JPS60117151A - Analysis of uncured epoxy resin composition - Google Patents

Analysis of uncured epoxy resin composition

Info

Publication number
JPS60117151A
JPS60117151A JP22577983A JP22577983A JPS60117151A JP S60117151 A JPS60117151 A JP S60117151A JP 22577983 A JP22577983 A JP 22577983A JP 22577983 A JP22577983 A JP 22577983A JP S60117151 A JPS60117151 A JP S60117151A
Authority
JP
Japan
Prior art keywords
resin composition
gas
analyzing
uncured
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22577983A
Other languages
Japanese (ja)
Inventor
Tatsuo Onodera
小野寺 辰男
Sueshige Ishida
石田 末重
Hideyuki Tanabe
田辺 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP22577983A priority Critical patent/JPS60117151A/en
Publication of JPS60117151A publication Critical patent/JPS60117151A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To perform the accurate quantitative analysis of a compounded component, by sampling an extremely minute amount of a specimen from an uncured resin composition prior to being used in injection molding work to insert the same into a thermal decomposition apparatus and gasifying the same to form thermally decomposed gas which is, in turn, applied to a gas chromatograph. CONSTITUTION:A specimen S is a resin composition mixed in an injection molding work factory and sampled therein or a reference specimen of which the compounding ratio is known and, because of a liquid, said specimen S is allowed to impregnate quartz wool and packed by a metal foil to be thrown into the heating cylinder 11 of a thermal decomposition apparatus 10 while air in the heating cylinder 11 is purged with purge gas from a bomb 26. As a heating means, an induction heating coil 12 receiving a current from a high frequency power source 14 is arranged around the heating cylinder 11. Thermally decomposed gas is issued from the heating apparatus 10 through a valve 13 along with carrier gas and enters the absorbing column part 23 of a gas chromatograph analytical apparatus while an analysis signal is outputted by a detector 24 and recorded by a recordor 30 or integrated by an integrator 40.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はエポキシ樹脂の主剤、酸無水物系の硬化剤およ
び可塑剤を含み、これらの配合成分を混合ないしは混和
した状態の未硬化樹脂組成物中の配合成分をガスクロマ
トグラフ法によ〕定量分析する方法に関する〇 〔従来技術生その問題点〕 注形成形用あるいは含浸や接着作業用に、上述したよう
なエポキシ樹脂主剤、硬化剤および可塑剤を含む樹脂組
成物は充填剤を含む、あるいは含声ない配合で大量に使
用されている0かかる樹脂組成物を硬化させた後に電気
的特性あるいは機械的特性に優れた樹脂硬化物を得るに
は、配合成分比を正確にすることがぜひ必要で、とくに
電機および電子関係の用途向き炉はかかる配慮を欠かす
わけには行かりい◇ このため、成分配合を終えた樹脂の混合ないし混和物を
注形々・含浸作業に入れる前に配合成分比を確めること
が必要になるが、混合される材料としての配合成分自体
が有機高分子化合物ならしは樹脂であって、成分の定性
分析ですら困□難なめで、従来はその配合比を正確に測
定することは極めて困難かないしは不□可能と見られて
いた。また、この種の作業工程では、特゛に粘度の高い
樹脂混和′物や充填剤を多量に含んだ樹脂組成を”核う
場合は、んでしまうので、配合成分比を測定する6に時
間を要するようでは分析測定゛の意味がなく、この点か
らの困難もあった0 □ 上記のように事情から、注形や含浸作”業前になされる
樹脂組成物のチェック□法として社、むしろ簡便な方法
が好まれ、たとえば組成物め粘、4行板粘度計などで測
定するだけでチェックを終えるようなことが多く、粘度
測定自体の意味状十分ちσ1−p 龜 h 家 ナー 
X ノーす嵩tysmtト 1し θ)剖1 エ ・ソ
 〃 41嵜味合いから拡かけ離れたむしろ迂遠表方法
である。
Detailed description of the invention [Technical field to which the invention pertains] The present invention relates to an uncured resin composition containing an epoxy resin base, an acid anhydride curing agent, and a plasticizer, and in which these components are mixed or mixed. Under the Gas Cromatograph Law of the compounding ingredients in the object] (Conventional technical student that problem) 〇 [Traditional technical students that are the problems] Note For forming, impregnated or adhesive work, the above -mentioned epoxy resin main agent, curing agent and plastic. Resin compositions containing additives are used in large quantities in formulations that contain fillers or do not contain fillers.After curing such resin compositions, it is difficult to obtain cured resin products with excellent electrical or mechanical properties. It is absolutely necessary to make the blended component ratio accurate, and this consideration cannot be overlooked, especially for furnaces for electrical and electronic applications. It is necessary to confirm the blended component ratio before starting the injection/impregnation work, but since the blended components themselves as materials to be mixed are organic polymer compounds or resins, the qualitative characteristics of the components cannot be determined. Even analysis is difficult, and in the past it was considered extremely difficult or impossible to accurately measure the blending ratio. In addition, in this type of work process, especially when molding a resin composition containing a large amount of highly viscous resin admixtures or fillers, it takes time to measure the blended component ratio. There is no point in analytical measurement if it is necessary, and there are difficulties from this point. □ Due to the circumstances mentioned above, the company has decided to use a method for checking resin compositions before casting and impregnating operations. Simple methods are preferred, and in many cases the check can be completed simply by measuring the viscosity of the composition using a 4-line plate viscometer, etc., and the meaning of the viscosity measurement itself is sufficient.
This is a rather roundabout method that is far removed from the 41 experience.

また事前チェックとして樹脂混合物のゲル化時間の測定
がよく行なわれているが、容器内に樹脂混合物を入れて
加熱し、樹脂がシェリー状に固化するまでに時間を要す
ることは避けられず、また硬化反応時の発熱状態を一定
にすることが必ずしも容易でなく、鹸と同様に配合化分
析の意味合いも少ない。
In addition, the gelation time of a resin mixture is often measured as a preliminary check, but it is unavoidable that it takes some time for the resin mixture to solidify into a sherry-like shape when it is placed in a container and heated. It is not always easy to keep the exothermic state constant during the curing reaction, and as with soap, there is little significance in formulation analysis.

一方、化学的な分析法としては、適宜の溶媒中で樹脂素
□材中のエボキ7基に過剰の塩酸を作用させてクロルヒ
ドリンを生成させ、該生成に関与しなかった過剰分の塩
酸をアルカリ規定液の滴定によシ定量した9、おるいは
硝酸銀による滴定したシする方法が知られているが、オ
くマでエポキシ樹脂の主剤の定量法でおって他の配合成
分への定量法とはなシ得ない。
On the other hand, as a chemical analysis method, excess hydrochloric acid is made to act on the 7 groups in the resin material in an appropriate solvent to produce chlorohydrin, and the excess hydrochloric acid that did not participate in the production is removed from the alkali. Methods for determining the amount by titration of a specified solution9 or titration with silver nitrate are known, but most people use this method for determining the base ingredient of epoxy resin, and it is not suitable for determining other ingredients. I can't get it.

