JPS60115174A - Method of preparing solution for redox-flow battery - Google Patents

Method of preparing solution for redox-flow battery

Info

Publication number
JPS60115174A
JPS60115174A JP58221738A JP22173883A JPS60115174A JP S60115174 A JPS60115174 A JP S60115174A JP 58221738 A JP58221738 A JP 58221738A JP 22173883 A JP22173883 A JP 22173883A JP S60115174 A JPS60115174 A JP S60115174A
Authority
JP
Japan
Prior art keywords
solution
chromium
iron
hydrochloric acid
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58221738A
Other languages
Japanese (ja)
Inventor
Zenji Kamio
神尾 善二
Akira Kidoguchi
晃 木戸口
Yukio Nakamura
幸夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP58221738A priority Critical patent/JPS60115174A/en
Publication of JPS60115174A publication Critical patent/JPS60115174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable an active material solution which can be favorably used for a redox-flow battery to be easily prepared by dissolving a raw material containing chromium and iron, such as a chromium ore or chromite, in hydrochloric acid before removing mainly heavy metals contained in the solution by depositing them on the electrode of a cathodic chamber through electrodeposition or adsorption. CONSTITUTION:After a raw material containing chromium and iron is crushed and dissolved into hydrochloric acid, the residue is filtered off from the solution. When a chromium ore or a similar material which does not easily dissolve in hydrochloric acid is used as the raw material, it is preferable that nitric acid be added as necessary in addition to performing heating during the dissolution. The thus prepared hydrochloric acid solution of chromium and iron is then introduced into the cathodic chamber of an electrolyzer so as to remove mainly heavy metals contained in the solution by depositing them on the electrode of the cathodic chamber through electrodeposition or adsorption. Through performing this process, heavy metals and nitrate ions contained in the solution are removed, thereby enabling current efficiency to be greatly increased.

Description

【発明の詳細な説明】 光肌■分立 本発明はレドックス・フロー型電池の溶液調製方法に関
し、さらに詳しくは鉄およびクロムのハロゲン化物を電
池活物質として含む溶液の調製方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing a solution for a redox flow battery, and more particularly to a method for preparing a solution containing iron and chromium halides as battery active materials.

従」q1術j11町 電池貯蔵用電池の代表例としてのしl” 7クス・フロ
ー型電池においては、第1図に示すよ・)に、充電状態
では例えば2価のクロムイオン(Cr”)の水溶液と3
価の鉄イオン(Fe3″″)の水7′8液とがそれぞれ
のタンク1および4に貯えられ、これを流通型電解槽l
Oに流すと、正極3ではFe31が電子を1個受り取っ
て2価のFe’+となり、負極2ではCr’+が電子を
1個失い3価のcr3+となる。負極2と正極3で授受
された電子は、外部回路を通って仕事をし、電力を放出
する。
As a typical example of a storage battery, in a flow type battery, for example, divalent chromium ions (Cr) are present in the charged state, as shown in Figure 1. aqueous solution of and 3
Water 7'8 liquid containing valent iron ions (Fe3'''') is stored in each tank 1 and 4, and this is transferred to a flow-through electrolytic cell l.
When flowing into O, Fe31 receives one electron at the positive electrode 3 and becomes bivalent Fe'+, and at the negative electrode 2, Cr'+ loses one electron and becomes trivalent cr3+. Electrons exchanged between the negative electrode 2 and the positive electrode 3 pass through an external circuit, perform work, and emit power.

レドックス・フロー型電池において負極および正極にお
りる充放電反応は次式によって表わされる。
The charging and discharging reactions occurring at the negative and positive electrodes in a redox flow battery are expressed by the following equation.

負極 正極 充電反応 Cr (III)→Cr (II) Fe 
(Iロー・I”f!(III)放電反応 Cr(旧−C
r (Ill) Fe (Ill)−・Fc (’II
)この電池を動作するに際して調製ずべき?8液は、C
r (II)とFe(I[[)とからなる充電状態の液
またはCr(III)とFe (II)とからなる放電
状態の液であるが、一般に極めて酸化を受げやずいCr
、(II)を調製するのは困難であるため、Cr(II
I)とFe (II)を含む放電状態の液が製造されて
いる。
Negative electrode Positive electrode charging reaction Cr (III) → Cr (II) Fe
(Ilow・I”f! (III) Discharge reaction Cr (old-C
r (Ill) Fe (Ill)-・Fc ('II
) What should I prepare when operating this battery? 8 liquid is C
r (II) and Fe(I [
, (II) is difficult to prepare, Cr(II
A liquid in a discharge state containing Fe (II) and Fe (II) has been produced.

