JPS6011425B2 - Alkaline battery manufacturing method - Google Patents

Alkaline battery manufacturing method

Info

Publication number
JPS6011425B2
JPS6011425B2 JP52068099A JP6809977A JPS6011425B2 JP S6011425 B2 JPS6011425 B2 JP S6011425B2 JP 52068099 A JP52068099 A JP 52068099A JP 6809977 A JP6809977 A JP 6809977A JP S6011425 B2 JPS6011425 B2 JP S6011425B2
Authority
JP
Japan
Prior art keywords
battery
gold
gold plating
alkaline battery
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52068099A
Other languages
Japanese (ja)
Other versions
JPS543230A (en
Inventor
文夫 大尾
寛治 高田
貢 伊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52068099A priority Critical patent/JPS6011425B2/en
Publication of JPS543230A publication Critical patent/JPS543230A/en
Publication of JPS6011425B2 publication Critical patent/JPS6011425B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】 本発明はアルカリ電池における負極端子面上へ金メッキ
を施すことを特徴としたアルカリ電池の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an alkaline battery characterized by applying gold plating to the negative terminal surface of the alkaline battery.

従来よりアルカリ電池、中でも負極活物質として亜鉛、
正極活物質として金属酸化物、電解液としてか性アルカ
リを用いたアルカリ一亜鉛系電池、例えば1価又は2価
の酸化銀を正極活物質とした酸化銀電池、酸化水銀電池
、ニッケル亜鉛電池等は、放電時における電圧の安定性
、低温特性の優秀性により、電子腕時計用、カメラの露
出計、電子卓上計算機、各種精密測定器用電源として近
年その需要は著しく増加しつつあり、各種の改良がなさ
れている。
Alkaline batteries have traditionally used zinc as the negative electrode active material.
Alkaline-zinc batteries using metal oxide as the positive electrode active material and caustic alkali as the electrolyte, such as silver oxide batteries, mercury oxide batteries, nickel-zinc batteries, etc. that use monovalent or divalent silver oxide as the positive electrode active material. Due to its voltage stability during discharge and excellent low-temperature characteristics, demand for it as a power source for electronic wristwatches, camera exposure meters, electronic desktop calculators, and various precision measuring instruments has increased significantly in recent years, and various improvements have been made. being done.

しかしこの種の電池の問題点として、負極様子面へのア
ルカリ電解液の渡液現象があり、これはアルカリ電解液
自身が一種の界面活性剤的な性質を有し、これにより金
属表面をクリーピングするもので、特に、負極側端子面
においては負極電位によって,さらにこのクリーピング
速度が加速されるため、この種の電池は封口部分に特殊
な処理、例えば、接着剤の介在、液状パッキン剤の介在
等を施こさなければ製造後数か月で負極端子面に電解液
が浸出して端子面を腐食してしまい実用上、使用機器と
の電気的接触状態を悪化せしめる鏡向が大であった。
However, a problem with this type of battery is that the alkaline electrolyte flows over the surface of the negative electrode. The rate of creeping is further accelerated by the negative electrode potential, especially on the negative terminal surface, so this type of battery requires special treatments on the sealing part, such as intervening adhesives or liquid packing materials. If no intervention is taken, the electrolyte will seep out onto the negative terminal surface several months after manufacture, corroding the terminal surface, and in practical terms, the mirror orientation will deteriorate the electrical contact with the equipment being used. there were.

