JPS60117101A - Shape detector - Google Patents

Shape detector

Info

Publication number
JPS60117101A
JPS60117101A JP22412483A JP22412483A JPS60117101A JP S60117101 A JPS60117101 A JP S60117101A JP 22412483 A JP22412483 A JP 22412483A JP 22412483 A JP22412483 A JP 22412483A JP S60117101 A JPS60117101 A JP S60117101A
Authority
JP
Japan
Prior art keywords
light
cameras
laser beam
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22412483A
Other languages
Japanese (ja)
Inventor
Kunio Suzuki
邦夫 鈴木
Shigemi Mio
美尾 恵己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22412483A priority Critical patent/JPS60117101A/en
Publication of JPS60117101A publication Critical patent/JPS60117101A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To obtain high-accuracy light-interrupting lines quickly, by vertically irradiating a beam of light from above a specimen and arranging its reflected light into parallel beams of light and picking up is image of them with a plurality of TV cameras. CONSTITUTION:A flat pack 23 is installed on a high-density mounting substrate 22 which is mounted on a table 21 which is free to move in the XY direction S. A laser spot irradiating part 25 is set on a table 26 free to move in the B direction. By the movement of the table 26, the laser spot scans the substrate 22 and reads. The reflected laser beam assumes parallel beams with an objective lens 29. The parallel beams are brought to a focus with an eye-piece 30. The laser beam is reflected with a total-reflection mirror 31 and it is irradiated into a plurality of TV cameras 32-34. By changing the angles of mirror 31 and lens 30, the moving laser beam is kept always incident on the cameras 32-34. Thus, as a plurality of TV cameras share the image pick up range, high-accuracy light-interrupting lines can be obtained quickly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は形状検出装置に関し、特にフラットパック部品
のリードと基板パッド間の接合状態を検出するのに好適
な形状検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a shape detection device, and particularly to a shape detection device suitable for detecting a bonding state between a lead and a substrate pad of a flat pack component.

〔発明の背景〕[Background of the invention]

従来、フラットパック部品のリードと基板のパッド間の
接合状態を検出する形状検出装置として、第1図に示す
ようなものがある。同図に示すように、レーザ光源1よ
り送られるレーザビームを凸レンズ2,3を介して反射
ミラー4に当て、ミラー4で反射されるレーザビームを
凸レンズ51反射ミラー6を介して、プリント基板8の
パッド上にハンダ付けされたフラットパック部品7のリ
ード端子7aに垂直に照射し、斜方向に反射するレーザ
ビームを反射ミラー9、凸レンズ5を介して取込み、ミ
ラー4、凸レンズ3、ミラー10、凸レンズ11を介し
て、−次センサー12に導き、リード端子7aの接続状
態を検出している。
2. Description of the Related Art Conventionally, there is a shape detection device shown in FIG. 1 that detects the bonding state between a lead of a flat pack component and a pad of a board. As shown in the figure, a laser beam sent from a laser light source 1 is applied to a reflecting mirror 4 via convex lenses 2 and 3, and the laser beam reflected by the mirror 4 is passed through a convex lens 51 and a reflecting mirror 6 to a printed circuit board 8. The laser beam is irradiated perpendicularly to the lead terminal 7a of the flat pack component 7 soldered on the pad of the laser beam, and the laser beam reflected in the oblique direction is taken in through the reflecting mirror 9, the convex lens 5, the mirror 4, the convex lens 3, the mirror 10, The light is guided through a convex lens 11 to a second sensor 12 to detect the connection state of the lead terminal 7a.

上記の構造の形状検出装置において、レーザビームの走
査および反射光の取込みは、ミラー4をスキャナー13
で矢印Aに示すように振って行い、−次センサ12の出
力をスキャナー角で換算することで、レーザビームの光
切断線を電気的に再生している。しかしながら、上記の
従来の方法はスキャナー角の精度が極めて重要であり、
これに誤差があると当然圧しい光切断線が得られないし
、また、スキャナー角の高速高精度コントロールは容易
でなく、結局圧しい光切断線が得られないという欠点が
あった。
In the shape detection device having the above structure, the scanning of the laser beam and the capture of the reflected light are performed by moving the mirror 4 to the scanner 13.
The laser beam is swung as shown by arrow A, and the output of the -order sensor 12 is converted into a scanner angle, thereby electrically reproducing the optical cutting line of the laser beam. However, in the conventional method described above, the accuracy of the scanner angle is extremely important;
If there is an error in this, naturally a strong light section line cannot be obtained, and high-speed and high precision control of the scanner angle is not easy, resulting in a disadvantage that a strong light section line cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の点にかんがみてなされたもので、高精
度で、かつ高速に光切断線が得られる形状検出装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a shape detection device that can obtain optical cutting lines with high precision and at high speed.