本電池の溶液は、鉄、クロムの溶解度、酸の価格、充放
電の反応の特性等の因子から塩酸酸性の塩化物水溶液で
あることが望ましく、このような溶液を安価な原料、例
えばクロム鉱石などから調製することが要望されている
The solution for this battery is preferably an aqueous chloride solution with hydrochloric acid, considering factors such as the solubility of iron and chromium, the price of acid, and the characteristics of charge/discharge reactions. There is a demand for preparation from such sources.

従来、クロム鉱石などからクロム(III)の溶液を得
る方法としては、原料を例えはアルカリ性のもとに酸化
溶解し、クロム酸溶液としたのち、還元してクロム(i
ll)?8液としているが、この方法では、アルカリ性
とするために薬剤を添加する必要があり、また酸化およ
び還元の操作が煩雑であるという欠点がある。またクロ
ム鉱石を塩酸に溶解させる方法も試みられたが、この方
法は、りし1ム鉱石の塩酸の溶解度が低く、溶l)¥!
濃度が小さいことおよびクロム鉱石中の不純物が電流効
率を低下することなどの欠点がある。
Conventionally, the method of obtaining a chromium (III) solution from chromium ore, etc. is to oxidize and dissolve the raw material in an alkaline environment to obtain a chromic acid solution, and then reduce it to chromium (III).
ll)? However, this method has the disadvantage that it is necessary to add a chemical to make it alkaline, and the oxidation and reduction operations are complicated. A method of dissolving chromium ore in hydrochloric acid was also attempted, but this method was difficult because the solubility of chromium ore in hydrochloric acid was low.
Disadvantages include low concentration and impurities in the chromium ore that reduce current efficiency.

光1!fi昨 本発明の目的は、クロム鉱石を含むりに1人および鉄の
原料からレドックス・フロー型電池に好適に用いられる
活物質溶液を容易に調製する力性を提供することにある
Light 1! An object of the present invention is to provide the ability to easily prepare an active material solution suitably used in a redox flow battery from a raw material of iron ore containing chromium ore.

発皿夏要丘 本発明は、クロム鉱、クロム鉄鉱などのりII J。Hassara Natsuyooka The present invention is directed to adhesives such as chromite and chromite.

および鉄を含む原料を塩化水素を含む酸に溶解し、溶解
後の液を電解槽の陰極室に導入し、該/8/&中の主に
重金属類を該陰極室の電極に電着除去することを特徴と
する。
and raw materials containing iron are dissolved in acid containing hydrogen chloride, the dissolved solution is introduced into the cathode chamber of the electrolytic cell, and mainly heavy metals in the /8/& are removed by electrodeposition on the electrodes of the cathode chamber. It is characterized by

本発明に用いるクロムおよび鉄を含む原料は、クロム鉱
石、クロム鉄鉱の外に一酸化クロム、酸化鉄、塩化鉄、
フェロクロム、金属鉄および金属クロムなどを挙げるこ
とができる。
Raw materials containing chromium and iron used in the present invention include chromium ore, chromite, chromium monoxide, iron oxide, iron chloride,
Mention may be made of ferrochrome, metallic iron, metallic chromium, and the like.

これらの原料から本電池の熔〆1kを調製するには、ま
ず原料を粉砕して塩酸に熔解し、残渣を瀘別′Jればよ
いが、クロム鉱石などを原料とする場合には塩酸には容
易に溶解しないので、溶解時に加熱するとともに、必要
に応して硝酸を添加ずろことが夛了ましい。このように
し゛で鉄、クロムの濃度が合δt l〜2モル/7!以
上の溶液を容易に得ることができる。
To prepare 1k of this battery from these raw materials, first crush the raw materials, dissolve them in hydrochloric acid, and filter the residue. However, when using chromium ore as raw materials, dissolve them in hydrochloric acid. Since it does not dissolve easily, it is advisable to heat it during dissolution and to add nitric acid if necessary. In this way, the total concentration of iron and chromium is δtl~2 mol/7! The above solution can be easily obtained.