さらにいわゆる機器分析法としては、樹脂組成物検体そ
のままを測定する赤外ないしは遠赤外吸収スペクトル法
が知られている@との方法は主剤中のフェニル基の16
10m”の赤外吸収と硬化剤中の酸水物による1850
cm”の赤外吸収とを測定するもので、両吸収強度比か
ら主剤と硬化剤との配合比を知ることができるが、可塑
剤の定量に利用することはできない。この#デか、近赤
外吸収スペクトルを利用する方法や、熱分離赤外吸収ス
ペクトル法も知られているが、本質的には前と同様に7
エ二ル基と酸無水物の吸収強度比をめる方法であって、
可塑剤を含む樹脂組成物の測定に向かず、他の手法と組
み合わせても定量に時間を要してしまうので、実用上の
問題点が残る。
Furthermore, as a so-called instrumental analysis method, infrared or far-infrared absorption spectroscopy, which measures the resin composition sample as it is, is known.
1850 due to infrared absorption of 10m” and acid hydride in the curing agent.
cm'' infrared absorption, and the blending ratio of the main agent and curing agent can be determined from the ratio of both absorption intensities, but it cannot be used to quantify the plasticizer. Methods that utilize infrared absorption spectra and thermal separation infrared absorption spectroscopy are also known, but essentially the same method as before is used.
A method of determining the absorption intensity ratio of an enyl group and an acid anhydride,
This method is not suitable for measuring resin compositions containing plasticizers, and even when combined with other methods, it takes time to quantify, so practical problems remain.

〔発明の目的〕[Purpose of the invention]

本発明は前述のような従前の分析方法のもつ問題点の認
識に立脚して、一度の測定で主剤、硬化剤および可塑剤
の配合成分ないしは配合比を実用上十分な精度で測定を
することができるエポキシ系未硬化樹脂組成物の定量分
析方法を確立することを目的とする。
The present invention is based on the recognition of the problems of the conventional analytical methods as described above, and aims to measure the blended components or blending ratio of the base agent, curing agent, and plasticizer in a single measurement with sufficient accuracy for practical use. The purpose of this study is to establish a method for quantitative analysis of uncured epoxy resin compositions.

〔発明の要点〕[Key points of the invention]

本発明によれば上述の目的は、主分析手法としてガスク
ロントゲ27法による機器分析法を採屑し、該ガスクル
マドグラン法にょシ分析すべき測定ガスとして前記樹脂
組成物を急速加熱によj熱分解させた熱分解ガスを用い
、該熱分解ガスが示すガスクロマトグラム中の前記各配
合成分を代表するピークにつbて前記分析すべき樹脂組
成物の混合条件とほぼ同条件で調製された基準試料から
決定される基準値と比較してエポキシ樹脂主剤、酸無水
物系硬化剤および可塑剤を含む樹脂組成物の配合成分を
定量分析するととKよって達成される。本発明方法の以
上の構成かられかるように、ガスクロマトグラフ分析さ
れるガスは配合成分そのものが蒸発したガスではなく、
該配合成分が熱分解して生じる配合成分とは異なる有機
化合物のガスであって、本発明方法の目的の上では熱分
解ガスの種類を同定する必要は全くない0本件の発 ゛
明者達は、配合成分がそれぞれ熱分解したガスのガスク
ロマトゲ27の力2ム剤吸収ないしはカラム剤からの再
放出特性を各配合成分によって異ならせうることを見出
し、かっこの現象を利用して信頼度の高い配合成分の定
量方法を確立したものである0定量方法の信頼性ないし
は定量結果の再現性の点では、混合ないしは混和された
樹脂i酸物が化学変化しやすい点に慎重な配慮を払う必
要があることがわかった◇すなわち、配合後の樹脂組成
物のとくに保持温度と配合後の経過時間とによって分析
結果が異なシうるのである。そこで、本発明方法におい
ては、分析データを定量化するための検査線を得るため
の基準検体として、配合比が既知で被検樹脂組成物の混
合温度とほぼ同温度で混合調製されたものを用い、この
基準検抹を被検組成物の分析に用いられ名と同じカラム
吸収剤を用いてガスクロマトグラフ分析した分析結果を
検量線として、被検樹脂組成物の分析データを配合成分
量な多配合比な力に定量化することにょ〕、再現性がち
ル信頼のおける分析結果を得る′0上述の樹脂組成物な
いしは基準検体の混合温度としでは、ふつうよく用いら
れるエポキシ樹脂主剤がビスフェノール系であル、硬化
剤がふつうの酸無水物系である場合について、80’C
以下が望まシく、この場合にはガスクロマトグラフ4析
中入標準検体のl111後の経過時間と、被検樹脂組成
物の混合からサンプリングまでの経過時間とががなシ異
女つすいても、定量分析結果は信頼できる。
According to the present invention, the above-mentioned object is achieved by using an instrumental analysis method using the Gas Kron Toge 27 method as the main analysis method, and using the resin composition as a measurement gas to be analyzed by the Gas Kron Toge method by rapid heating. Using thermally decomposed pyrolysis gas, the pyrolysis gas was prepared under almost the same mixing conditions as the resin composition to be analyzed, with respect to the peaks representing the respective compounded components in the gas chromatogram shown by the pyrolysis gas. This is achieved by quantitatively analyzing the ingredients of a resin composition containing an epoxy resin base, an acid anhydride curing agent, and a plasticizer in comparison with a reference value determined from a reference sample. As can be seen from the above structure of the method of the present invention, the gas to be analyzed by gas chromatography is not a gas in which the compounded components themselves have evaporated;
It is a gas of an organic compound different from that of the compounded components, which is generated by thermal decomposition of the compounded components, and there is no need to identify the type of pyrolysis gas for the purpose of the method of the present invention. found that each compounded component can vary the absorption of thermally decomposed gas from the gas chromatograph 27 or the re-release characteristics from the column agent. In terms of the reliability of the quantitative method and the reproducibility of the quantitative results, careful consideration must be given to the fact that the mixed or mixed resin i acid is susceptible to chemical changes. It was found that the analysis results may vary depending on the holding temperature of the resin composition after blending and the elapsed time after blending. Therefore, in the method of the present invention, as a reference sample for obtaining a test line for quantifying analytical data, a sample with a known blending ratio and mixed at approximately the same temperature as the test resin composition is used. Using this standard test sample as a calibration curve, the analysis results of gas chromatography using the same column absorbent as the one used for the analysis of the test composition were used to calculate the analytical data of the test resin composition, including the amount of ingredients. By quantifying the strength of the compounding ratio, we can obtain reproducible and reliable analytical results.'0 Regarding the mixing temperature of the resin composition or reference sample mentioned above, the commonly used epoxy resin base resin is bisphenol-based. A, when the curing agent is an ordinary acid anhydride type, 80'C
The following is desirable, and in this case, the elapsed time after 1111 of the standard sample entered into the gas chromatograph analysis and the elapsed time from mixing the test resin composition to sampling, even if there is a difference. , the quantitative analysis results are reliable.