これらの観点より電池の負極端子面には耐食性金属を使
用したり、耐食性の乏しい金属はその表面を耐食性金属
で被覆を行なってこれらの電気的接触不良の防止を計っ
ていたが、特に耐食性金属、例えばチタン、クロム等は
電気抵抗が高く、電池自身の内部抵抗、すなわち、接触
抵抗と発電要素自身の抵抗の和の増大をきたしていた。
このため従来にあっては、耐食性に優れかつ電気抵抗の
小さな「金一を負極端子面に0.05〜0.5ムの厚さ
に形成させる試みがあり、この場合には高価な金を使用
するため、負極端子面の必要な部分のみメッキを施す工
夫が多くなされている。例えば、ダリツク法、シフト法
等の部分金メッキ法、あるいは金属容器の素材自身に、
負極端子部分のみ金をストライプメッキあるいはボタン
メッキするか、さらに金箔の圧着を施こしたもの等を、
プレス加工で打抜く際に、負極端子露出部のみ金を形成
させる様にしたもの等が試みられた。しかし部分金メッ
キにあっては、負極金属容器の形状の不均一性、メッキ
液面の管理、電極ピンの洗浄、金メッキ品の取り出し、
部品の供v給方法フェルトロールの寿命、等々工程管理
が難しく、これらに基因してメッキ面にくもりやむら、
スジの如きメッキ特有の不良が多々発生し、極めて歩蟹
りの低いものであった。また、金メッキする前に、金と
の親和性に富むニッケルメッキを施こした場合でも歩蟹
は30〜40%程度で採算に合うものではなかった。さ
らに素材自身に金層を設けて、プレス加工によって必要
部分のみに金層を露出させることは、金層の厚みをlr
以上形成させないと、プレス金型に接触する際、ならび
に絞り加工時に剥離、傷、打こん等を生じて極めて外観
上見苦しいものとなる欠点があった。しかもこの場合の
歩留も40〜50%程度のもで、スケールメリットでな
り立つ電池の部品加工方法としては、経済的に問題にな
らなかった。本発明は、電池自身の起電力を利用して、
金メッキ液中の金イオンを電池負極面において電解還元
し金薄膜を形成させたものであり、電池自身の電気容量
の低下を最少眼にし、かつ均一な金層を形成させる目的
で、超音波等の振動を付与させる状態で金層を負極端子
面に形成させる方法を提供するのである。
From these viewpoints, corrosion-resistant metals have been used on the negative terminal surface of batteries, and metals with poor corrosion resistance have been coated with corrosion-resistant metals to prevent these electrical contact failures. For example, titanium, chromium, etc. have high electrical resistance, which increases the internal resistance of the battery itself, that is, the sum of the contact resistance and the resistance of the power generating element itself.
For this reason, there has been an attempt in the past to form a layer of gold with a thickness of 0.05 to 0.5 mm on the negative electrode terminal surface, which has excellent corrosion resistance and low electrical resistance. For this purpose, many methods have been devised to plate only the necessary parts of the negative electrode terminal surface.For example, partial gold plating methods such as the Dallick method and shift method, or the material of the metal container itself, have been devised.
Only the negative terminal part is striped or button plated with gold, or is further crimped with gold foil.
Attempts have been made to form gold only on the exposed part of the negative electrode terminal when punching by press working. However, in partial gold plating, there are many problems such as non-uniformity in the shape of the negative electrode metal container, control of the plating liquid level, cleaning of electrode pins, removal of gold plated products, etc.
Parts supply method It is difficult to control the process, such as the lifespan of felt rolls, etc., and due to these factors, the plating surface may become cloudy or uneven.
Defects peculiar to plating, such as streaks, frequently occurred, and the quality of the plating was extremely low. Further, even when nickel plating, which has a high affinity with gold, was applied before gold plating, the number of walking crabs was only about 30 to 40%, which was not profitable. Furthermore, by providing a gold layer on the material itself and exposing the gold layer only in the necessary parts by press working, the thickness of the gold layer can be reduced by lr.
If the above-described formation is not performed, peeling, scratches, dents, etc. may occur when contacting a press mold or during drawing processing, resulting in an extremely unsightly appearance. Moreover, the yield in this case was only about 40 to 50%, and as a battery parts processing method that relies on economies of scale, it was not an economic problem. The present invention utilizes the electromotive force of the battery itself,
Gold ions in the gold plating solution are electrolytically reduced on the negative electrode surface of the battery to form a thin gold film. Ultrasonic waves, etc. This provides a method for forming a gold layer on the negative electrode terminal surface while applying vibrations.