上記溶解工程において、原料は、溶解0i1に希薄な酸
により洗浄することが好ましい。この希薄な酸による洗
浄により、鉄、クロムよりも熔解しゃすい不純物を溶出
除去することができ、クロム鉱石の場合はマグネシウム
なとかごの操作によって除去される。上記の希薄な酸の
濃度は2規定以下であることが、クロム、鉄の溶出を抑
える意味から好ましい。この希薄な酸による洗浄および
水洗を行ったのち、前述の塩化水素を含む酸による熔解
を行うことにより、鉄、クロム以外の不純物が予め除去
され、これによって1#られる溶液中の鉄、クロムの溶
解度を高めることができる。
In the above-mentioned dissolution step, it is preferable that the raw material is washed with a dilute acid to dissolve it. By washing with this dilute acid, impurities that are more soluble than iron and chromium can be eluted and removed, and in the case of chromium ore, magnesium ore is removed by cage operation. The concentration of the above-mentioned dilute acid is preferably 2N or less in order to suppress the elution of chromium and iron. After washing with this dilute acid and washing with water, impurities other than iron and chromium are removed in advance by melting with the aforementioned acid containing hydrogen chloride, thereby removing iron and chromium from the solution. Solubility can be increased.

本発明の溶解工程において、塩化水素含a液に硝酸を添
加した場合は、クロム鉱やフェロクロムなどに対して極
めて高い熔解性を発揮することができ、その結果、さら
に高濃度の鉄、クロムの塩酸溶液を得ることかできる。
In the dissolving process of the present invention, when nitric acid is added to the hydrogen chloride-containing aqueous solution, extremely high solubility can be exhibited for chromite, ferrochrome, etc., and as a result, even higher concentrations of iron and chromium can be dissolved. A hydrochloric acid solution can also be obtained.

硝酸は0.05規定以上含有させることが好ましい。It is preferable to contain nitric acid in an amount of 0.05N or more.

本発明においては、上述のようにして得られたクロム、
鉄の塩酸溶液をさらに電解槽の陰極室に導入し、該溶液
中の主に重金属を該陰極室の電極に電着させて除去する
。この工程を行うことにより、溶液中の重金属および硝
酸イオンを除去し、電流効率を著しく高めることができ
る。ずなわら、一般にレドックス・フロー型電池におい
て溶?(l l’にこれらの不純物が存在すると、電池
性能においては電流効率の低下として現われる。ずなわ
ら、例えば溶液中に重金属類が存在すると、電池の充放
電時に電池の電極にこれらが重着し、負極の水素過重圧
が低下し、また水素ガスの発生とい・う副反応を起こし
、電池の充放電時のクーl′1ン効率を低下させる。ま
た硝酸イオンはCr(II)と反応し、これをCr(m
)に酸化させるため、これも電池の充放電クーロン効率
を下げるごとになる。
In the present invention, chromium obtained as described above,
A hydrochloric acid solution of iron is further introduced into the cathode chamber of the electrolytic cell, and mainly heavy metals in the solution are removed by electrodeposition on the electrodes of the cathode chamber. By performing this step, heavy metals and nitrate ions in the solution can be removed and current efficiency can be significantly increased. However, is it common for redox flow batteries to melt? (The presence of these impurities in l' will appear as a decrease in current efficiency in battery performance. For example, if heavy metals are present in the solution, these will adhere to the battery electrodes during charging and discharging of the battery.) However, the hydrogen overpressure at the negative electrode decreases, and a side reaction called hydrogen gas generation occurs, reducing the cooling efficiency during battery charging and discharging.In addition, nitrate ions react with Cr(II). and convert this into Cr(m
), this also reduces the charge/discharge coulombic efficiency of the battery.

これらを解決するため、本発明においてはクロノ1、鉄
を含む原料を熔解した電解溶液を瀘過したのら、これを
電解槽の陰極室に導入する。この操作によリ、重金属類
は陰極に電着または不溶解物とじて析出し、また硝酸イ
オンはクロムを触媒として電解、除去される。さらに、
これらの電解プロセスによって溶液中のFe(III)
イオンをFe (II)イオンに還元され、溶液組成を
Cr(Ill)とFe(■)のイオン水溶液として前述
の放電状態の溶液を調製することができる。
In order to solve these problems, in the present invention, after filtering an electrolyte solution in which a raw material containing iron is dissolved, the solution is introduced into the cathode chamber of an electrolytic cell. By this operation, heavy metals are deposited on the cathode or as insoluble matter, and nitrate ions are electrolyzed and removed using chromium as a catalyst. moreover,
Fe(III) in solution by these electrolytic processes
A solution in the above-mentioned discharge state can be prepared by reducing the ions to Fe (II) ions and making the solution composition an ion aqueous solution of Cr (Ill) and Fe (■).

