JPS60116324A - Eyeball azimuth determining apparatus of ophthalmotonometer - Google Patents
Eyeball azimuth determining apparatus of ophthalmotonometerInfo
- Publication number
- JPS60116324A JPS60116324A JP58224808A JP22480883A JPS60116324A JP S60116324 A JPS60116324 A JP S60116324A JP 58224808 A JP58224808 A JP 58224808A JP 22480883 A JP22480883 A JP 22480883A JP S60116324 A JPS60116324 A JP S60116324A
- Authority
- JP
- Japan
- Prior art keywords
- eyeball
- beams
- light
- reflected
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
a 産業上の利用分野
本発明は眼圧計における眼球方位決定装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to an eyeball orientation determining device in a tonometer.
b 従来の構成とその問題点
眼圧計は空気パルスの圧力による眼球の変形を用いて眼
圧を測定するものであシ、その際眼球方位が前記空気パ
ルスの進行方向と整合しているか否かが、正確な測定に
とって重大な要素となる。そのため従来より眼球方位決
定用の光学系が種々に開発されてきた。しかし、これら
従来の光学系は、いずれも空気パルスのだめの空気流軸
線と、観測光学系とが同軸上におかれていたため、空気
糸及び光学系は互いに自由に動作しようとしても相互の
機械的関係から限度があり、それぞれについての理想的
な設計を行なうことが困難であった。b. Conventional configuration and its problems Tonometers measure intraocular pressure by using the deformation of the eyeball due to the pressure of air pulses, and at this time, it is important to check whether the eyeball direction is aligned with the traveling direction of the air pulses. , a critical factor for accurate measurements. For this reason, various optical systems for determining eyeball orientation have been developed. However, in all of these conventional optical systems, the air flow axis of the air pulse reservoir and the observation optical system are placed on the same axis. There are limitations due to the relationship, and it has been difficult to create an ideal design for each.
また、観測光学系には単一のスペクトル分布た。この協
会、入射光量が一定の設定レベルを上まわることケもっ
て方位が基準方向(範囲)に一致したものと判断するの
で、眼球面の反射率が変化すると検知器への(反射光の
)入射光量は変化し、従って、眼球面反射率の変化が方
位決定精度に影響を与えるという欠点があった。In addition, the observation optical system had a single spectral distribution. This association judges that the direction matches the reference direction (range) when the amount of incident light exceeds a certain set level, so when the reflectance of the eyeball surface changes, the incidence (of reflected light) on the detector changes. There is a drawback that the amount of light changes, and therefore, changes in the ocular surface reflectance affect the orientation determination accuracy.
C発明の目的
本発明は眼球方位決定における以上のような問題点を排
除して、設計上空気系と光学系の機能的競曾の問題ヲ笑
質的になくすとともに、眼球面の反射率が変化しても検
知量が全体として変化しないようにしたことによシ方位
決定精度の向上を図った眼球方位決定装置を提供しよう
とするものである。C.Object of the Invention The present invention eliminates the above-mentioned problems in determining the direction of the eyeball, substantially eliminates the problem of functional competition between the air system and the optical system in design, and improves the reflectance of the eyeball surface. It is an object of the present invention to provide an eyeball orientation determination device that improves the accuracy of orientation determination by ensuring that the detected amount does not change as a whole even if the amount changes.