しかし上記の混合温度が作業の都合などにょシ8゜℃を
越える場合であっても、標準検体の調製後の経過時間と
、被検樹脂組成物のサンプリングまでの経過時間をも1
111同じに合ゎせれば、実用上信頼の皺ける定量分析
結果を得ることができる〇〔発明の実施例〕 以下図を参照しながら本発明の実施例を詳細に説−する
However, even if the above-mentioned mixing temperature exceeds 8°C due to work reasons, the elapsed time after preparation of the standard sample and the elapsed time until sampling of the test resin composition will not exceed 1.
111 By combining the same values, it is possible to obtain quantitative analysis results that are reliable in practice. [Embodiments of the Invention] Examples of the present invention will be described in detail below with reference to the drawings.

#!1図迂本発明方法の実施に際して用いられる分析装
置の例を示すもので、試料Sを加熱して熱分解させる加
熱分解装置IQ、ガスクロマトグラフ分析装置本体20
.分析結果のチャートを描く記碌装置3′o、ガスクロ
マトゲ2ムの山の面積を積算してタイプアウトするディ
ジタル積分装置40などからなる・試料3は注形作業揚
々どで混合されサンプリングされた樹脂組成物あるい唸
゛配合比d([知の標準検体であり、η−#t+IL鯰
番哨礒・−で石英ウール等にしませたものを金属箔で囲
んだ上で、加熱分解装置10の加熱筒11の上部の蓋1
1bを開いて投入し、加熱筒11の多孔性の棚11a上
に位置させる。この金属箔材料としては公知のように鉄
コバルトニッケル合金製の加熱温度を選択できるものか
あ少、試料の保持体として所定の温度で被検体を熱分解
させるために役立つ。この状態で弁13を鎖線で示す位
置においてポンベ26からのパージガス例えば窒素を鎖
線の矢印の方向に加熱筒11上部から流して加熱筒内の
空気をパージする。
#! Figure 1 shows an example of an analyzer used in carrying out the method of the present invention, which includes a thermal decomposer IQ that heats and thermally decomposes a sample S, and a gas chromatograph analyzer body 20.
.. It consists of a recording device 3'o that draws a chart of analysis results, a digital integration device 40 that integrates and types out the area of the mountain on the gas chromatograph 2, etc. Sample 3 was mixed and sampled at the end of the casting operation. A resin composition or compounding ratio d ([This is a known standard specimen, made of quartz wool etc. with The lid 1 on the top of the heating cylinder 11
1b is opened and put in, and placed on the porous shelf 11a of the heating cylinder 11. This metal foil material is made of an iron-cobalt-nickel alloy, as is well known, and can be used as a sample holder to thermally decompose the sample at a predetermined temperature, depending on the heating temperature. In this state, with the valve 13 at the position shown by the chain line, a purge gas such as nitrogen from the pump 26 is flowed from the upper part of the heating cylinder 11 in the direction of the arrow of the chain line to purge the air inside the heating cylinder.

加熱手段としては加熱筒11のまわシに高周波電源14
によル給電される誘導加熱コイル12が配されている0
加熱開始に当っては、まず弁13を実線の方に切シ換え
た後、ボンベ25からキャリヤガス、例えばヘリウムを
弁21によって圧力計22の指示に従って所定圧力にな
るよう調整しル12によシ試料Sの金属箔を誘導加熱し
て中の樹脂組成物を2秒程度の短時間で熱分解させる。
As a heating means, a high frequency power source 14 is installed around the heating tube 11.
The induction heating coil 12 that is powered by the
To start heating, first switch the valve 13 to the direction shown by the solid line, then adjust the carrier gas, for example helium, from the cylinder 25 to a predetermined pressure according to the indication from the pressure gauge 22 using the valve 21. The metal foil of Sample S is heated by induction to thermally decompose the resin composition therein in a short period of about 2 seconds.

この際発生した熱分離ガスは、キャリヤガスとともに加
熱筒下部から弁13を介して加熱装置1゜を出て、その
右側に示されたガスクロマトグラフ分析装置の吸収カラ
ム部23に入り、公知のように検出器24によルガスク
ロマトグ27信号が発しられる。この検出器としては、
水素イオン化検出器(FID)が適当である0検出器2
4がらの信号は記録装置30に入力されガスクロマトグ
ラム・チャー) 30aが出力される。また検出器24
がらの信号は積分装置4oにも同時に入力され、ガスク
ロマトグラム中の所定のピークのもつ面積が公知の態様
で計算されデータ40aとして出方される。
The thermally separated gas generated at this time exits the heating device 1° from the bottom of the heating cylinder through the valve 13 together with the carrier gas, enters the absorption column section 23 of the gas chromatograph analyzer shown on the right side, and enters the absorption column section 23 of the gas chromatograph analyzer shown on the right side. Detector 24 generates a Lugas chromatog 27 signal. This detector is
Detector 2, which is suitably a hydrogen ionization detector (FID)
The four signals are input to a recording device 30, and a gas chromatogram (char) 30a is output. Also, the detector 24
These signals are simultaneously input to an integrator 4o, and the area of a predetermined peak in the gas chromatogram is calculated in a known manner and output as data 40a.

次にこのようにして得られたガスクロマトグラムあるい
は積分結果のデータから樹脂組成物の配合成分を定量分
析する方法について説明する。第2図は樹脂組成物試料
Sの熱分解ガスのガスクロマトグラム例であって、図か
られかるように多数のピークないし山が観測され、各ピ
ーク鉱それぞれ・異なる分解ガスの種類に対応するもの
である。
Next, a method for quantitatively analyzing the components of the resin composition from the data of the gas chromatogram or integration results obtained in this manner will be described. Figure 2 is an example of a gas chromatogram of the pyrolysis gas of resin composition sample S, and as can be seen from the figure, many peaks or mountains are observed, and each peak corresponds to a different type of cracked gas. It is.