上記電解還元プロセスにおける自効な陰極電位は飽和U
水電極基準で+〇、3Vより卑であり、好ましくは+〇
、 I Vより卑である。また熔解時に硝酸を添加した
場合は一〇、 4 Vより卑、好ましくは−0,55V
より卑である。
The self-effective cathode potential in the above electrolytic reduction process is saturated U
Based on the water electrode standard, it is more base than +0, 3V, preferably more base than +0, IV. If nitric acid is added during melting, the voltage will be less than 10.4 V, preferably -0.55 V.
It's more base.

本発明による溶液の調製法は、従来法、ずなわらクロム
鉱石を粉砕、酸化溶解してクロム酸とし、これを還元し
て酸化クロムにする方法などと比べて、(1)りl」ム
鉱、クロム鉄鉱などの安価な原料を用いるので溶液調製
コス1!を著しく低減することができる、(2)不純物
除去を行う電解プロセスを用いることにより、電池の充
放電クーロン効率を向上させることができる、(3)電
池の内部抵抗を高める不純物が除去されるため、充放電
電圧効率を向上させることができる、(4)生産工程が
容易になり、溶液の品質管理も行いやずくなる。
The solution preparation method according to the present invention has the following advantages compared to the conventional method, which involves crushing Zunawara chromium ore, oxidizing and dissolving it to produce chromic acid, and reducing this to chromium oxide. Since inexpensive raw materials such as ore and chromite are used, the solution preparation cost is 1! (2) By using an electrolytic process that removes impurities, the coulombic efficiency of charging and discharging batteries can be improved. (3) Impurities that increase the internal resistance of batteries are removed. (4) The production process becomes easier and the quality control of the solution becomes easier.

以下、本発明を実施例により具体的に説明−Jる。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 クロム鉱石を12規定塩酸に加温溶解して、残渣を濾別
した。この濾液の鉄濃度をポーラログラフ法で測定した
ところ、0.5−1モル/p、クロム濃度は0.87モ
ル/I!であった。液中の塩酸濃度が4規定になるよう
に計算量の水を加えたのち、この液を陰極をカーボンフ
ェルトとした電解槽の陰極室に流通させ、電流密度40
 m A /cJにて電解還元を行った。このときの陰
極の電極電位は飽和甘木電極基準で+〇、 05 Vで
あった。電解後の液を電極面積IQcnlの小型の液流
通型車電池の溶液として使用した。この電池の電解槽部
の構造は集電板としてフェノール樹脂結着の炭素板、l
夜fIc通型電極としてカーボンクロス、隔膜として陽
イオン交換膜を使用し、正、負極は同構造とした。
Example 1 Chromium ore was dissolved in 12N hydrochloric acid while heating, and the residue was filtered. When the iron concentration of this filtrate was measured by polarographic method, it was 0.5-1 mol/p, and the chromium concentration was 0.87 mol/I! Met. After adding a calculated amount of water so that the concentration of hydrochloric acid in the solution was 4N, this solution was passed through the cathode chamber of an electrolytic cell with a carbon felt cathode, and the current density was 40N.
Electrolytic reduction was performed at mA/cJ. The electrode potential of the cathode at this time was +0.05 V based on the saturated Amagi electrode. The solution after electrolysis was used as a solution for a small liquid flow type car battery with an electrode area of IQcnl. The structure of the electrolytic cell section of this battery consists of a carbon plate bonded with phenol resin as a current collector plate, and l
Carbon cloth was used as the night fIc pass-through electrode, a cation exchange membrane was used as the diaphragm, and the positive and negative electrodes had the same structure.

温度40℃、電流密度40 m A / clにおける
充放電実験の結果、充放電クーロン効率(以下、ηCと
記す)は97%、充放電電圧効率(以下、ηVと記す)
は82%であった。
As a result of a charge/discharge experiment at a temperature of 40°C and a current density of 40 mA/cl, the charge/discharge coulomb efficiency (hereinafter referred to as ηC) was 97% and the charge/discharge voltage efficiency (hereinafter referred to as ηV).
was 82%.