〔発明の概要〕[Summary of the invention]

本発明の要点は、被検出物体に垂直上方向からレーザビ
ームをスポット状に照射し、被検出物体より反射された
反射光を斜め上方より取込み、この取込んだ反射光を平
行光線とし、この平行光線を全反射ミラーと接眼レンズ
を介して複数台のテレビカメラ上に取込み撮像して映像
信号を得るようにした点にある。
The gist of the present invention is to irradiate a laser beam spot-like on the object to be detected from vertically above, capture the reflected light from the object to be detected from diagonally above, convert the captured reflected light into parallel light, and The point is that parallel light rays are captured onto a plurality of television cameras via a total reflection mirror and an eyepiece and images are obtained to obtain a video signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は、本発明に係る形状検出装置の光学系の概略構
成を示す図で、同図において、XY方向に移動するテー
ブル21は、高密度実装基板22に実装されたフラット
パック部品23を決められた位置へ位置づけするもので
ある。レーザスポット照射口25は、テーブル26に固
定され、レーザ発振器(図示せず)よりファイバ25′
で導びかれたレーザをフラットパック部品23のリード
煽および高密度実装基板22上に垂直にスポット照射す
る。テーブル26は、モータ27の回転軸に直結された
シャフト28の回転により矢印Bに示すように左右に自
由に移動できる構造になっている。モータ27の時計方
向、反時計方向の回転により、レーザスポットは、リー
ド24および高密度実装基板22上を走査する。レーザ
スポットの反射光は、前記高密度実装基板22の斜め上
方より撮像するようになっており、リード24および高
密度実装基板22からの反射光は対物レンズ29により
平行光線になり、次の接眼レンズ30により焦点を結ば
せる。上記接眼レンズ30とテレビカメラ32,33.
34の間に全反射ミラー31を設け、この全反射ミラー
31と前記接眼レンズを一体的に連動して移動させるこ
とにより。
FIG. 2 is a diagram showing a schematic configuration of the optical system of the shape detection device according to the present invention. In the figure, a table 21 moving in the This is to position it in a determined position. A laser spot irradiation port 25 is fixed to a table 26, and a fiber 25' is connected to a laser oscillator (not shown).
The laser beam guided by the laser beam is spot irradiated vertically onto the leads of the flat pack component 23 and the high-density mounting board 22. The table 26 has a structure that allows it to freely move left and right as shown by arrow B by rotation of a shaft 28 that is directly connected to the rotation axis of a motor 27. By rotating the motor 27 clockwise and counterclockwise, the laser spot scans the leads 24 and the high-density mounting board 22. The reflected light of the laser spot is imaged from diagonally above the high-density mounting board 22, and the reflected light from the leads 24 and the high-density mounting board 22 is converted into parallel light by the objective lens 29, and is then taken to the next eyepiece. The lens 30 focuses the image. The eyepiece lens 30 and the television camera 32, 33.
A total reflection mirror 31 is provided between the mirrors 34 and 34, and the total reflection mirror 31 and the eyepiece are moved in unison.

レーザ照射口25から照射されるレーザスポットがリー
ド24および高密度実装基板22上を広範囲に移動して
も3台のテレビカメラ32,33゜34により撮像可能
としている。なお、テレビカメラの数は、3台に限るも
のではなく、台数が多ければ多い程、解像度は良くなる
。なお、対物レンズ29、接眼レンズ30、全反射ミラ
ー31はいずれもテーブル26上に設けられる。
Even if the laser spot irradiated from the laser irradiation port 25 moves over a wide range on the leads 24 and the high-density mounting board 22, it can be imaged by the three television cameras 32, 33 and 34. Note that the number of television cameras is not limited to three; the greater the number, the better the resolution. Note that the objective lens 29, the eyepiece lens 30, and the total reflection mirror 31 are all provided on the table 26.