また、周知のように、各ピークの持つ面積社会分解ガス
の量を示す情報を含んでおシ、これから分解ガスの11
類を分離してその種類ごとの量を知れば、原則的には、
各配合成分の量を測定することができるはずであるが、
これらのピークがすべて配合ガスの相互分離に有用な情
報を含んでいる。わけではない@すなわち、異なる配合
成分が同一の熱分解ガスを発生するととがあル、かかる
種類の分解ガスの示すガスクロマトグラムのピークから
は骸分解ガスを発生する複数種類の配合成分の和を知る
ことができても、1種類の配合成分の量、を他の配合成
分から分離して定量することができないからである。さ
らに厄介なのは、分解ガスが異なっていてもガスクロマ
トグラム中のピークが重なシ合う場合があることであっ
て、吸収カラム剤の選択によってピークの重なシ合いを
避けうる場合もあるが、分解ガスの分子構造ないし性状
が類似の場合はピークの分離は一般には困難であるO第
3図は、実用的なエポキシ樹脂組成物に配合される樹脂
R9硬化剤H1可履剤P、硬化促進剤Aおよび着色剤り
の単体について、第2図と同じ条件で警分離させた熱分
解ガスのガスクロマトグラム例を示すもので、同様にそ
れぞれ多数のピークを含んでおり、これらのピークが互
いに重なシ合って第2図の樹脂組成物のガスクロマトグ
ラムが得られていることがわかる。このような理由で樹
脂組成物の熱分解ガスクロマトグラムの持つ多数のピー
クの中で煕合成分の定量に有用なピークはむしろ限られ
て来るのである。
In addition, as is well known, the area of each peak contains information indicating the amount of decomposed gas.
If you separate the types and know the amount of each type, in principle,
It should be possible to measure the amount of each ingredient, but
All of these peaks contain information useful for mutual separation of gas mixtures. In other words, it is true that different compounding components generate the same pyrolysis gas, and from the peak of the gas chromatogram shown by such kind of decomposition gas, it is possible to calculate the sum of the plurality of compounding components that generate carcass decomposition gas. This is because even if it is known, the amount of one type of compounded component cannot be separated and quantified from other compounded components. What is even more troublesome is that the peaks in the gas chromatogram may overlap even if the cracked gas is different. It is generally difficult to separate peaks when gases have similar molecular structures or properties. Figure 3 shows resins R9 curing agent H1 lubricant P and curing accelerator that are blended into a practical epoxy resin composition. This shows an example of a gas chromatogram of pyrolysis gas separated under the same conditions as in Figure 2 for A and the colorant alone. Similarly, each of them contains many peaks, and these peaks overlap each other. It can be seen that the gas chromatogram of the resin composition shown in FIG. 2 is obtained. For this reason, among the large number of peaks in the pyrolysis gas chromatogram of a resin composition, the peaks useful for quantifying the helium component are rather limited.

実験の結果によれば、エポキシ樹脂の主剤がビルA系で
あシ、硬化剤が酸無水物系と くに7タール酸系の酸無水物であル、可塑剤が代表例と
してプルピレングリコールである場合Ka、樹脂主剤の
定量に有用な分解ガスのピークは第2図で示すピークP
Rであって、この熱分解ガス成分は質量分析法によって
アクリルアルデヒドト同定された。この分解がガス成分
はエポキシ樹脂高分子暉中のエポキシ官能基部が熱分解
したものと推定され、該官能基部からは分解ガスとして
アリルアルコールがより多量に発生するが、ピスフェノ
−ルAの骨格部から熱分離ガスとして発生するフx 7
− # ヤp−インプロペニルフェシールド同様に組成
分離の観点からはあまシ有用でない0硬化剤の定量に有
用なピーク例としては第2図のPHで示すものがあり、
分解ガス成分は0−クレゾールである。第3図に示すよ
うに硬化剤のガスクロマトグラムHには硬化剤の骨格部
に由来すると思われる大きなピークがあるが組成分離の
点では適当でない0可塑剤の定量用ピーク例としては第
2図のPPがあり、分解ガスはプロピレンと同定された
このピークは可塑剤がプロピレングリコールである場合
は、他の分解ガスであるアセトンやアセトアルデヒドよ
シも大きくて好都合である。なお、これらの結果はガス
クロマトグラフ分析用カラム吸収剤として日本クロマト
工業■製商品名「Tl1NAx−GC(60/80メツ
シユ)」を用いた場合であって、カラム吸収剤が変われ
ば当然配合成分の定量に適するガスクロマトグラムのピ
ークも若干具なって来る。本発明の実施に適するカラム
吸収剤としては、他のものを用いることもでき、例えば
商品名[アビニシングリースL」等も目的に適する0つ
ぎに、熱分解条件も定量分析の精度に影響を及はし得る
。第4図は実験の結果を例示するもので、同図(a)は
熱分離温度TとデータのばらつきXとの相関を示し、こ
れから熱分解温度が500℃よシ若干低い程度がよいこ
とがわかる0同図(b)は同様に熱分解時間の影響を示
し、2秒間程度が適当であることがわかる。
According to the results of experiments, the main ingredient of the epoxy resin is Bil A type, the curing agent is an acid anhydride type, especially 7-tar acid type acid anhydride, and the plasticizer is typically propylene glycol. In case Ka, the peak of cracked gas useful for quantifying the resin base is the peak P shown in Figure 2.
The pyrolysis gas component was identified as acrylic aldehyde by mass spectrometry. The gas component of this decomposition is presumed to be the thermal decomposition of the epoxy functional groups in the epoxy resin polymer, and a large amount of allyl alcohol is generated as a decomposition gas from the functional groups, but the skeletal part of pisphenol A Fux generated as a thermally separated gas from
-# As with Yap-Impropenylfeshield, examples of peaks that are useful for quantifying curing agents that are not very useful from the perspective of composition separation are those shown by PH in Figure 2.
The cracked gas component is 0-cresol. As shown in Figure 3, the gas chromatogram H of the curing agent has a large peak that is thought to originate from the skeleton of the curing agent, but Figure 2 shows an example of a peak for quantitative determination of plasticizer, which is inappropriate from the standpoint of compositional separation. When the plasticizer is propylene glycol, this peak, which is identified as propylene, is advantageous because other cracked gases such as acetone and acetaldehyde are also large. These results are based on the use of "Tl1NAx-GC (60/80 mesh)" manufactured by Nippon Chromato Industries Ltd. as a column absorbent for gas chromatography analysis, and if the column absorbent is changed, the ingredients will naturally change. The gas chromatogram peaks suitable for quantitative determination are also somewhat distinct. Other column absorbents suitable for carrying out the present invention can also be used, such as the product name [Avinishing Grease L]. It is possible. Figure 4 illustrates the results of the experiment. Figure (a) shows the correlation between the thermal separation temperature T and the data dispersion 0 The same figure (b) similarly shows the influence of thermal decomposition time, and it can be seen that about 2 seconds is appropriate.