d 発明の構成
上記の目的を達するにあたり、本発明は互いに波長分布
の異なる二つの光束を発生するだめの二元未発生部と、
前記二光束発生部から出た二つの光来の一万を眼球面の
頂点に、他方を眼球面の曲率中心に集束するように前記
圧縮空気q空気流軸線と異る方向から入射させるととも
に、前記頂点及び曲率中心からそれぞれ再帰反射した二
つの反射光束を各入射光路に折返し導くための一対の入
射及び反射光路部と、前記光路から前記二つの反射光束
を取シ出して各光量を測定するための光電変換素子とを
備え、成るべくなら前記二つの反射光束を前記光路から
前記測光部とは別の方向に取出し、これら二光束を等価
な波面において合成するだめの光束合成部、及び前記光
束合成部における光束合成状態を目視観察するための観
察ステーションを用いることによシ、前記二つの反射光
束の合成を行々い、この合成された光の波長分布を検知
し、各成分の光量が最大となシ、又は所定のレベルを上
まわる点をもって眼球の基準方位を決定できるようにし
た眼圧計の眼球方位決定装置を構成するものである。d.Structure of the Invention In order to achieve the above object, the present invention comprises a binary non-generating portion for generating two light fluxes with different wavelength distributions;
Injecting the compressed air q from a direction different from the air flow axis so that 10,000 of the two light beams emitted from the two light flux generating parts are focused on the apex of the eyeball surface and the other on the center of curvature of the eyeball surface, a pair of incident and reflection optical path sections for returning and guiding the two reflected beams retroreflected from the apex and the center of curvature to respective incident optical paths, and extracting the two reflected beams from the optical path to measure the amount of each light beam. a light beam combining section for extracting the two reflected light beams from the optical path in a direction different from the photometry section and combining these two light beams on an equivalent wavefront; By using an observation station to visually observe the beam combination state in the beam combining section, the two reflected beams are combined, the wavelength distribution of this combined light is detected, and the light intensity of each component is determined. This constitutes an eyeball orientation determination device for a tonometer that can determine the reference orientation of the eyeball at the point where the maximum value or the point where the value exceeds a predetermined level.
e 実施例の説明
以下、図面を参照して本発明の好ましい実施例につき、
詳細に説明する。e Description of Embodiments Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
Explain in detail.
実施例の要部を示す第1図において、(1)は白色光源
、(2)はこの光源11)からの光を通すピンホールを
有するピンホール素子、(3)は視野レンズ、(4)は
ハーフミラ−であり、視野レンズ(3)を介してハーフ
ミラ−(4)に入射したピンホール光の一部は、ここで
被検者の眼球(5)に向かう方向に反射される。ハーフ
ミラ−(4)から眼球(5)に近づく経路には偏角プリ
ズム(6)、ケスタープリズム(7)、及び一対のテレ
メータレンズ(8)、(9)が配置され、偏角プリズム
(6)を介してケスタープリズム(7) iC入射した
反射光は、そのプリズム接合布の両側における分割片(
7a)、(7b)の底面より互いに異った波長分布を有
する光束としてそれぞれテレメータレンズt8)、 (
9)に向かって出射される。従って、ケスクープリズム
(7)のプリズム接合布は反射光束と透過光束とが異っ
た波長分布になるいわゆるダイクロイックミラーを形成
するものテする。テレメータレンズ(8)及び(9)の
後方には、(第2テレメータレンズ(9)のみは補正レ
ンズaO)ヲ介して)第2のハーフミラ−LDが配置さ
れ、その透過側に置かれた一対の対物レンズu21.t
i31が一方の光束を眼球面の頂点Pに、そして他方の
光束を眼球面の曲率中心Oにそれぞれ入射させるように
なっている。In FIG. 1 showing the main parts of the embodiment, (1) is a white light source, (2) is a pinhole element having a pinhole through which light from the light source 11) passes, (3) is a field lens, and (4) is is a half mirror, and part of the pinhole light incident on the half mirror (4) via the field lens (3) is reflected here in the direction toward the eyeball (5) of the subject. A deflection prism (6), a Kester prism (7), and a pair of telemeter lenses (8) and (9) are arranged on the path approaching the eyeball (5) from the half mirror (4), and the deflection prism (6) The reflected light that entered the Kester prism (7) iC through the prism is reflected by the divided pieces (
Telemeter lenses t8) and (
9). Therefore, the prism bonding fabric of the Kesku prism (7) forms a so-called dichroic mirror in which the reflected light beam and the transmitted light beam have different wavelength distributions. A second half mirror LD is arranged behind the telemeter lenses (8) and (9) (only the second telemeter lens (9) is via a correction lens aO), and a pair of mirrors placed on the transmission side of the second half mirror LD are arranged behind the telemeter lenses (8) and (9). objective lens u21. t
i31 makes one light beam incident on the vertex P of the eyeball surface, and the other light beam enters the center of curvature O of the eyeball surface.