第2図において、レーザスポット照射口25がらのレー
ザスポラ1へを右斜め下方から、左斜め上方に走査する
と反射光の実像は、全反射ミラー31上で左から右へ移
動する。これを接眼レンズ30とこれと一体的に連動し
て動く全反射ミラー31とを同一光軸上を移動させるこ
とで、テレビカメラ32,33,34上に反射光の焦点
を結ばせる。
In FIG. 2, when the laser spora 1 from the laser spot irradiation port 25 is scanned from diagonally lower right to diagonally upper left, the real image of the reflected light moves from left to right on total reflection mirror 31. By moving the eyepiece lens 30 and a total reflection mirror 31 that moves integrally therewith on the same optical axis, the reflected light is focused on the television cameras 32, 33, and 34.

第3図は、本発明の係る形状検出装置の制御処理部の構
成を示すブロック図、第4図はその動作を示すタイムチ
ャー1−図である。第1のフレームメモリ44にタイミ
ング発生器48よりクリア信号52を送って初期設定す
る(第4図のイ参照)。
FIG. 3 is a block diagram showing the configuration of the control processing section of the shape detection device according to the present invention, and FIG. 4 is a time chart 1 showing its operation. A clear signal 52 is sent from the timing generator 48 to the first frame memory 44 to initialize it (see A in FIG. 4).

次にモータ27の駆動回路41にモータ27の駆動信号
49が送出されモータ27の回転が開始すると(第4図
の口参照)、テレビカメラセレクト信号51.がタイミ
ング発生器48からセレクタ43に送出されてテレビカ
メラ32を選定する(第4図のハ参照)、同時に第1の
フレームメモリ44にタイミング発生器48より書込み
信号53が送られ(第4図の二参照)、テレビカメラ3
2からの信号が第1のフレームメモリ44に書込まれる
。この書込みは前画面とOR処理される。
Next, when the drive signal 49 for the motor 27 is sent to the drive circuit 41 of the motor 27 and the motor 27 starts rotating (see the opening in FIG. 4), the television camera select signal 51. is sent from the timing generator 48 to the selector 43 to select the television camera 32 (see C in FIG. 4), and at the same time, a write signal 53 is sent from the timing generator 48 to the first frame memory 44 (see FIG. 4). (see 2), TV camera 3
2 is written to the first frame memory 44. This writing is ORed with the previous screen.

テレビカメラ32の担当エリアが終了すると、テレビカ
メラセレクト信号51がオフになり(第4図のホ参照)
、第1のフレームメモリ44の書込み信号53もオフ(
第4図のへ参照)、モータ27の駆動信号49もオフと
なる(第4図の1・参照)。次に接眼レンズ30.全反
射ミラー31を一体的に連動移動させる駆動回路42に
タイミング発生器48から接眼レンズ・全反射ミラー駆
動信号50を送り、全反射ミラー31と接眼レンズ30
を次のテレビカメラ33が撮像できる位置に移動させる
(第4図のチ参照)。この時、第2のフレームメモリ4
5に書込み信号54をタイミング発生器48より送り、
第1のフレームメモリ44の画像を第2のフレームメモ
リ45に移した後(第4図のり参照)、クリア信号52
をタイミング発生器48から第1のフレームメモリ44
に送り、第1のフレームメモリ44を初期設定する(第
4図のヌ参照)。以後同様の処理を実施してレビカメラ
34の撮像が終了したら、モータ27の駆動回路41に
タイミング発生器48がらモータ駆動信号49を送りテ
ーブル26を元の位置に戻す(第4図のル参照)。同時
に、駆動回路42にも接眼レンズ・全反射ミラー駆動信
号5oをタイミング発生器48から送り、接眼レンズ3
oと全反射ミラー31も元の位置に戻す(第4図のオ参
照)。次にコンバート開始信号55をタイミング発生器
48から、第2フレームメモリ45およびコンバータ4
6に送り(第4図のワ参照)、コンバータ4G上に光切
断線を再生する。これは、光切断線の高さ方向をデータ
量とし、各画素をアドレスとして圧縮符号化して行う。
When the coverage area of the TV camera 32 ends, the TV camera select signal 51 is turned off (see E in FIG. 4).
, the write signal 53 of the first frame memory 44 is also turned off (
4), the drive signal 49 for the motor 27 is also turned off (see 1 in FIG. 4). Next, the eyepiece 30. The timing generator 48 sends an eyepiece/total reflection mirror drive signal 50 to a drive circuit 42 that integrally moves the total reflection mirror 31 and the eyepiece 30.
is moved to a position where the next television camera 33 can take an image (see H in FIG. 4). At this time, the second frame memory 4
5, a write signal 54 is sent from the timing generator 48,
After the image in the first frame memory 44 is transferred to the second frame memory 45 (see FIG. 4), the clear signal 52
from the timing generator 48 to the first frame memory 44
and initializes the first frame memory 44 (see No. 4 in FIG. 4). Thereafter, similar processing is carried out and when the imaging of the review camera 34 is completed, the timing generator 48 sends a motor drive signal 49 to the drive circuit 41 of the motor 27 to return the table 26 to its original position (see 4 in FIG. 4). . At the same time, the ocular lens/total reflection mirror drive signal 5o is sent from the timing generator 48 to the drive circuit 42, and the ocular lens 3
o and the total reflection mirror 31 are also returned to their original positions (see o in Fig. 4). Next, the conversion start signal 55 is sent from the timing generator 48 to the second frame memory 45 and the converter 4.
6 (see wa in FIG. 4), and reproduces the optical cutting line on the converter 4G. This is performed by compressing and encoding the data amount in the height direction of the optical cutting line and using each pixel as an address.

