

第3図に本発明の第2の実施例4示す。この実施例は1
面すべり振動部拐3.7に印加する励振信号を他の方法
により行う場合’fr7J<すもので、光ファイバ1.
固定部材2,61面すべり振動部材3.7の位置関係は
第10′#:施例と同じである。
FIG. 3 shows a fourth embodiment of the present invention. This example is 1
If the excitation signal to be applied to the plane-slip vibration member 3.7 is applied by another method, the optical fiber 1.
The positional relationship between the fixed member 2 and the 61-plane sliding vibration member 3.7 is the same as in the 10th embodiment.

この実施例は所定の周波数を発f−る電源20を1個の
み用い、これにトランジスタ21を介して変調パルス信
号SMを重畳し、差動増幅器22を介して相補的信号■
l’+ ■2’ *すなわち逆位相のパルス電圧を振動
部@3.7に印加するようにしたものである。この実施
例による効果も、第1の実施ψ1jと同様である。
This embodiment uses only one power supply 20 that emits a predetermined frequency, on which a modulated pulse signal SM is superimposed via a transistor 21, and a complementary signal
l'+ ■2' *In other words, a pulse voltage of opposite phase is applied to the vibrating part @3.7. The effects of this embodiment are also similar to those of the first embodiment ψ1j.

第4図に本発明の第3の実施例を示t0この実施例は、
第1図又は第3図のX方向及びY方向の面すべり振動部
材3.7がそれぞれ1個であるのに比し、X方向に直列
に2つの面すべり振動部材3.3’、及びY方向に直列
に2つの面すべり振動部材7.τを設けたものである。
FIG. 4 shows a third embodiment of the present invention.
Compared to the plane-slip vibrating member 3.7 in the X direction and the Y direction in FIG. Two plane-slip vibrating members in series in the direction7. τ is provided.

面すべり振動部材と光ファイバ、固定部材の位置関係は
第2図に図示の如くなっている。この実施例のように振
動部材を2個直列に設けることにより偏光面の制御がよ
り効率よく行うことができる。
The positional relationship between the plane sliding vibration member, the optical fiber, and the fixing member is as shown in FIG. By providing two vibrating members in series as in this embodiment, the plane of polarization can be controlled more efficiently.

発明の効果 μ上に述ベア’(ように本発明によれば、低消費電力で
、小形、軽量かつ高速で所望の偏光制御を行ない得る光
フアイバ偏光制御装置が得られる。
Effects of the Invention As stated above, according to the present invention, an optical fiber polarization control device can be obtained which can perform desired polarization control with low power consumption, small size, light weight, and high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例としての光フアイバ偏光制御装
置を示す図。 第2図は第1図の一部の断面図。 第3図は本発明の他の実施例を示す図。 第4図は本発明のさらに他の実施例を示す図。 である。 (符号の説明) 1・・・光ファイバ、 2・・・固定部月。 3・・・面すベシ振動部4J。 6・固定部拐。 7・・・面すべり振動部41゜ IQ、11・・・ 電源。 12.13・・・減衰器。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 内 1)幸 男 弁理士 山 D 昭 之 第)図 第2図
FIG. 1 is a diagram showing an optical fiber polarization control device as an embodiment of the present invention. FIG. 2 is a sectional view of a part of FIG. 1. FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a diagram showing still another embodiment of the present invention. It is. (Explanation of symbols) 1...Optical fiber, 2...Fixed part. 3... Facing bevel vibration part 4J. 6. Kidnapping of fixed department. 7... Plane sliding vibration part 41°IQ, 11... Power supply. 12.13...Attenuator. Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate 1) Yukio Patent attorney Akiyuki Yama D. Figure 2

Claims (1)