比較例1 実施例1において熔解、濾別、希釈した溶液に、還元剤
とし゛ζアスコルヒン酸を鉄(Ill)の当量分だけ添
加した。アスコルビン酸は、鉄(l[I)をすみやかに
鉄(n)に還元するとともに、過剰のアスコルビン酸や
その分解生成物は本電池の充放電反応に影響を与えない
ことが確認されている。この液を実施例■の電池システ
ムに使用し、実施例1と同条件で充放電実験を行ったと
ころ、ηCは83%、ηVは79%であった。
Comparative Example 1 To the solution melted, filtered, and diluted in Example 1, ζascorhinic acid was added as a reducing agent in an amount equivalent to iron (Ill). It has been confirmed that ascorbic acid quickly reduces iron (l[I) to iron (n), and that excess ascorbic acid and its decomposition products do not affect the charging and discharging reactions of the battery. When this liquid was used in the battery system of Example (2) and a charge/discharge experiment was conducted under the same conditions as in Example 1, ηC was 83% and ηV was 79%.

実施例2 実施例1のクロム鉱石の代わりにフエし1クロムを1目
い、実施1列lと1司条イ牛でン容ン夜をδ周製した。
Example 2 In place of the chromium ore in Example 1, 1 chromium was used, and 1 chromium was used to produce 1 chromium in 1 column and 1 strip.

ン容解、濾別後の溶液中の鉄濃度は0.98モル/l、
クロム濃度は0.89モル/lであった。塩酸濃度が4
規定になるように計算量の水を加え、電解還元した溶液
を実施例1の電池システムに用い、充放電実験を行った
ところ、ηCは97%、ηVは83%であった。
The iron concentration in the solution after dissolution and filtration was 0.98 mol/l,
The chromium concentration was 0.89 mol/l. Hydrochloric acid concentration is 4
When a charging/discharging experiment was conducted using the electrolytically reduced solution in which a calculated amount of water was added to the battery system according to Example 1, ηC was 97% and ηV was 83%.

実施例3 クロム鉱石を粉砕後、■規定硫酸で151;値、水6し
し、塩酸を用いて実施例1と同条件で溶解、濾別した。
Example 3 After pulverizing chromium ore, it was dissolved in normal sulfuric acid (151;

この液中の鉄濃度は0.67モル/l、りLlム濃度ば
1.05モル/lであった。実施例1の方法に従って希
釈、電解後、同し電池システムにて充放電実験を行った
ところ、ηCは96%、ηVは86%であった。
The iron concentration in this liquid was 0.67 mol/l, and the iron concentration was 1.05 mol/l. After dilution and electrolysis according to the method of Example 1, a charge/discharge experiment was conducted using the same battery system, and ηC was 96% and ηV was 86%.