以下本発明の一実施例について詳述する。An embodiment of the present invention will be described in detail below.

第1図において1は有底筒状の金属ケースで、その内底
部に正極活性物質と黒鉛等の伝導助剤とを混合させた正
極合剤2を加圧成形して圧着させる。金属ケース1はア
ルミキルド、あるいはシリコンキルド鋼基板にニッケル
メッキしたものからなり、正極活物質は、酸化銀、酸化
水銀、二酸化マンガン、オキシ水酸化ニッケル等のいず
れかである。従って金属ケース1は正極端子を兼ねてい
る。正極合剤2の上面には多孔性ポリエチレンフィルム
よりなるセパレータ3が配置されている。4は略皿状の
金属容器で、これはその内面に負極活物質である亜鉛に
近い水素過電圧をもつ金属例えばスズ、カドミウム、銅
等のいずれかを、外面には耐食性の大なるステンレス鋼
あるいはチタニウム合金をそれぞれ位置させるように張
り合わせたクラッド材料よりなり、内部には、水銀を5
〜1の重量%添加した赤化亜鉛粉末5を収納しており、
負極端子を兼ねている。
In FIG. 1, reference numeral 1 denotes a cylindrical metal case with a bottom, and a positive electrode mixture 2, which is a mixture of a positive electrode active material and a conduction aid such as graphite, is pressure-molded and crimped onto the inner bottom of the case. The metal case 1 is made of an aluminum killed or silicon killed steel substrate plated with nickel, and the positive electrode active material is silver oxide, mercury oxide, manganese dioxide, nickel oxyhydroxide, or the like. Therefore, the metal case 1 also serves as a positive terminal. A separator 3 made of a porous polyethylene film is arranged on the upper surface of the positive electrode mixture 2. 4 is a roughly dish-shaped metal container, the inner surface of which is made of a metal with a hydrogen overvoltage close to that of zinc, which is the anode active material, such as tin, cadmium, copper, etc., and the outer surface made of highly corrosion-resistant stainless steel or It is made of a clad material laminated with titanium alloys placed in different positions, and the inside contains 55% of mercury.
Contains reddened zinc powder 5 to which ~1% by weight has been added,
Also serves as the negative terminal.

6は金属容器4の周縁に鉄着あるいは一体成型によって
取り付けた絶縁体で、合成ゴム、合成樹脂等よりなり、
負極と正極とを絶縁し、電解液の外部漏出を防止するた
めのものである。
6 is an insulator attached to the periphery of the metal container 4 by iron bonding or integral molding, and is made of synthetic rubber, synthetic resin, etc.
This is to insulate the negative electrode and the positive electrode and prevent leakage of electrolyte to the outside.

電池は金属ケース1の関口周緑部laを内方向に折り曲
げて、絶縁体6を金属容器4の間縁側部に圧接して封口
されている。このようにして得た酸化銀電池を第2図に
示すような超音波振動装置を用いて負極端子面に金メッ
キを施こす。図において7は洗浄槽で、電気的、化学的
金メッキ液8を貯蔵している。9は外部電源からの給電
によって超音波周波数城で発振する超音波発振器、10
は発振器9での電気的な超音波エネルギーを機械的な振
動エネルギーに変換する変換器、1 1は癖換器10か
らの動力によって振動して洗浄槽7内に配置した振動板
12およびメッキ液8に超音波振動を加える振動子であ
る。
The battery is sealed by bending the green part la of the metal case 1 inward and pressing the insulator 6 against the edge of the metal container 4. The negative terminal surface of the silver oxide battery thus obtained was plated with gold using an ultrasonic vibrator as shown in FIG. In the figure, 7 is a cleaning tank that stores electrical and chemical gold plating solution 8. 9 is an ultrasonic oscillator that oscillates at an ultrasonic frequency range by supplying power from an external power source; 10
1 is a converter that converts the electrical ultrasonic energy from the oscillator 9 into mechanical vibration energy, and 1 1 is a diaphragm 12 and a plating solution that are vibrated by the power from the vibration changer 10 and placed in the cleaning tank 7. This is a vibrator that applies ultrasonic vibration to 8.