さらに前述のように混合された樹脂組成物は、時間の経
過にともなって反応が進むので、分析結果の信頼性をこ
の観点からも確めておく必要がある。第5図(a)は樹
脂主剤と硬化剤の混合後の反応の度合いを赤外線法によ
シ追跡した結果を示す。
Furthermore, since the reaction of the resin composition mixed as described above progresses over time, it is necessary to confirm the reliability of the analysis results from this point of view as well. FIG. 5(a) shows the results of tracking the degree of reaction after mixing the resin base material and curing agent using an infrared method.

混合樹脂はビスフェノールA系樹脂主剤100重量部に
対し酸無水物系硬化剤100.可塑剤20各重量部のほ
か、シリカ系無機充填剤360.硬化促進剤0.41着
色剤3各重量部を含む標準的な注形用樹脂組成物である
0測定は前述のフェニル基に対する1 850cm と
硬化剤に対する1610cmの2点について行ない、図
の縦軸は後者に対する。混合時およびその後の保持温度 はTi=80℃)、’l’u(=95℃)2例について
示した0この結果かられかるように温度TJにおける反
応の進捗はなだらかであるが、温度Tuにおいて反応が
かなシ早くなシ、被検体のサンプリングは早目でないと
結果が信頼できないことがわかる。
The mixed resin contains 100 parts by weight of the base bisphenol A resin and 100 parts by weight of the acid anhydride curing agent. In addition to 20 parts by weight of plasticizer, 360 parts by weight of silica-based inorganic filler. A standard casting resin composition containing 0.4 parts by weight of a curing accelerator and 3 parts by weight of a coloring agent.Measurements were made at two points, 1850 cm for the phenyl group and 1610 cm for the curing agent, and the vertical axis of the figure is for the latter. The holding temperature during and after mixing was Ti = 80°C) and 'l'u (=95°C). It can be seen that the results are unreliable unless the reaction is quick and the sample is sampled early.

さらに同図Φ)、 (e)、 (d)は、それぞれ樹脂
主剤、硬化剤および可塑剤について、前述のガスクロマ
トグラムのピークPR,PHおよびPPの面積の経時焚
化を追跡した結果を示すOこのm++ vのために、樹
脂組成物中に混合後も反応に参加しない標準物質(例え
ばDO’E’ )をあらかじめ加えておき、この標準物
質の示すクロマトグラムのピーク面積と前述の各ピーク
の面積との比によって経時変化を測定したもので、図は
混合直後のとの′比を1として示しである。これらの図
からもわかるように、温度TIにおいては経時変化は小
であるが、温度Tuにおいてはサンプリングまでの経過
時間を管理すべき□ことがわかる0実際の現場における
混合作業は、前述の組成配合の場合80〜90℃の間で
行なわれ。
Furthermore, Φ), (e), and (d) in the same figure show the results of tracking the area of peaks PR, PH, and PP in the gas chromatogram mentioned above for the resin base, curing agent, and plasticizer, respectively. For m++v, a standard substance (for example, DO'E') that does not participate in the reaction even after mixing is added to the resin composition in advance, and the peak area of the chromatogram shown by this standard substance and the area of each of the above-mentioned peaks are calculated. Changes over time were measured by the ratio of 1 to 1, and the figure shows the ratio of 1 immediately after mixing to 1. As can be seen from these figures, at temperature TI, the change over time is small, but at temperature Tu, it is clear that the elapsed time until sampling should be controlled. In the case of compounding, it is carried out at a temperature between 80 and 90°C.

ることか多く、均一かつ撹拌に要する時間は1時間程度
がふつうで、実測結果によれば、混合保竺温度が90℃
までの場合には、被検体のサンプリン〆までの経過時間
が2時間程度までであれば分析結果が#1は信頼できる
ことが確められている〇前の第2図に示したような測定
製置と方法で得られたガスクロマトグラム30aないし
は積分値データ40aから各配合成分量ないしは配合比
をめ測定範囲内の配谷比が既知の樹脂混合物を被検体の
混合保持条件とくに温度条件とほぼ同条件で数種゛1の
配合比で準備しJかかる数種の基準試料について被検体
に対する測定装置と測定方法とによシ前述のようなデー
タをとシ、これから検量線を作成する。第6図は検を線
を例示するもので、YR。
The time required for uniform stirring is usually about 1 hour, and according to actual measurements, the mixing temperature is 90℃.
In this case, it has been confirmed that the analysis result #1 is reliable if the elapsed time until the specimen sample is completed is about 2 hours. Based on the gas chromatogram 30a or integral value data 40a obtained by the method and method, a resin mixture with a known distribution ratio within the measurement range is determined based on the amount of each compounded component or compounding ratio. A calibration curve is prepared based on the above-mentioned data obtained by preparing several types of reference samples with a mixing ratio of 1 and using a measuring device and a measuring method for the test object. Figure 6 shows an example of the test line, YR.

YH,YPはそれぞれ第2図のピークPR,PH,PP
から得られる積分値である。同図(a)は硬化剤に対す
る検量線例で、樹脂主剤についての積分データ値πに対
する硬化剤にづいての積分データ値■の比YH/Y R
が縦軸に示されている。横軸は主剤の配合量に対する硬
化剤の配合量の比、すなわち主剤に対する硬化剤の配合
比圧である0同様に同図(b)においては、縦軸に主剤
のデータ値…に対する可塑剤のデータ値YPの比YP/
YRが、横軸に主剤に対する可塑剤の配合比XPが示さ
れている。同図(a)、(b)かられかるように、硬化
剤に対しては配合比■が0.8〜1.2の範囲で、可塑
剤に対しては配合比XPが0.0〜0.5の範囲で検量
線は非常に良好な直線性をもっている。このような検量
線を用いれば、被検体から得られる3個のデータYR,
YH,YPから比Ya/YR,YP/YRを計算し、第
6図(a)、 (b)に示すような検量線を用いて配合
比XH,XPを直ちに知ることができる。
YH and YP are the peaks PR, PH, and PP in Figure 2, respectively.
This is the integral value obtained from . Figure (a) is an example of a calibration curve for a curing agent, which shows the ratio of the integral data value π for the resin base to the integral data value ■ for the curing agent YH/Y R
is shown on the vertical axis. The horizontal axis is the ratio of the amount of curing agent to the amount of the main agent, that is, the specific pressure of the curing agent to the main agent.Similarly, in Figure (b), the vertical axis shows the ratio of the amount of plasticizer to the data value of the main agent. Ratio of data value YP YP/
In YR, the mixing ratio XP of the plasticizer to the main ingredient is shown on the horizontal axis. As can be seen from Figures (a) and (b), the mixing ratio (■) for the curing agent is in the range of 0.8 to 1.2, and the mixing ratio XP for the plasticizer is in the range of 0.0 to 1.2. The calibration curve has very good linearity in the range of 0.5. If such a calibration curve is used, three pieces of data obtained from the subject, YR,
By calculating the ratios Ya/YR and YP/YR from YH and YP and using the calibration curves shown in FIGS. 6(a) and (b), the blending ratios XH and XP can be immediately determined.