実施例4 粉砕クロム鉱石を実施例3と同様に1規定の硫酸で洗浄
し、水洗したのち、濃塩酸、濃硝酸容量比20対1の酸
に加温、溶解させた。残渣9F、、別後の液中の鉄濃度
は1.11モル/β、り1:1ムhマ度は1.52モル
/eであった。この液を4LJJ定塩酸濃度に希釈後、
陰極電位が飽和l」永電極基1lliで−0゜6■より
卑である以外は実施例1と同し条件で電解還元し、次い
で同じ電池システムで充放t・h試験を行ったところ、
ηCは98%、ηVは90%であった・
Example 4 Pulverized chromium ore was washed with 1N sulfuric acid and water in the same manner as in Example 3, and then heated and dissolved in an acid having a volume ratio of concentrated hydrochloric acid to concentrated nitric acid of 20:1. The iron concentration in the solution after separation of the residue 9F was 1.11 mol/β, and the 1:1 molar ratio was 1.52 mol/e. After diluting this solution to 4LJJ constant hydrochloric acid concentration,
Electrolytic reduction was carried out under the same conditions as in Example 1, except that the cathode potential was less saturated than -0°6 at a permanent electrode base of 1 1, and then a charging/discharging t/h test was conducted using the same battery system.
ηC was 98% and ηV was 90%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いるレド・ノクス・フロー型電池
システムの構成を示す概念図である。 1.4・・・タンク、2・・・負極、3・・・正極、5
.6・・・ポンプ、10・・・流通型霜解槽。 代理人 弁理士 川 北 武 長 第1図 手続補正書 昭和59年 3月31日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年 特 許 願 第221738号2、発明の
名称 レドックス・フロー型電池の溶液調製方法 3、補正をする者 4、代理人 〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号6
、1ili正の対象 明細書の特許請求の範囲の欄およ
び明細書の発明の詳細な説明の欄。 (1)明細書の特許請求の範囲を別紙のとおり改める。 (2)明細書第2頁第4行の「電池貯蔵用」を「電力貯
蔵用1に改める。 (3)明細書第2頁第5行の「フロー型電池」を「フロ
ー型二次電池Jに改める。 (4)明細書第2頁第4行の「フロー型電池」をrフロ
ー型二次電池」に改める。 (5)明細書第3頁第7行の「クロムの溶解度」を「ク
ロムの酸に対する溶解度」と改める。 (6)明細書第3頁第18行〜第4頁第2行の「クロム
鉱石を塩酸に溶解・・・・・・などの欠点がある。 」を下記の通り改める。 「クロム鉱石を直接塩酸に溶かし残渣を濾別する方法は
好ましいものであるが、これには2つの問題がある。ま
ず第一にクロム鉱石などは塩酸には容易に熔解せず、何
らかの補助手段を必要とする。 第2の問題はクロム鉱石中から溶出した不純物が電流効
率を低下することである。J シし く8)明細書第4頁第5行「フロー型電池」を「フロー
型二次電池」に改める。 (9)明細書第4頁第12行の「電着除去」を「電着ま
たは吸着除去」に改める。 (lO)明細書第6頁第1行の1さらに高濃度の鉄、」
を削る。 (11)明細書第6頁第2行の1酸溶液を得る」を「酸
溶液を比較的迅速に得る」に改める。 (12)明細書第6頁第6行の「重金属」を「重金属類
」に改める。 (13)明細書第6頁第7行の「電着させて」をr電着
ないしは吸着させて」に改める。 (14)明細書第6頁第8行の「重金属」を1重金属類
」に改める。 (15)明細書第6頁第10行の「フロー型電池」を「
フロー型二次電池Jに改める。 (16)明細書第6頁第14行の「電極」を「電池」に
改める。 (17)明細書第7頁第3行の1重金属類」を「重金属
類など」に改める。 (18)明細書第7頁第3行の「電着」を「電着、吸着
Jに改める。 (19)明細書第7頁第6行の「イオンを」を「イオン
は」に改める。 以上 特許請求の範囲 (1)クロム鉱、クロム鉄鉱などのクロムおよび鉄を含
む原料を塩化水素を含む酸に熔解し、溶解後の液を電解
槽の陰極室に導入し、該溶液中の主に重金属類を該陰極
室の電極に電着を友並致等除去することを特徴とするレ
ドックス・フロー型電池の溶液調製方法。 (2、特許請求の範囲第1項において、前記酸−に。 本ゑ溶解を加熱および74まJJ走硝酸の添加下に行な
うことを特徴とするレドックス・フロー型電池の溶液調
製方法。
FIG. 1 is a conceptual diagram showing the configuration of a Redo Nox flow type battery system used in the present invention. 1.4...Tank, 2...Negative electrode, 3...Positive electrode, 5
.. 6... Pump, 10... Flow type defrosting tank. Agent: Takenaga Kawakita Diagram 1 Procedural Amendments March 31, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, Description of the case 1981 Patent Application No. 221738 2, Name of the invention: Redox. Flow battery solution preparation method 3, person making the amendment 4, agent 103 Address 11-8-6, Kayaba-cho, Nihonbashi, Chuo-ku, Tokyo
, 1ili Positive Object Claims section of the specification and Detailed Description of the Invention section of the specification. (1) The scope of claims in the specification shall be amended as shown in the attached sheet. (2) “Battery storage” on page 2, line 4 of the specification is changed to “power storage 1.” (3) “Flow type battery” on page 2, line 5 of the specification is changed to “flow type secondary battery.” (4) "Flow type battery" on page 2, line 4 of the specification is changed to "r flow type secondary battery." (5) "Solubility of chromium" on page 3, line 7 of the specification has been changed to "solubility of chromium in acid." (6) From page 3, line 18 to page 4, line 2 of the specification, ``There are drawbacks such as dissolving chromium ore in hydrochloric acid'' has been amended as follows. ``Although it is preferable to directly dissolve chromium ore in hydrochloric acid and filter out the residue, there are two problems with this method.Firstly, chromium ore does not dissolve easily in hydrochloric acid, and some auxiliary measures must be taken. The second problem is that impurities eluted from chromium ore reduce current efficiency. Changed to "Next battery". (9) "Removal of electrodeposition" on page 4, line 12 of the specification has been changed to "removal by electrodeposition or adsorption." (lO) Specification page 6, line 1, 1. Even higher concentration of iron.”
Sharpen. (11) "Obtain an acid solution" on page 6, line 2 of the specification is changed to "Obtain an acid solution relatively quickly." (12) "Heavy metals" on page 6, line 6 of the specification will be changed to "heavy metals." (13) On page 6, line 7 of the specification, ``electrodeposit'' should be changed to ``electrodeposit or adsorption''. (14) "Heavy metals" on page 6, line 8 of the specification has been changed to "1 heavy metals." (15) "Flow type battery" on page 6, line 10 of the specification is replaced with "
Changed to flow type secondary battery J. (16) "Electrode" on page 6, line 14 of the specification has been changed to "battery." (17) On page 7, line 3 of the specification, 1. “Heavy metals” will be changed to “heavy metals, etc.” (18) "Electrodeposition" on page 7, line 3 of the specification is changed to "electrodeposition, adsorption J." (19) "Ion wo" on page 7, line 6 of the specification is changed to "ion wa." Claims (1) Raw materials containing chromium and iron such as chromite and chromite are dissolved in an acid containing hydrogen chloride, and the dissolved solution is introduced into the cathode chamber of an electrolytic cell, 1. A method for preparing a solution for a redox flow battery, which method comprises removing heavy metals by removing electrodeposition from the electrodes of the cathode chamber. (2. A method for preparing a solution for a redox flow battery according to claim 1, characterized in that the dissolution is carried out under heating and addition of JJ nitric acid.

