JPS60113618A - Ground-fault detecting relay circuit - Google Patents

Ground-fault detecting relay circuit

Info

Publication number
JPS60113618A
JPS60113618A JP22108683A JP22108683A JPS60113618A JP S60113618 A JPS60113618 A JP S60113618A JP 22108683 A JP22108683 A JP 22108683A JP 22108683 A JP22108683 A JP 22108683A JP S60113618 A JPS60113618 A JP S60113618A
Authority
JP
Japan
Prior art keywords
current
ground fault
voltage
ground
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22108683A
Other languages
Japanese (ja)
Inventor
柏野 榮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22108683A priority Critical patent/JPS60113618A/en
Publication of JPS60113618A publication Critical patent/JPS60113618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高インダクタンス回路に′電流を供給する
だめの電源設備に係シ、特にその地絡検出継電器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to power supply equipment for supplying current to high inductance circuits, and particularly to a ground fault detection relay thereof.

〔従来技術〕[Prior art]

従来この捕のものとして第1図の回路図に示す様な電源
設備があった。図において、1は負荷コイルで、大きな
インダクタンス分りを有し、それに伴なって必然的に存
在する抵抗分Rで構成されているものとする。2は電圧
制御が可能な直流電源設備である。なお、この電源設備
2の種別については、半導体整流器で表現したが、これ
はこの発明の本質的なものでないので特に限定して考え
る必要はない。3は分流器で1端を接地母線に、そして
他端を負荷コイル1と、電源設備間2の接続母線に接続
し、これにより負荷コイル1と[電源設備2の電位の安
定化を計る。また、4は地絡検出用電圧継電器である。
Conventionally, there has been a power supply facility as shown in the circuit diagram of FIG. 1 as a means of achieving this goal. In the figure, numeral 1 denotes a load coil, which has a large inductance and is composed of a resistance R that inevitably exists accordingly. 2 is a DC power supply equipment that can control voltage. Although the type of power supply equipment 2 is expressed as a semiconductor rectifier, this is not essential to the present invention, so there is no need to limit it to this type. Reference numeral 3 is a current shunt whose one end is connected to the ground bus and the other end is connected to the connection bus between the load coil 1 and the power supply equipment 2, thereby stabilizing the potentials of the load coil 1 and the power supply equipment 2. Further, 4 is a voltage relay for detecting a ground fault.

なお、5は絶縁劣化が生じた場合の地絡抵抗を表わして
いる。
Note that 5 represents the ground fault resistance when insulation deterioration occurs.

次に、第1図の回路の動作を第2図の波形図を用いて説
明する。この第2図は負荷コイル1に流れる電流iと、
印加される電圧Vの時間に対する波形を示したもので、
時間t。−1,の期間は電流立上げ期間で、 V = 
L d i / d t 十Ri の関係式により 1
==1.−16を短時間に立上ける為には、d i /
 d tで表わされる電流変化率を太きくしなけれはな
らず、従って、負荷コイル1のインダクタンス分りが大
きい場合には負荷コイル1端に高電圧を印加させる必要
がある。一方、1=1.〜t、の期間は電流フラット期
間で、変流変化率di/dt=oの為、■=几iとなシ
、負荷コイル1の抵抗分Rが小さければ低電圧で良い。
Next, the operation of the circuit shown in FIG. 1 will be explained using the waveform diagram shown in FIG. 2. This figure 2 shows the current i flowing through the load coil 1,
This shows the waveform of the applied voltage V over time.
Time t. -1, period is the current rise period, V =
According to the relational expression L d i / d t + Ri, 1
==1. -16 in a short time, d i /
It is necessary to increase the current change rate expressed by dt, and therefore, when the inductance of the load coil 1 is large, it is necessary to apply a high voltage to the end of the load coil 1. On the other hand, 1=1. The period ˜t is a current flat period, and since the current change rate di/dt=o, ■=几i.If the resistance R of the load coil 1 is small, a low voltage is sufficient.

次に1=1.〜t、の期間は、電流立下げ期間で、電流
立上期間同様、高電圧を逆方向に印加する必要がある。
Next, 1=1. The period ~t is a current falling period, and like the current rising period, it is necessary to apply a high voltage in the reverse direction.