次に示す表拡、このよう表方法で得られた定量分析値例
を示すもので、被検体としての樹脂組成物が表の左側に
理論値として示されている配合を有するものに対する定
量分析値が表の右側に示されている0例示のように理論
値と分析値との一致度は高く、本発明方法による定量分
析結果が十分信頼できることがわかる。なお分析値の各
欄の2段の数字は2図の分析結果を示す。上表の例に示
す被検体について5回以上の分析をした結果では、測定
値の標準偏差は主剤、硬化剤については平均値の2−程
度、可塑剤については5%程度であった。
The expanded table shown below shows an example of quantitative analysis values obtained using this tabular method, and shows the quantitative analysis values for a resin composition as a test object having the composition shown as the theoretical value on the left side of the table. As shown in the 0 example shown on the right side of the table, the degree of agreement between the theoretical value and the analytical value is high, and it can be seen that the quantitative analysis results obtained by the method of the present invention are sufficiently reliable. Note that the numbers in the second row in each column of analysis values indicate the analysis results in Figure 2. The results of five or more analyzes of the samples shown in the example in the table above show that the standard deviation of the measured values was about 2-2% of the average value for the base agent and curing agent, and about 5% for the plasticizer.

1本 以上説明した実施例に限らず、本発明ゝ(層々の変形さ
れた態様で実施が可能である。例えばガスクロマトグラ
フ分析すべき熱分解ガスの生成条件については、第4図
で説明したような最良条件の上下にずらせてもよく、熱
分解温度については400〜650℃の範囲であれば発
生する熱分離ガスの組成や量はあまシ大差がなく、熱分
解時間についてもできるだけ短時間内にガス化をさせる
ことは必要ではあるが、1〜4秒程度の間であればガス
クロマトグラフ分析に適する。また、前述の説明でガス
クロマトグラム中の各配合成分を代表させたピークを生
じる分解ガス中の化合物もあくまで例であって、各配合
成分自体の種類が異なれば当然当該化合物の種類が異な
ってくるし、かつそれに適合した化合物を代表として選
定すべきものである。樹脂混合物からの被検体をサンプ
リングする条件および検量線作成のための基準試料の混
合調製条件についても、できるだけお互いに近い条件で
行なった方が分析結果の正確度が期待できるのではある
が、作業の都合によル多少条件がお互いに異なっても実
用的に紘信頼できる分析結果を得ることができる◎ただ
し、樹脂混合物は混合後は反応が進行する可能性を常に
もって諭るから、とくに混合温度とその後の保持温度は
低い方がサンプリング条件や調製条件の自由度は高い・
前述したようにこの温度が80℃以下であればこの条件
管理はゆるやかでよく、90℃程度までは条件を注意し
て管理すれば十分信頼度のある結果が得られるが、これ
以上の温度°になると管理は不可能ではないにしても困
難になるので避けるべきである。
The present invention is not limited to one or more of the embodiments described, but can be implemented in various modified embodiments.For example, the conditions for generating pyrolysis gas to be analyzed by gas chromatography may be as explained in FIG. The temperature may be shifted above or below the best conditions, and as long as the pyrolysis temperature is in the range of 400 to 650°C, there will be no major difference in the composition or amount of the thermally separated gas generated, and the pyrolysis time will also be within the shortest possible time. Although it is necessary to gasify the gas for about 1 to 4 seconds, it is suitable for gas chromatographic analysis.In addition, as explained above, the cracked gas that produces peaks representative of each compounded component in the gas chromatogram. The compounds in the table are just examples, and if the types of each compounded component are different, the types of compounds will naturally differ, and a compound that is compatible with that should be selected as a representative. Regarding the sampling conditions and the mixing and preparation conditions of the standard sample for creating the calibration curve, it is possible to expect more accurate analysis results if the conditions are as close to each other as possible. Practical and reliable analysis results can be obtained even if the values are different. However, it is always important to remember that there is a possibility that the reaction will proceed after mixing resin mixtures, so the mixing temperature and subsequent holding temperature must be adjusted in particular. The lower the value, the greater the freedom of sampling and preparation conditions.
As mentioned above, if this temperature is below 80°C, this condition control can be done gently, and if the conditions are carefully controlled up to about 90°C, sufficiently reliable results can be obtained, but if the temperature is higher than this, This should be avoided as it becomes difficult, if not impossible, to manage.

〔発明の効果〕〔Effect of the invention〕

本発明方法によればエポキシ樹脂の主斉(と硬化剤と可
塑剤との混合を終了して注形作業等に使用前の未硬化の
樹脂組成物から被検体を極く微量サンプリングし、加熱
分解装置に挿入ガスプヒさせて熱分解ガスをガスクロマ
トグラフKかけることによル、配合成分を正確に定量分
析することができ、分析結果に基づいて樹脂配合を注形
直前に微調整することにより硬化後の樹脂組成物の電気
的特性や機械的特性を安定化させることができる。上述
のように、被検体のサンプリングは通常の作業現場の条
件で行な巳ても、分析精度は実用上問題がなく、分析の
ための4作業も簡単なので定量分析に熟練、した専門家
を要しない。さらに本発明方法は従来あまシ行なわれて
いなかった可塑剤などを含む実用的な樹脂組成物の配合
成分の定量分析の実用化の途を拓いたもので、硬化促進
剤や着色剤やさらには無機充填剤が樹脂組成物に含まれ
ていても分析にはとくに支障はない。測定に要する時間
は長くても30分程度であるから、作業現場における樹
脂の配合と均一撹拌作業時間内に分析結果が得られる。
According to the method of the present invention, a very small amount of the specimen is sampled from the uncured resin composition after mixing the epoxy resin (with the curing agent and the plasticizer) before use in casting work, etc., and then heated. By inserting the gas into the decomposition device and subjecting the pyrolysis gas to a gas chromatograph, it is possible to accurately quantitatively analyze the compounded components.Based on the analysis results, the resin compound can be finely adjusted just before casting, resulting in hardening. It can stabilize the electrical and mechanical properties of the subsequent resin composition.As mentioned above, even if the sample is sampled under normal work site conditions, the accuracy of analysis may be a practical problem. Since the four steps for analysis are simple, it does not require experts who are skilled in quantitative analysis.Furthermore, the method of the present invention allows practical formulation of resin compositions containing plasticizers, etc., which has not been done in the past. This has paved the way for the practical application of quantitative analysis of components, and even if the resin composition contains curing accelerators, colorants, and even inorganic fillers, there is no particular problem in analysis.The time required for measurement is Since it takes about 30 minutes at most, analysis results can be obtained within the time required for blending and uniformly stirring the resin at the work site.