【特許請求の範囲】 1、 光ファイバの長袖に沿って、光ファイバの外面形
状に一致し光ファイバが半径方向に所定量埋設される凹
面をイ1する第1の固定部材、光ファイバをはさんで前
記固定部材と対向して設けられた少くとも1つの第1の
面ずべυ振動S月、前nピ第1の固定部材と同一形状を
有し、直交するように設けられ光ファイバを固定する第
2の固定部材。 及び、光ファイバをはさんで[)IJ記第2の固カニ部
材と対向して設けられ前記第1の面すべり振動部材と直
交する少くとも1つの第2の面すべり振動部材、を具備
し。 前記第1及び第2の而すべり振動部材に所定の周波数、
所定の電圧を所定の位相差をもって印加することを特徴
とする。光ファイバ11i:l光制御装置。
[Claims] 1. A first fixing member that has a concave surface along the long sleeve of the optical fiber that matches the outer surface shape of the optical fiber and in which the optical fiber is buried a predetermined amount in the radial direction; At least one first surface-to-plane υ vibration provided opposite to the fixing member across the front, has the same shape as the first fixing member, and is provided perpendicularly to the optical fiber. A second fixing member for fixing. and at least one second plane-slip vibrating member that is provided opposite to the second rigid crab member of [IJ] with the optical fiber in between and is orthogonal to the first plane-slip vibrating member. . A predetermined frequency is applied to the first and second sliding vibration members,
It is characterized in that a predetermined voltage is applied with a predetermined phase difference. Optical fiber 11i:l optical control device.
JP22432083A 1983-11-30 1983-11-30 Device for controlling polarization of optical fiber Pending JPS60117219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22432083A JPS60117219A (en) 1983-11-30 1983-11-30 Device for controlling polarization of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22432083A JPS60117219A (en) 1983-11-30 1983-11-30 Device for controlling polarization of optical fiber

Publications (1)

Publication Number Publication Date
JPS60117219A true JPS60117219A (en) 1985-06-24

Family

ID=16811900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22432083A Pending JPS60117219A (en) 1983-11-30 1983-11-30 Device for controlling polarization of optical fiber

Country Status (1)

Country Link
JP (1) JPS60117219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198522A (en) * 1984-03-23 1985-10-08 Shimada Phys & Chem Ind Co Ltd Ultrasonic optical modulator and its production
EP3538947A4 (en) * 2016-11-10 2020-06-24 Intuitive Surgical Operations Inc. Polarization control with low polarization-mode dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198522A (en) * 1984-03-23 1985-10-08 Shimada Phys & Chem Ind Co Ltd Ultrasonic optical modulator and its production
EP3538947A4 (en) * 2016-11-10 2020-06-24 Intuitive Surgical Operations Inc. Polarization control with low polarization-mode dispersion
US11016316B2 (en) 2016-11-10 2021-05-25 Intuitive Surgical Operations, Inc. Polarization control with low polarization-mode dispersion

Similar Documents

Publication Publication Date Title
EP0144190B1 (en) Single mode fiber optic single sideband modulator
AU696891B2 (en) Optical device
US5022732A (en) Fiber optic intermode coupling single sideband frequency shifter
US6532323B2 (en) Acousto-optic filter
EP0291200B1 (en) Fiber optic inter-mode coupling single-sideband frequency shifter
KR950002418B1 (en) Fiber optic inter-mode coupling single side frequency shifter
JPS6115108A (en) Optical device
JPS641762B2 (en)
US4792207A (en) Single mode fiber optic single sideband modulator and method of frequency shifting using same
US6867918B2 (en) Methods and apparatus for generation and control of coherent polarization mode dispersion
US1860529A (en) Electromechanical system
JPS60117219A (en) Device for controlling polarization of optical fiber
US3437393A (en) Torsional vibrator light beam scanner
Wan et al. Low-frequency nonreciprocal flexural wave propagation via compact cascaded time-modulated resonators
US3701584A (en) Tuned voltage variable birefringent acousto-optical filter
CN113687508A (en) Single-optical-fiber micro scanning device and driving system thereof
US1781680A (en) Electromechanical system
JPS61200525A (en) Fiber optics phase modulator
US3757257A (en) Electromechanical elastic wave delay line
GB1581737A (en) Heat treatment of amorphous ferromagnetic ribbons
NO874794L (en) TOOLS FOR AVISOLATION OF AN ELECTRIC CABLE.
Odajima et al. Piezoactive ferroelectric polymer jacketed optical fibers for optical phase modulation
US10175424B2 (en) Multiple channel fiber pigtailed acousto-optic device and the method of making the same
US3536374A (en) Electromechanical variable birefringent light valve
JPS6144294B2 (en)