なお、対物レンズ11.21. (131と眼球(5)
との間には、二本の入射光軸の中心軸上において圧縮空
気ノズルIが酉装置され、眼球方位はこのノズルからの
空気流軸線と整合するよう調整される。Note that the objective lens 11.21. (131 and eyeballs (5)
A compressed air nozzle I is installed between the two on the central axis of the two incident optical axes, and the eyeball direction is adjusted to align with the air flow axis from this nozzle.
眼球(5)への入射光束が正確に眼球面(角膜)の頂点
P及び曲率中心Oに達した場合、これらの入射光は対物
レンズu21及び(131に向かって再帰反射し、入射
光学系を折返すものである。したがって、この方位決定
装置の原理は光学系においてこれらの再帰反射光を最大
値(又はその付近)として検出しうる眼球方位が眼圧計
の空気流軸線と整合するようにしたものである。When the incident light flux to the eyeball (5) accurately reaches the apex P and the center of curvature O of the eyeball surface (cornea), these incident lights are retroreflected toward the objective lenses u21 and (131), and the incident optical system is Therefore, the principle of this orientation determination device is to ensure that the eyeball orientation in which the optical system can detect these retroreflected lights as the maximum value (or around it) is aligned with the air flow axis of the tonometer. It is something.
さて、光学系に沿って反射し、逆向する二本の光束は目
視観察用として第2のハーフミラ−+tn′f:透過し
、さらにテレメータレンズ(8)、(9)(但し、後者
に達する前に補正レンズ(10)を経て)を通ってケス
タープリズム(7)の各部底面に入射し、等しい波面に
おいて合成されてから、偏角プリズム(6)に入り、こ
れを通って第1のハーフミラ−(4)に達する。ハーフ
ミラ−(4)のさらに前方には焦点板(15)及び接眼
レンズ(I6)が配置され、このハーフミラ−(4)ヲ
も透過した合成光の一部はピンホール(2)の最終像と
して焦点板([9に結像し、測定者はその像の合成状態
を接眼レンズ(161よシ観察することができる。Now, the two light beams reflected along the optical system and going in opposite directions are transmitted through the second half mirror +tn'f for visual observation, and are further transmitted through the telemeter lenses (8) and (9) (however, before reaching the latter pass through a correction lens (10)) and enter the bottom surface of each part of the Kester prism (7), where they are synthesized at equal wavefronts, enter the deflection prism (6), and pass through the first half mirror. (4) is reached. A focusing plate (15) and an eyepiece (I6) are arranged further in front of the half mirror (4), and a part of the combined light that has also passed through the half mirror (4) is reflected as the final image of the pinhole (2). The image is formed on the focus plate ([9], and the measurer can observe the combined state of the image through the eyepiece (161).
第2図及び第3図は、第2のハーフミラ−(1])から
分岐した光電測光系を示すものであり、a7)、(18
1は接眼レンズ、(19)、I20)は光電変換素子で
ある。Figures 2 and 3 show the photoelectric photometry system branched from the second half mirror (1]), a7), (18
1 is an eyepiece lens, (19), I20) is a photoelectric conversion element.
すなわち、ハーフミラ−(111に反射された光はそ拮
ぞれ視野レンズ(12)、(131及び接眼レンズσ7
)、(181を通して光電変換素子(191、(2C〃
に入射し、ここで波長分布を検知される。That is, the light reflected by the half mirror (111) is reflected by the field lens (12), (131) and the eyepiece lens σ7, respectively.
), (181 through the photoelectric conversion element (191, (2C〃
The wavelength distribution is detected here.
本発明の実施例は以上のように構成されたため、目視観
察による粗調整を経た後、光電開先による微調整を実強
することにより、迅速かつ正確な眼球方位の決定を行う
ことができる。Since the embodiment of the present invention is configured as described above, the eyeball orientation can be quickly and accurately determined by performing the fine adjustment using the photoelectric groove after the rough adjustment using visual observation.