第1図の負荷コイルlの接地側の他端4点が5で表わさ
れる地絡抵抗Reを持って絶縁劣化を起し、このとき分
流器2の抵抗をR5)Iとすると、地絡電流 ie、=
V/(Re−4−Rsa) と第2図のt圧Vとレベル
が異る同一波形の電流が流れる。この地絡電流1eを分
流器3で電圧変換の後、地絡検出用電圧継電器4で検出
する。
If the other four ends of the grounding side of the load coil l in Fig. 1 have a ground fault resistance Re represented by 5 and insulation deterioration occurs, and at this time the resistance of the shunt 2 is R5) I, the ground fault current ie, =
A current having the same waveform as V/(Re-4-Rsa) and having a different level from the t-pressure V in FIG. 2 flows. This ground fault current 1e is converted into voltage by a shunt 3 and then detected by a voltage relay 4 for ground fault detection.

しかしながら、この分流器3と、電圧継電器4で構成さ
れる従来の地絡検出方式は、第1図のA点が完全地絡時
は Re=0となる為、負荷コイル1の端子電圧が通常
、微小な分流器3の抵抗RsHのみで限流される為に、
電流立上げ、立下げ時の負荷コイル1の印加電圧が大き
い場合には大きな地絡電流が流れる。そこで、この電流
で地絡検出を行なうように設定した場合には、フラット
トップ時の負荷コイル1の電圧の小さい場合や、地絡抵
抗Reが絶縁劣化などによる比較的大きな値となった場
合には、ie地終電流が小さく、分流器3の検出電圧が
小さく、地絡検出用継電器4を動作させ難い場合が生ず
る。また、小電流域で動作させる様に分流器3の抵抗値
R5Hを大きく設定した場合には、大電流地絡時に分流
器3の電圧が大きくなり、地絡検出用継電器4に過電圧
が印加され、焼損したり、負荷コイル1の大地電位が上
昇したりする慮れがある。
However, in the conventional ground fault detection method consisting of this shunt 3 and voltage relay 4, when point A in Fig. 1 is completely grounded, Re = 0, so the terminal voltage of the load coil 1 is normally , because the current is limited only by the resistance RsH of the minute shunt 3,
When the voltage applied to the load coil 1 at the time of current rise and fall is large, a large ground fault current flows. Therefore, when setting to perform ground fault detection using this current, it is possible to detect a ground fault when the voltage of the load coil 1 is low during flat top or when the ground fault resistance Re becomes a relatively large value due to insulation deterioration, etc. In this case, the ie earth final current is small, the detection voltage of the shunt 3 is small, and it may be difficult to operate the earth fault detection relay 4. Furthermore, if the resistance value R5H of the shunt 3 is set to a large value so as to operate in a small current range, the voltage of the shunt 3 will increase in the event of a large current ground fault, and an overvoltage will be applied to the ground fault detection relay 4. , there is a possibility that the load coil 1 may be burnt out or the ground potential of the load coil 1 may rise.

〔発明の概要〕[Summary of the invention]

この発明は、上記の様な従来のものの、欠点を除去する
ためになされたもので、地絡電流を検出するため、可飽
和リアクタ方式の直流変流器を用い、地絡電流レベルが
所定値以上になった場合にも2次側に大きなレベルの電
流が現われないようにし、低レベルの地絡電流を確実に
検出し、且つ大きな地絡電流が発生した場合にも、過電
圧を生じない地絡検出継電器回路を提供する事を目的と
している。
This invention was made in order to eliminate the drawbacks of the above-mentioned conventional methods.In order to detect ground fault current, a saturable reactor type DC current transformer is used, and the ground fault current level is set to a predetermined value. It is possible to prevent a large level of current from appearing on the secondary side even if the current level exceeds The purpose is to provide a fault detection relay circuit.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図に付いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第3図は、本発明の一実施例で、第1図の従来例におけ
る分流器3と、地絡検出用電圧継電器4を直流変流器6
aと地絡検出制御部6b[置換えたものである。
FIG. 3 shows an embodiment of the present invention, in which the shunt 3 and ground fault detection voltage relay 4 in the conventional example of FIG. 1 are replaced by a DC transformer 6.
a and the ground fault detection control section 6b [replaced].