そして電池13を洗浄槽7内に入れ、振動板12によっ
て超音波振動を加える。加える振動の周波数は3皿Xz
、時間は3秒間とする。
Then, the battery 13 is placed in the cleaning tank 7, and ultrasonic vibration is applied by the diaphragm 12. The frequency of the vibration applied is 3 plates Xz
, the time is 3 seconds.

この振動により被メッキ面が活性化され、表面の油分、
ホコリ、電解液等が敬除かれて、いわゆる洗浄がなされ
、電池表面温度が上昇して、メッキ液中に取り出される
電池起電力は最大かつ瞬時に効率良く引き出されるため
、負極端子面における金の電解還元析出が効率良くなさ
れる。なお電池に加える振動の周波数ならびに時間は、
諸条件による実験結果から、メッキ液の液I性のいかん
にかかわらず、周波数30〜90KHz、時間1〜1明
@間が好ましいことがわかった。周波数90K比の場合
は2秒以上振動を加えると、金属容器4と、絶縁体6と
の密着面に微細な間隙が生じたり、金属ケース1の折り
曲げ都laのメッキが剥離したり、極端な時には、この
部分にクラツクが生じたりして好ましいものではない。
また周波数20KHz程度以下の場合は、振動を1分程
度以上加えないと、金メッキ層4aの厚みが薄くなった
り、厚み分布がまばらになり、外観上見苦しく商品的価
値が低下する。また電池実身の起電力を利用しているた
め、長くメッキ液中におけば自己放電により電池の実容
量が低下し、極端な場合には電池の容量が半減したりし
て意味がなくなり、量産性においても難点が大である。
また第1図に示す構造で、高さ5.4肋、直径11.6
側、容量180hAhの酸化銀−亜鉛系アルカリ電池に
おいて、30K比の超音波振動を2秒間与えた本発明品
■と10KHzの超音波振動を9現砂間与えたもの‘B
’および従釆の部分金メッキ法によって得た負極金属容
器を用いた電池■とを、歌Qの定抵抗で連続放電特性を
比較した。この結果を次表に示す。なお供試サンプル数
は各々20個とし、平均利用率は平均実容量÷18仇h
Ah(理論容量)×100〔%〕で示した。表なお、本
実験に用いた金メッキ液の組成は、次の如くである。
This vibration activates the surface to be plated, removing oil and
Dust, electrolyte, etc. are removed, so-called cleaning is performed, the battery surface temperature rises, and the battery electromotive force extracted into the plating solution is maximized, instantaneously, and efficiently. Electrolytic reduction deposition is performed efficiently. The frequency and time of vibration applied to the battery are
From the results of experiments under various conditions, it was found that a frequency of 30 to 90 KHz and a time of 1 to 1 light are preferable, regardless of the liquid I property of the plating solution. In the case of a frequency of 90K ratio, if vibration is applied for more than 2 seconds, a minute gap may be created between the contact surface between the metal container 4 and the insulator 6, the plating on the bending area 1a of the metal case 1 may peel off, or extreme damage may occur. Occasionally, cracks occur in this area, which is not desirable.
Further, when the frequency is about 20 KHz or less, unless vibration is applied for about 1 minute or more, the thickness of the gold plating layer 4a becomes thin or the thickness distribution becomes sparse, which makes the appearance unsightly and reduces the commercial value. In addition, since the electromotive force of the battery itself is used, if it is left in the plating solution for a long time, the actual capacity of the battery will decrease due to self-discharge, and in extreme cases, the battery capacity will be halved, making it useless. There are also major difficulties in mass production.
Also, the structure shown in Figure 1 has a height of 5.4 ribs and a diameter of 11.6 mm.
On the other hand, in a silver oxide-zinc alkaline battery with a capacity of 180 hAh, the product of the present invention (■) was subjected to ultrasonic vibration at a ratio of 30K for 2 seconds, and the product (B) was applied with ultrasonic vibration at 10KHz for 9 seconds.
Continuous discharge characteristics were compared between battery 1 and battery 2 using a negative electrode metal container obtained by the selective gold plating method at a constant resistance of UtaQ. The results are shown in the table below. The number of samples to be tested was 20 for each, and the average utilization rate was calculated as the average actual capacity ÷ 18 hours.
It is expressed as Ah (theoretical capacity) x 100 [%]. The composition of the gold plating solution used in this experiment is as follows.