第4図は目視観察の態様を示すもので、図のaは例えば
角膜頂点Pに入射した高波長光のピンホール像(211
が照準線と一致し、曲率中心Oに致していないことを示
している。第4図すは視線等の調整の結果1両ピンホー
ル像f211 、 (22+がかなりの程度型なシ(す
なわち、直なシを示す白色部が大きくなシ)、眼球方位
が空気流軸線に近づいて来たことを示しているが、末だ
不十分であり、第4図Cのごとくピンホー/L’ 像(
2B、のが完全に重なって一つの円をなす状態となった
時、この目視観察及び粗調整を終わる。FIG. 4 shows a mode of visual observation, and a in the figure is, for example, a pinhole image (211
coincides with the line of sight and does not coincide with the center of curvature O. Figure 4 shows the result of adjusting the line of sight, etc., to obtain a pinhole image f211, (22+ is fairly shaped (i.e., the white area indicating a straight line is large), and the eyeball direction is aligned with the air flow axis. Although it shows that it is approaching, it is still insufficient and the pinho/L' image (
This visual observation and rough adjustment are completed when the 2B and 2B completely overlap to form one circle.
次に、第2のハーフミラ−(111に反射された角膜頂
点Pからの光は、第1の光電変換素子(19に入射し、
同様にハーフミラ−111]に反射された角膜の曲率中
心Oからの光は第2の光電変換素子(20)に入射して
いるため、異なった波長分布をもつv/2つの光束光量
をこれらの索子(191、1201により測定し、眼球
(5)の視線等を微調整して各光量が最大となシ、又は
所定のレベルを上まわる方位を突きとめ、これをもって
基準方位と決定するものである。Next, the light from the corneal apex P reflected by the second half mirror (111) enters the first photoelectric conversion element (19,
Similarly, since the light from the center of curvature O of the cornea that is reflected by the half mirror 111 is incident on the second photoelectric conversion element (20), these two luminous fluxes with different wavelength distributions are converted into Measurements are made using the probes (191, 1201), the line of sight of the eyeball (5) is finely adjusted, the direction in which each light amount is maximum or exceeds a predetermined level is determined, and this direction is determined as the reference direction. It is.
f 発明の効果
本発明は、以上のとおシ異なった波長分布をもつ二つの
光束の光量を、空気流軸線に関し対称的に傾斜した一対
の入射及び反射光路に沿って無理なく眼球に投射し、か
つ反射させるものであるため、二波長測定を効果的に行
なうことができ、眼球角膜面の反射率の差異や、光源の
光量変化などに影響されることなく正確かつ迅速な眼球
軸の方位決定を可能にするものである。f. Effects of the Invention The present invention allows light amounts of two light fluxes having different wavelength distributions to be projected onto the eyeball without difficulty along a pair of incident and reflected optical paths symmetrically inclined with respect to the airflow axis, Moreover, since it is a reflective device, it is possible to effectively perform dual-wavelength measurement, and it is possible to accurately and quickly determine the orientation of the eyeball axis without being affected by differences in the reflectance of the corneal surface of the eyeball or changes in the light intensity of the light source. This is what makes it possible.