以上のように本発明方法は、エポキシ樹脂の注形作業な
どの現場の品質管理や配合成分の微調整用に好適でかつ
十分精度の高いエポキシ系未硬化樹脂組成物の実用的な
定量分析法を提供しうるものである。
As described above, the method of the present invention is a practical quantitative analysis method for uncured epoxy resin compositions that is suitable for on-site quality control such as epoxy resin casting work and for fine adjustment of compounded ingredients and has sufficient accuracy. It is possible to provide

【図面の簡単な説明】[Brief explanation of drawings]

図はすべて本発明の実施例を示すもので、第1図は本発
明によるエポキシ系未硬化樹脂組成物の分析方法の実施
に際して用いられる分析装置の構成説明図、第2図線本
発明による分析方法の対象とする樹脂組成物の熱分解ガ
スのガスクロマトグラム図、第3図は該分析対象とする
樹脂組成物中に配合される配合成分の熱分解ガスのガス
クロマトグラム図、第4図は樹脂組成物の熱分解条件が
測定結果に及ばず影響を示すグラフ図、第5図は樹脂組
成物の混合から被検体のサンプリングまでの条件が測定
結果に及ばず影響を示すグラフ図、第6図は標準試料の
ガスクロマトグラフ分析結果から引かれた定量分析のだ
めの検量線例である。 図において、10:被検樹脂組成物を熱分解させるため
加熱分解装置、20:熱分解ガスのガスクロマトグラフ
分析するガスクロマトグラフ分析装置、23:ガスクロ
マトグラフ分析のためのガス吸収カラム、である。 区 へ 抄 回 Q) 杜
All of the figures show examples of the present invention, and Figure 1 is an explanatory diagram of the configuration of an analyzer used in carrying out the method for analyzing uncured epoxy resin compositions according to the present invention, and Figure 2 shows the analysis method according to the present invention. Fig. 3 is a gas chromatogram of the pyrolysis gas of the resin composition to be analyzed, and Fig. 4 is a gas chromatogram of the pyrolysis gas of the compounded components contained in the resin composition to be analyzed. Figure 5 is a graph showing the influence of thermal decomposition conditions of the composition on the measurement results; Figure 5 is a graph showing the influence of the conditions from mixing the resin composition to sample sampling on the measurement results; Figure 6 is an example of a calibration curve for quantitative analysis drawn from the results of gas chromatography analysis of a standard sample. In the figure, 10 is a thermal decomposition device for thermally decomposing the resin composition to be tested, 20 is a gas chromatograph analyzer for gas chromatographic analysis of pyrolysis gas, and 23 is a gas absorption column for gas chromatographic analysis. To the ward Q) Mori

Claims (1)

【特許請求の範囲】 1)配合成分としてエポキシ樹脂からなる主剤。 酸無水物系の硬化剤および可塑剤をタカくとも含み、当
諌配合成分を混合ないしは混和した状態の未硬化樹脂組
成物中の該配合成分をガスクロマトグラフ法によ、り定
量分析する方6法であって、ガスクロマトグラフ法によ
シ分析すべき測定ガスとして前記樹脂組成物を急速加熱
によシ熱分解させた熱分解ガスを用い、骸熱分解ガスが
示すガスクロマトグラム中の前記各配合成分を代表する
ピークについて前記分析すべき樹脂組成物の混合条件芋
#1は同条件で調製された基準試料から決定される基準
値と比較して該樹脂組成物の配合成分を定量分析するこ
とを特徴とするエポキシ系未硬化樹脂組成物の分析方法
。 2、特許請求の範囲第1項記載の方法において、樹脂組
成物検体を400〜650℃の、熱分解温度で熱分解さ
せてガスクロマトグラフ分析すべき熱分離ガスを発生さ
せることを特徴とするエポキシ系未硬化4!脚組成物の
分析方法。 3)4I許、請求の範囲第1.項または第2項記載の方
法において、樹脂組成物検体の熱分解時間が1〜4秒で
あることを特徴とするエポキシ系未硬化樹脂組成物、の
分析方法。 4)4!許請求の範囲第1項記載の方法において、エポ
キシ樹脂主剤を代表する熱分解ガスのガスクロ7トグラ
ムのピ、−り、としてアクリルアルデヒドのもつピーク
が用いられることを特徴とするエポキシ系未硬化樹脂組
成物の分析方法。 5)!許請求の範囲第1項記載の方法において、酸無水
物系硬化剤を代表する熱分解ガスのガスクロ7トグラム
のピークとしてオルソクレゾールのもつピークが用いら
れることを特徴とするエポキシ系未硬化樹脂組成物の分
析方法・ 6)特許請求の範囲第1項記載の方法において、樹脂組
IR5物に配、合される可塑剤がプロピレングリコール
系であル、該可塑剤を代表する熱分解ガスのガスクロマ
トグラムのピークとしてプルピレンのもつピークが用い
られることを特徴とするエポキシ系未硬化゛樹脂組成物
の分析方法07)特許請求の範囲第1項記載の方法にお
いて、基準試料の混合i!l1M温度が分析すべき樹脂
組成物の混合温度とハは同温度であることを特徴とする
エポキシ系未硬化樹脂組成物の分析方法。 8)特許請求の範囲第7項記載の方法において、基準試
料の混合調製温度が90℃以下であることを特徴とする
エポキシ系未硬化樹脂組成物の分析方法0 9)特許請求の範囲第1項または第7項記載の方法にお
いて、ガスクロマトグラフ分析すべき樹脂組成物検体永
配合成分の混合後2時間以内にサンプリングされること
を特徴とするエポキシ系未硬化樹脂組成物の分析方法。 10)%許請求の範囲第1項記載の分析方法において、
樹脂組成物検体のガスクロマトグラフ分析結果を基準試
料から得られた基準値よシ引かれた検量線と比較するこ
とを特徴とするエポキシ系未硬化樹脂組成物の分析方法
[Scope of Claims] 1) A main agent consisting of an epoxy resin as a compounding component. A method of quantitatively analyzing the components in an uncured resin composition containing at least an acid anhydride curing agent and a plasticizer, and in which the components are mixed or mixed, by gas chromatography 6 In this method, a pyrolysis gas obtained by thermally decomposing the resin composition by rapid heating is used as a measurement gas to be analyzed by gas chromatography, and each of the above-mentioned formulations in the gas chromatogram shown by the skeleton pyrolysis gas is Mixing conditions of the resin composition to be analyzed regarding peaks representative of the components Potato #1 is quantitatively analyzed by comparing the blended components of the resin composition with a reference value determined from a reference sample prepared under the same conditions. A method for analyzing an epoxy-based uncured resin composition. 2. In the method according to claim 1, the epoxy resin composition sample is thermally decomposed at a thermal decomposition temperature of 400 to 650°C to generate a thermally separated gas to be analyzed by gas chromatography. System uncured 4! Method for analyzing leg composition. 3) 4I, Claim No. 1. 3. A method for analyzing an uncured epoxy resin composition according to item 1 or 2, wherein the thermal decomposition time of the resin composition sample is 1 to 4 seconds. 4) 4! In the method according to claim 1, an uncured epoxy resin characterized in that a peak of acrylic aldehyde is used as a peak in a gas chromatogram of a pyrolysis gas representative of the epoxy resin main ingredient. Methods for analyzing compositions. 5)! In the method according to claim 1, an epoxy uncured resin composition characterized in that a peak of orthocresol is used as a peak in a gas chromatogram of a pyrolysis gas representative of an acid anhydride curing agent. 6) In the method described in claim 1, the plasticizer blended and combined with the resin composition IR5 is a propylene glycol-based plasticizer, and the gas chroma of a pyrolysis gas representative of the plasticizer is Method for analyzing an uncured epoxy resin composition, characterized in that the peak of propylene is used as the peak of the tomogram 07) In the method according to claim 1, the reference sample is mixed i! A method for analyzing an uncured epoxy resin composition, characterized in that the l1M temperature is the same as the mixing temperature of the resin composition to be analyzed. 8) A method for analyzing an epoxy uncured resin composition in the method described in claim 7, characterized in that the mixing temperature of the reference sample is 90°C or lower. 9) Claim 1 8. A method for analyzing an uncured epoxy resin composition, characterized in that the sample of the resin composition to be analyzed by gas chromatography is sampled within 2 hours after mixing of the ingredients. 10) % In the analytical method according to claim 1,
A method for analyzing an uncured epoxy resin composition, which comprises comparing the results of a gas chromatographic analysis of a resin composition sample with a calibration curve drawn from a reference value obtained from a reference sample.
JP22577983A 1983-11-30 1983-11-30 Analysis of uncured epoxy resin composition Pending JPS60117151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22577983A JPS60117151A (en) 1983-11-30 1983-11-30 Analysis of uncured epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22577983A JPS60117151A (en) 1983-11-30 1983-11-30 Analysis of uncured epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS60117151A true JPS60117151A (en) 1985-06-24