oシアン化金力リウム ……8夕/夕。o Cyanide Kinrikirium...8 evening/evening.

シアン化力リワム ……30夕/そo炭酸カリ
カム ・・・・・・15夕/そo第2リン
酸カリウム ……25夕/そo液温
・・・・”5ず○土2℃o液性
・・・・・・PHIO〜11前記のメッキ液1
そで、負極端子面の直径が9肋、金メッキの厚さが0.
2rとしてメッキを実施すれば、電池として約3方個の
メッキが可能である。以上の如く、本発明による方法に
よれば、高価な金を無駄なく、電池の容量損失を最少限
にして金メッキが可能であり、またメッキ液の液種、つ
まり電解金メッキ格、無電鱗金メッキ格の差なく均一な
メッキが振動を付与することにより得られ被メッキ面を
一様に活性化させ、かつまた、アルカリ−亜鉛系電池特
有の安定した放電々位双方の相乗作用により、極めて理
想的な金メッキの条件を確立することが可能となる。
Cyanidation power rewam...30 evening/so Potassium carbonate...15 evening/so potassium diphosphate...25 evening/so liquid temperature
・・・・5zu○ soil 2℃℃ liquid
...PHIO~11 The above plating solution 1
The diameter of the negative terminal surface is 9 ribs, and the thickness of the gold plating is 0.
If plating is performed as 2r, it is possible to plate about 3 sides as a battery. As described above, according to the method of the present invention, it is possible to perform gold plating without wasting expensive gold and minimizing capacity loss of the battery, and the type of plating solution can be changed, that is, electrolytic gold plating grade, electroless scale gold plating grade. Uniform plating is achieved by applying vibration, uniformly activating the plated surface, and the synergistic effect of the stable discharge level unique to alkaline-zinc batteries makes it extremely ideal. This makes it possible to establish conditions for gold plating.