第1図は本発明の実施例における光学系要部を示す線図
、第2図は第1図に示した光学系から分岐した光電測光
部を示す側面線図、第3図は第2図の正面線図、第4図
は第1図に示した光学系の焦点板上において観察される
一対のピンホール像の合成状態を示す略図である。
ti)−−−−一白色光源
(2)−一一−−ピンホール素子
(3)、αη、(181−−一視野レンズ(4)、tt
n−−−ハーフミラ−
(6) −−−−一偏角プリズム
(力−−−−−ケスラープリズム
(8)、(9) −−−テレメータレンズQO) −−
−−一補正しンズ
nz、uai−−一対物レンズ
(141−−−−一圧縮空気しズル
(151−−−−一焦点板
(161−−−−一接眼レンズ
(19)、1201−−一光電変換素子し1l−−−−
−P点(角膜頂点)からの最終像(221−−−−−0
点(角膜曲率中心)からの最終像
特許出願人 賦会社柳本製作所
代理人 新実 他部
(外1名)Fig. 1 is a line diagram showing the main parts of the optical system in an embodiment of the present invention, Fig. 2 is a side view showing a photoelectric photometry section branched from the optical system shown in Fig. 1, and Fig. FIG. 4 is a schematic diagram showing a combined state of a pair of pinhole images observed on the focusing plate of the optical system shown in FIG. ti)----Single white light source (2)--11--Pinhole element (3), αη, (181--Single field of view lens (4), tt
n---Half mirror (6)---One declension prism (force---Kessler prism (8), (9)---Telemeter lens QO)---
--One correction lens nz, uai---One objective lens (141---One compressed air lens (151---One focal plate (161---One eyepiece (19), 1201--- One photoelectric conversion element 1l---
-Final image from point P (corneal apex) (221-----0
Final image from a point (center of corneal curvature) Patent applicant Agent for the subsidiary Yanagimoto Seisakusho Niimi Other departments (1 other person)
Claims (5)
眼圧の測定を行う眼圧計において、互いにの光束の一方
を眼球面の頂点に、他万全眼球面記頂点及び曲率中心か
らそれぞれ再帰反射した二つの反射光束を各入射光路に
折返し導くための一対の入射及び反射光路部と、前記光
路から前記二つの反射光束を取シ出して各光量を測定す
るための光電変換素子をそれぞれ含む一対の測光部とを
備えたことにより、眼球方位を調整して前記二つの反射
光束の各光量が最大となシ、又は所定レベルを上まわる
点をもって眼球の眼圧測定基準方位を決定できるように
したことを特徴とする眼圧計の眼球方位決定装置。(1) In a tonometer that measures intraocular pressure using the deformation of the eyeball caused by the pressure of compressed air pulses, one of each light beam is retroreflected from the apex of the ocular surface, and the other from the apex and center of curvature of the ocular surface. a pair of incident and reflective optical path sections for returning and guiding the two reflected light beams to respective incident optical paths; and a pair of photoelectric conversion elements for extracting the two reflected light beams from the optical paths and measuring the respective amounts of light. By being equipped with a photometering section, it is possible to determine the reference direction for measuring the intraocular pressure of the eyeball by adjusting the direction of the eyeball and determining the point at which the light intensity of each of the two reflected light beams reaches a maximum or exceeds a predetermined level. A tonometer eyeball orientation determining device characterized by:
前記空気流軸線に関し実質上方いに対称配置された光軸
を通るようにしたことを特徴とする特許請求の範囲第(
1)項記載の装置。(2) The two light beams in the incident and reflected optical path sections pass through optical axes that are substantially symmetrically arranged upward with respect to the air flow axis line.
The device described in section 1).
て眼圧の測定を行う眼圧計において、互いに波長分布の
異なる二つの光束を発生するための二光束発生部と、前
記二光束発生部から出た二つの九未の一方全眼球面の頂
点に、他方全眼球面の曲率中心に集來するように前記圧
縮空気の空気流軸線と異る方向から入射させるとともに
、前記頂点及び曲率中心からそれぞれ再帰反射した二つ
の反射光束を各入射光路に折返し導くだめの一対の入射
及び反射光路部と、前記光路から前記二つの反射光束を
取シ出して各光量を測定するための光電変換素子をそれ
ぞれ含む一対の測光部と、前記光路から前記二つの反射
光束を前記測光部とは別の方向に取出しこれら二光束を
等価な波面において合成するための光束合成部、及び前
記光束合成部における光束合成状態を目視観察するため
の観察ステーションを備えたことにより、前記二つの反
射光束の合成を行ない、この合成された光の波長分布を
検知し、各成分の光量が最大となり、又は所定レベルを
上まわる点をもって眼球の基準方位を決定できるように
したことを特徴とする眼圧計の眼球方位決定装置。(3) A tonometer that measures intraocular pressure using the deformation of the eyeball due to the pressure of compressed air parnu, which includes a two-beam generation section for generating two light beams with different wavelength distributions, and from the two-beam generation section. The compressed air is made to enter the apex of one of the two ocular surfaces, from a direction different from the air flow axis, so that it converges on the center of curvature of the other ocular surface, and from the apex and the center of curvature. a pair of incident and reflective optical path sections for guiding the two retroreflected beams back to each incident optical path; and a photoelectric conversion element for extracting the two reflected beams from the optical path and measuring the amount of each light beam. a pair of photometric sections, each of which includes a pair of photometric sections, a beam combining section for extracting the two reflected beams from the optical path in a direction different from the photometry section and combining these two beams on an equivalent wavefront, and a beam in the beam combining section. By providing an observation station for visually observing the combined state, the two reflected light beams are combined, the wavelength distribution of this combined light is detected, and the light intensity of each component is maximized or reaches a predetermined level. 1. An eyeball orientation determining device for a tonometer, characterized in that the reference orientation of the eyeball can be determined by the point above.