Family

ID=16834651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22577983A Pending JPS60117151A (en) 1983-11-30 1983-11-30 Analysis of uncured epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS60117151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562660A (en) * 2018-02-08 2018-09-21 河南中烟工业有限责任公司 The detection method of phosphate plasticizer content in a kind of cigarette paper wrapper
CN109813825A (en) * 2019-01-31 2019-05-28 中国第一汽车股份有限公司 A method of detection PVC
CN110658278A (en) * 2019-10-12 2020-01-07 深圳海关工业品检测技术中心 Rapid detection and analysis method for plasticizer in textile
WO2021090826A1 (en) * 2019-11-06 2021-05-14 株式会社足柄製作所 Film deterioration diagnosing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562660A (en) * 2018-02-08 2018-09-21 河南中烟工业有限责任公司 The detection method of phosphate plasticizer content in a kind of cigarette paper wrapper
CN109813825A (en) * 2019-01-31 2019-05-28 中国第一汽车股份有限公司 A method of detection PVC
CN110658278A (en) * 2019-10-12 2020-01-07 深圳海关工业品检测技术中心 Rapid detection and analysis method for plasticizer in textile
WO2021090826A1 (en) * 2019-11-06 2021-05-14 株式会社足柄製作所 Film deterioration diagnosing method

Similar Documents

Publication Publication Date Title
Haefelfinger Limits of the internal standard technique in chromatography
Sponsler et al. Matrix-isolation decay kinetics of triplet cyclobutanediyls. Observation of both Arrhenius behavior and heavy-atom tunneling in carbon-carbon bond-forming reactions
JPS60117151A (en) Analysis of uncured epoxy resin composition
CN105510504B (en) Method for measuring imidazole, musk xylene and sesamol residue quantity in edible essence
Zakon et al. δ 13 C compound-specific isotope analysis in organic compounds by GC/MC-ICPMS
Hatada et al. Quantitative analysis by nuclear magnetic resonance using precision coaxial tubing
Boato et al. Vapour pressure of isotopic liquids. I.—A, N2, O2 below boiling-point
McKinney et al. EPR observation of nitroxide free radicals during thermal decomposition of 2, 4, 6-trinitrotoluene and related compounds
JPS5651649A (en) Preparation of sample for fluorescence x-ray analysis
Onuska et al. Analysis of formaldelhyde by gas chromatography using porapak n.
Mrozek et al. Continuous-flow IRMS technique for determining the 17 O excess of CO 2 using complete oxygen isotope exchange with cerium oxide
Eberhart et al. Optical Purity Determination and 1H NMR Spectral Simplification with Lanthanide Shift Reagents: Glutethimide, 3-Ethyl-3-phenyl-2, 6-piperidinedione, 1
JPH0611498A (en) Gas chromatographic method and gas chromatograph mass-spectrometric method
Prokopowicz et al. Quartz rod coated with modified silica gel as a source of CO and CO2 for standard gaseous mixtures
CN110470769A (en) Determination of Trichloro Methane measuring method in solid rocket motor liner
Barton Aspects of epoxy resin curing reactions
CN110749657A (en) Method for detecting content of miconazole nitrate
McGuire et al. Determination, by GC‐MS using deuterated internal standards, of formaldehyde and methanol evolved during curing of coatings
JPS6230584B2 (en)
Sayi et al. Rapid estimation of carbon monoxide and nitrogen by quadrupole mass spectrometry
Konopel’ko et al. Reference gas mixtures of formaldehyde in nitrogen: Preparation by a dynamic gravimetric method
Eisenbarth et al. A nondestructive method for age determination of fossile bone
Solon et al. Automated analysis of alcohols in blood
Heylmun et al. Determination of Vinyl Content of Silicone Gums
Douthitt Hyphenation of gas chromatographic techniques with isotope ratio mass spectrometry: present and future