Claims (1)

【特許請求の範囲】[Claims] (1)クロム鉱、クロム鉄鉱などのクロムおよび鉄を含
む原料を塩化水素を含む酸に溶解し、溶解後の液を電解
槽の陰極室に導入し、該溶液中の主に重金属類を該陰極
室の電極に電着除去することを特徴とするレドックス・
フロー型電池の溶液調製方法。 (2、特許請求の範囲第1項において、前記酸の熔解を
加熱および硝酸の添加];に行なうことを特徴とするレ
ドックス・フロー型電池の溶液調製方法。
(1) Raw materials containing chromium and iron such as chromite and chromite are dissolved in an acid containing hydrogen chloride, and the dissolved solution is introduced into the cathode chamber of an electrolytic cell to remove mainly heavy metals from the solution. A redox method characterized by removing electrodeposition from the electrodes in the cathode chamber.
Solution preparation method for flow type batteries. (2. A method for preparing a solution for a redox flow battery, characterized in that the melting of the acid is performed by heating and adding nitric acid according to claim 1).
JP58221738A 1983-11-25 1983-11-25 Method of preparing solution for redox-flow battery Pending JPS60115174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221738A JPS60115174A (en) 1983-11-25 1983-11-25 Method of preparing solution for redox-flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221738A JPS60115174A (en) 1983-11-25 1983-11-25 Method of preparing solution for redox-flow battery

Publications (1)

Publication Number Publication Date
JPS60115174A true JPS60115174A (en) 1985-06-21

Family

ID=16771457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221738A Pending JPS60115174A (en) 1983-11-25 1983-11-25 Method of preparing solution for redox-flow battery

Country Status (1)

Country Link
JP (1) JPS60115174A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148068A (en) * 1984-01-12 1985-08-05 Agency Of Ind Science & Technol Manufacture of electrolyte in redox cell
US4874483A (en) * 1988-02-04 1989-10-17 Chiyoda Corporation Process for the preparation of redox battery electrolyte and recovery of lead chloride
WO1995004706A1 (en) * 1993-08-06 1995-02-16 Wegrostek, Ivo Agent for water treatment and process for producing it
WO2002101861A1 (en) * 2001-06-07 2002-12-19 Sumitomo Electric Industries, Ltd. Redox-flow cell electrolyte and redox-flow cell
US20100261070A1 (en) * 2010-03-10 2010-10-14 Deeya Energy, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
WO2014203408A1 (en) * 2013-06-21 2014-12-24 住友電気工業株式会社 Electrolyte for redox flow battery and redox flow battery
WO2014203409A1 (en) * 2013-06-21 2014-12-24 住友電気工業株式会社 Redox flow battery electrolyte and redox flow battery
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes
US9391340B2 (en) 2013-06-21 2016-07-12 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9985311B2 (en) 2014-08-01 2018-05-29 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery system
JP2022503573A (en) * 2018-10-23 2022-01-12 ロッキード マーティン エナジー,エルエルシー Methods and equipment for removing impurities from electrolytes
CN115832378A (en) * 2023-02-21 2023-03-21 北京西融新材料科技有限公司 Preparation method and application of key material of electrolyte