その後、タイミング発生器48より、データ転送指令信
号56をコンバータ46および計算機47に送り、計算
機47上に光切断線信号を移して判定処理を行う(第4
図の力参照)。
Thereafter, the timing generator 48 sends a data transfer command signal 56 to the converter 46 and the computer 47, and transfers the optical cutting line signal onto the computer 47 for determination processing (fourth
(See Figure Power).

上記実施例によれば、レーザビーム走査のためのレーザ
スポット照射口25および反射光撮像のための対物レン
ズ29、接眼レンズ30.全反射ミラー31からなる光
学系を高速、高精度を移動できるテーブル26に取付け
るので光切断線を高速にかつ正確に検出できる。また複
数台のテレビカメラを用い、撮像範囲を分担して行うの
で解像度も極めて高くなる。
According to the above embodiment, the laser spot irradiation port 25 for laser beam scanning, the objective lens 29 for capturing reflected light, and the eyepiece 30 . Since the optical system consisting of the total reflection mirror 31 is attached to the table 26 which can be moved at high speed and with high accuracy, the optical cutting line can be detected quickly and accurately. Furthermore, since multiple television cameras are used to share the imaging range, the resolution is also extremely high.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明に係る形状検出装置は、
高精度でかつ高速に光切断線が得られるという優れた効
果を有する。
As explained above, the shape detection device according to the present invention is
It has the excellent effect of being able to obtain optical cutting lines with high precision and at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の形状検出装置の概略構成を示す図、第2
図は本発明に係る形状検出装置の光学系の概略構成を示
す図、第3図は本発明に係る形状検出装置の制御処理部
の構成を示すブロック図、第4図はその動作を説明する
ためのタイミングチャート図である。 21・・・テーブル、22・・・高密度実装基板、23
・・・フラットパック部品、24・・・リード、25・
・・レーザスポット、26・・・テーブル、27・・・
モータ、 28・・・シャフト、29・・・対物レンズ
、30・・・接眼レンズ、31・・・全反射ミラー、3
2〜34・・・テレビカメラ、41・・・モータ駆動回
路、42・・・接眼レンズと全反射ミラーの駆動回路、
43・・・セレクタ、44・・・第1のフレームメモリ
、45・・・第2のフレームメモリ、46・・・コンバ
ータ、47第1図 /lL 5 第2図 第3図 1 第4図 テニタ蒔民に754号を整56 均
Figure 1 is a diagram showing the schematic configuration of a conventional shape detection device, Figure 2
The figure shows a schematic configuration of the optical system of the shape detection device according to the present invention, FIG. 3 is a block diagram showing the configuration of the control processing section of the shape detection device according to the present invention, and FIG. 4 explains its operation. FIG. 21...Table, 22...High density mounting board, 23
... Flat pack parts, 24 ... Lead, 25.
...Laser spot, 26...Table, 27...
Motor, 28... Shaft, 29... Objective lens, 30... Eyepiece lens, 31... Total reflection mirror, 3
2 to 34... Television camera, 41... Motor drive circuit, 42... Eyepiece lens and total reflection mirror drive circuit,
43... Selector, 44... First frame memory, 45... Second frame memory, 46... Converter, 47 Fig. 1/lL 5 Fig. 2 Fig. 3 Fig. 1 Fig. 4 Tenitor Issue No. 754 to Makimin, 56th grade