記空気流@線に関し実質上方いに対称配置された光軸を
通るようにしたことを特徴とする特許請求の範囲第(3
)項記載の装置。(4) The two light beams in the incident and reflected optical path sections pass through optical axes that are substantially symmetrically arranged above with respect to the air flow line.
).
なる前記二つの光束に分割するための前記二元未発生部
における光束分割部分を光学的に逆向使用して得られた
ものであることを特徴とする特許請求の範囲第(3)項
又は第(4)項記載の装置。(5) The beam combining section is obtained by optically reversing the use of the beam splitting section in the binary non-generating section for splitting a single beam into the two beams having different wavelength distributions. Device according to claim 3 or 4, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224808A JPS60116324A (en) | 1983-11-28 | 1983-11-28 | Eyeball azimuth determining apparatus of ophthalmotonometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224808A JPS60116324A (en) | 1983-11-28 | 1983-11-28 | Eyeball azimuth determining apparatus of ophthalmotonometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60116324A true JPS60116324A (en) | 1985-06-22 |
Family
ID=16819525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58224808A Pending JPS60116324A (en) | 1983-11-28 | 1983-11-28 | Eyeball azimuth determining apparatus of ophthalmotonometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60116324A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01265938A (en) * | 1988-04-15 | 1989-10-24 | Topcon Corp | Contactless ophthalmotonometer |
-
1983
- 1983-11-28 JP JP58224808A patent/JPS60116324A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01265938A (en) * | 1988-04-15 | 1989-10-24 | Topcon Corp | Contactless ophthalmotonometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4173398A (en) | Optical system for objective eye-examination | |
US4944303A (en) | Noncontact type tonometer | |
JP4167979B2 (en) | Device for measuring ocular organ aberrations | |
US6131574A (en) | Ophthalmological apparatus | |
JPH0359689B2 (en) | ||
JPH10276985A (en) | Inspection instrument for optical data of eyeball | |
JPH02264632A (en) | Sight line detector | |
JP3576656B2 (en) | Alignment detection device for ophthalmic instruments | |
JPS60116324A (en) | Eyeball azimuth determining apparatus of ophthalmotonometer | |
JPH01284229A (en) | Non-contact type ophthalmotonometer | |
JP2945092B2 (en) | Eye refractometer | |
JP2938488B2 (en) | Surgical microscope | |
JP2892007B2 (en) | Non-contact tonometer | |
US5249004A (en) | Microscope for an operation | |
JP3328624B2 (en) | Optometry device | |
JPS60158832A (en) | Sight apparatus of tonometer | |
JP2736651B2 (en) | Fundus camera | |
JPH02220626A (en) | Apparatus for measuring shape of cornea | |
JPH03149026A (en) | Eye refractometer | |
JPH04269937A (en) | Ophthalmologic apparatus | |
JPH0533735B2 (en) | ||
JPH03107909A (en) | Optical device provided with line of sight detector | |
JPH0337929B2 (en) | ||
JP3046600B2 (en) | Ophthalmic equipment | |
JP2951991B2 (en) | Eye refractometer |