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148068A (en) * 1984-01-12 1985-08-05 Agency Of Ind Science & Technol Manufacture of electrolyte in redox cell
US4874483A (en) * 1988-02-04 1989-10-17 Chiyoda Corporation Process for the preparation of redox battery electrolyte and recovery of lead chloride
WO1995004706A1 (en) * 1993-08-06 1995-02-16 Wegrostek, Ivo Agent for water treatment and process for producing it
WO2002101861A1 (en) * 2001-06-07 2002-12-19 Sumitomo Electric Industries, Ltd. Redox-flow cell electrolyte and redox-flow cell
US7258947B2 (en) 2001-06-07 2007-08-21 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery, and redox flow battery
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US20100261070A1 (en) * 2010-03-10 2010-10-14 Deeya Energy, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes
WO2014203409A1 (en) * 2013-06-21 2014-12-24 住友電気工業株式会社 Redox flow battery electrolyte and redox flow battery
WO2014203408A1 (en) * 2013-06-21 2014-12-24 住友電気工業株式会社 Electrolyte for redox flow battery and redox flow battery
US9331356B2 (en) 2013-06-21 2016-05-03 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9647290B2 (en) 2013-06-21 2017-05-09 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9391340B2 (en) 2013-06-21 2016-07-12 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9985311B2 (en) 2014-08-01 2018-05-29 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery system
JP2022503573A (en) * 2018-10-23 2022-01-12 ロッキード マーティン エナジー,エルエルシー Methods and equipment for removing impurities from electrolytes
CN115832378A (en) * 2023-02-21 2023-03-21 北京西融新材料科技有限公司 Preparation method and application of key material of electrolyte
CN115832378B (en) * 2023-02-21 2023-05-30 北京西融新材料科技有限公司 Preparation method and application of electrolyte key material

Similar Documents

Publication Publication Date Title
JPS60115174A (en) Method of preparing solution for redox-flow battery
US4874483A (en) Process for the preparation of redox battery electrolyte and recovery of lead chloride
US8852777B2 (en) Methods for the preparation and purification of electrolytes for redox flow batteries
US8394529B2 (en) Preparation of flow cell battery electrolytes from raw materials
Li et al. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries
CN111411366B (en) Method for recovering metal ions in lithium iron phosphate waste through solid-phase electrolysis
EP3834247B1 (en) A process for recovering metals from recycled rechargeable batteries
JPH0864223A (en) Electrolyte for vanadium redox flow type battery
JP6604466B2 (en) Copper manufacturing method and copper manufacturing apparatus
CN112981433A (en) Method for recycling waste lithium iron phosphate anode material by electrolyzing cation membrane pulp and recycled lithium hydroxide
JP6459797B2 (en) Method and apparatus for recovering raw material for producing ferronickel from waste nickel metal hydride battery
CN108163873B (en) A method of extracting lithium hydroxide from phosphoric acid lithium waste residue
JPH09180745A (en) Manufacture of vanadium electrolyte
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
CN114318009B (en) Method for recovering lithium from lithium iron phosphate
US7144493B2 (en) Process for the electrochemical decomposition of powders and electrolysis cells suitable therefor
KR20200107764A (en) Electrochemical process of converting carbon dioxide to oxalic acid
JPH03192662A (en) Cell capacity recovery method for redox-flow cell
CN115367776A (en) Method for recycling lithium iron phosphate battery
Lloyd et al. The Electrowinning of Chromium from Trivalent Salt Solutions
JP5432978B2 (en) High efficiency ruthenium recovery equipment
JP2005060220A (en) Minute tin oxide powder, its manufacture method, and its use
WO2022188240A1 (en) Method for in-situ synthesis of tungsten carbide powder
DE102017216564A1 (en) CO2-free electrochemical production of metals and alloys thereof
US20220393146A1 (en) Processes for the alkaliation or re-alkaliation of an electrode active material