Claims (1)

【特許請求の範囲】[Claims] (1)ビーム光を垂直上方より被検査物体に照射する照
射機朝と、該照射4a構より照射さ九被検査物体により
反射された反射光を斜め上方より取込み平行光線にする
反射光取込機構と、該反射光取込機構からの平行光線を
複数台のテレビカメラに取込み焦点を結ばせる平行光線
取込機構と、前記照射機購および平行光線取込機構を制
御し前記複数台のテレビカメラから被検査物体の映像信
号を得る制御処理部とからなる形状検出装置。
(1) An irradiation mechanism that irradiates the object to be inspected with beam light from vertically above, and an irradiation mechanism that captures the reflected light reflected by the object to be inspected from the irradiation mechanism 4a from diagonally above and converts it into parallel light. a parallel ray capturing mechanism that captures and focuses parallel rays from the reflected light capturing mechanism on a plurality of television cameras; and a parallel ray capturing mechanism that controls the irradiation device and the parallel ray capturing mechanism to direct the parallel rays of light to the plurality of television cameras. A shape detection device consisting of a control processing unit that obtains a video signal of an object to be inspected from a camera.
JP22412483A 1983-11-30 1983-11-30 Shape detector Pending JPS60117101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22412483A JPS60117101A (en) 1983-11-30 1983-11-30 Shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22412483A JPS60117101A (en) 1983-11-30 1983-11-30 Shape detector

Publications (1)

Publication Number Publication Date
JPS60117101A true JPS60117101A (en) 1985-06-24

Family

ID=16808915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22412483A Pending JPS60117101A (en) 1983-11-30 1983-11-30 Shape detector

Country Status (1)

Country Link
JP (1) JPS60117101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257799A (en) * 1986-04-30 1987-11-10 株式会社 マミヤ電子 Chip parts mounting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257799A (en) * 1986-04-30 1987-11-10 株式会社 マミヤ電子 Chip parts mounting apparatus

Similar Documents

Publication Publication Date Title
US5774224A (en) Linear-scanning, oblique-viewing optical apparatus
JPH0117523B2 (en)
WO2014199685A1 (en) Image acquisition device and image acquisition device focusing method
US4983827A (en) Linescan apparatus for detecting salient pattern of a product
JPH07335706A (en) Wire height measuring device
US8144968B2 (en) Method and apparatus for scanning substrates
JPS5860593A (en) Method and device for detecting shape
JP3306858B2 (en) 3D shape measuring device
JPH09329422A (en) Height measuring method and device
JP3783813B2 (en) Confocal microscope
JPS63259511A (en) Image memory
JPS60117101A (en) Shape detector
JPH11326233A (en) Apparatus for inspecting material surface
JPH1137723A (en) Height inspection device
JPH05160234A (en) Bonding wire inspecting apparatus
JP3029004B2 (en) Stereo vision camera
JP3290784B2 (en) Crystal defect detection method using confocal optical system
JPH11305140A (en) Confocal microscope
JP3612983B2 (en) Three-dimensional shape measuring apparatus and image reading apparatus
CN108989676A (en) A kind of autofocus and auto focusing method for increasing reflecting element and improving the depth of field
JP3366066B2 (en) Observation depth setting method for crystal defect detection device
JP3366067B2 (en) Crystal defect detection method
JP3029005B2 (en) Stereo vision camera
JPH09250912A (en) Pattern measurement device
JPH09178454A (en) Three-dimensional x-ray inspection device for substrate