またメッキ液の液温に関しては、特に電池に悪影響を与
えない温度、つまり7ぴ0以下、好ましくは60qo以
下に設定すれば良く、これ以下の温度では特にメッキ面
の仕上り、強度にほとんど影響はなく、温度範囲が異な
ることで光択が若干異なる程度のもので、何ら実用上支
障なく、初期の目標を達成できるものである。以上の如
く本発明の製造法は極めて量産性、ならぴに経済性に優
れたものである。
Regarding the temperature of the plating solution, it should be set at a temperature that does not have a negative effect on the battery, that is, below 7 qo, preferably below 60 qo. Temperatures below this have little effect on the finish and strength of the plated surface. Rather, the optical selection differs slightly depending on the temperature range, and the initial goal can be achieved without causing any practical problems. As described above, the manufacturing method of the present invention is extremely suitable for mass production and is particularly economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における製造法で、負極端子
面上に金メッキを施こした酸化銀電池の要部断面図、第
2図は本発明に係る超音波振動装置を装備したメッキ装
置の構成略図である。 1・・・・・・正極端子を兼ねた電池容器、4・・・・
・・負極端子を兼ねた電池容器、4a・・・・・・金メ
ッキ層、8……金メッキ液、12……振動板、13・・
…・電池。 第1図 第2図
Figure 1 shows a manufacturing method according to an embodiment of the present invention, and is a sectional view of the main parts of a silver oxide battery with gold plating on the negative terminal surface, and Figure 2 shows a plated silver oxide battery equipped with an ultrasonic vibration device according to the present invention. It is a schematic diagram of the configuration of the device. 1...Battery container that also serves as a positive terminal, 4...
...Battery container that also serves as a negative electrode terminal, 4a...Gold plating layer, 8...Gold plating solution, 12...Vibration plate, 13...
…·battery. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 正極端子を兼ねた金属容器と負極端子を兼ねた金属
およびこの両容器を絶縁する絶縁体により発電要素を密
封口したアルカリ電池を、金メツキ液中に浸漬し、この
メツキ液に周波数30〜90KHzの超音波振動を1〜
10秒印加しながら電池自身の起電力による電解還元で
前記負極端子面上に金メツキを施すことを特徴とするア
ルカリ電池の製造法。 2 金メツキ液の液温が70℃以下である特許請求の範
囲第1項に記載のアルカリ電池の製造法。
[Scope of Claims] 1. An alkaline battery with a power generating element sealed by a metal container serving as a positive terminal, a metal serving as a negative terminal, and an insulator that insulates both the containers is immersed in a gold plating solution. Ultrasonic vibrations with a frequency of 30 to 90 KHz are applied to the plating liquid for 1 to 30 minutes.
A method for producing an alkaline battery, characterized in that gold plating is applied on the negative electrode terminal surface by electrolytic reduction using the electromotive force of the battery itself while applying the voltage for 10 seconds. 2. The method for producing an alkaline battery according to claim 1, wherein the gold plating solution has a temperature of 70° C. or lower.
JP52068099A 1977-06-08 1977-06-08 Alkaline battery manufacturing method Expired JPS6011425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52068099A JPS6011425B2 (en) 1977-06-08 1977-06-08 Alkaline battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52068099A JPS6011425B2 (en) 1977-06-08 1977-06-08 Alkaline battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS543230A JPS543230A (en) 1979-01-11
JPS6011425B2 true JPS6011425B2 (en) 1985-03-26

Family

ID=13363944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52068099A Expired JPS6011425B2 (en) 1977-06-08 1977-06-08 Alkaline battery manufacturing method

Country Status (1)

Country Link
JP (1) JPS6011425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100367U (en) * 1983-12-13 1985-07-09 東北電力株式会社 Wire rod feeding device

Also Published As

Publication number Publication date
JPS543230A (en) 1979-01-11

Similar Documents

Publication Publication Date Title
JP3742422B1 (en) Flat battery
US4460666A (en) Coated substrate, preparation thereof, and use thereof
US4162202A (en) Means for improving contact between Li and the anode current collector
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
WO2002038834A1 (en) Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JPS6011425B2 (en) Alkaline battery manufacturing method
JPH0794153A (en) Manufacture of alkaline battery and negative electrode vessel
US4540476A (en) Procedure for making nickel electrodes
US3007993A (en) Electrodes and cells containing them
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2006228652A (en) Copper foil for electrode of lithium secondary battery and its manufacturing method, and electrode for lithium secondary battery and lithium secondary battery using the copper foil
JPS61124052A (en) Manufacture of pole plate for lead storage battery
US3355325A (en) Battery plate manufacture
JP4790205B2 (en) Battery electrode
JPS632253A (en) Lead-acid battery and its manufacture
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JPS5951456A (en) Production process for metal case of alkaline battery
JPH11250901A (en) Manufacture of electrode for lead-acid battery and its equipment
US711997A (en) Process of forming electric accumulators.
JPS58155657A (en) Manufacture of alkaline battery
JPS58155653A (en) Manufacture of alkaline battery
JPS61245462A (en) Cell case and its manufacture
US394472A (en) Method of making secondary-battery plates
JPS58155656A (en) Manufacture of alkaline battery
JPH05109393A (en) Manufacture of square-type sealed battery