第4図は、本発明における直流変流器6aの一実施例を
示す外観図で、環状の直流変流器6aを貫通する中心導
体6Cを1次巻線とし、その一端を大地、他端を負荷コ
イル1と電源設備2に接続したものであり、その近傍に
地絡検出制御部6bを配設する。
FIG. 4 is an external view showing an embodiment of a DC current transformer 6a according to the present invention, in which a central conductor 6C passing through the annular DC current transformer 6a is used as a primary winding, one end of which is grounded, and the other end of which is a primary winding. is connected to the load coil 1 and the power supply equipment 2, and a ground fault detection control section 6b is arranged near it.

第5図は、本発明の地絡検出継電器回路の一実施例の詳
細回路を示したもので、直流変流器6aは飽和磁束密度
の低い2個の環状鉄心にそれぞれ逆方向に2次巻線を施
し、それに中心導体6cを挿通したもので、その1次巻
線数は、1回巻となる。
FIG. 5 shows a detailed circuit diagram of one embodiment of the earth fault detection relay circuit of the present invention, in which a DC current transformer 6a is wound with secondary windings in opposite directions around two annular cores with low saturation magnetic flux density. A wire is provided and the center conductor 6c is inserted through it, and the number of primary windings is one.

そして2次巻数はN回とする。地絡検出制御部6bはA
C制御電源を供給する制脚電源裳圧器7、整流器8、負
担抵抗9、地絡検出用電圧継電器4よシ構成する。なお
、負担抵抗9と電圧継電器4は電流継電器に1に換えて
も良い。
The number of secondary turns is N times. The ground fault detection control section 6b is A
It consists of a leg restraint power supply voltage regulator 7 for supplying C control power, a rectifier 8, a load resistor 9, and a voltage relay 4 for ground fault detection. Note that the burden resistor 9 and the voltage relay 4 may be replaced with a current relay.

なお、この実施例に示した直流変流器は可飽和リアクタ
方式の直流変流器と呼ばれる。
Note that the DC current transformer shown in this embodiment is called a saturable reactor type DC current transformer.

次に、直流変流器6aと本発明の動作を第6図にて説明
する。第6図Aは制1lll+電源7の二次電圧eと磁
気飽和の関係を示す。直流変流器6aの鉄心が飽和して
いない場合、変流器2次電流は等アンペアターンの法則
により、 1e=N−ILI)関係テI ’L = i e / 
Nとなり、変流器1次電流に比例しだ2次電流が流れ負
担抵抗9に V=IL−R,Lの電圧を発生し、電圧継
電器4を付勢する。
Next, the operation of the DC transformer 6a and the present invention will be explained with reference to FIG. FIG. 6A shows the relationship between the secondary voltage e of the power supply 7 and the magnetic saturation. When the iron core of the DC current transformer 6a is not saturated, the secondary current of the current transformer is determined by the law of equal ampere turns, as follows: 1e=N-ILI)Relationship teI'L=ie/
N, a secondary current proportional to the primary current of the current transformer flows, generating a voltage of V=IL-R,L in the load resistor 9, and energizing the voltage relay 4.

制御電源eと負担抵抗電圧×巻数の差の積分値(ハンチ
ング部)の正負が等しくなった時点で直流変流器6aの
鉄心に磁気飽和が発生し、インピーダンスが零となp制
御#電圧eを負担抵抗RLで除した′電流が第6図Bの
ハツチング部で示すように流れるが、この電流は、本来
、電流検出の為には不贅なものであるので、直流変流器
の鉄心と2次コイルを2組使用し、制御電源位相を18
0゜異る様に第6図B、Cの2組の電流を検出し、電流
の大きな方を流れる様にすると、第6図りの如き1次巻
線に比例する直流電流を得る事が出来る。
At the point when the positive and negative of the integral value (hunting part) of the difference between the control power source e and the burden resistance voltage x number of turns becomes equal, magnetic saturation occurs in the iron core of the DC current transformer 6a, the impedance becomes zero, and the p control # voltage e A current obtained by dividing the current by the burden resistance RL flows as shown by the hatched part in Figure 6B, but since this current is essentially useless for current detection, it is Using two sets of secondary coils and a control power supply phase of 18
By detecting the two sets of currents shown in Figure 6 B and C that differ by 0° and allowing the larger current to flow, it is possible to obtain a direct current proportional to the primary winding as shown in Figure 6. .

1次電流ieとして大電流が硫れた場合、比較的短時間
で鉄心が飽和して直流変流器インピータ゛ンスが零とな
るが2次電流は1次電流に依存する事なく、制御電源位
相Vを負担抵抗9の抵抗値RLで除した IL=v/R
L がはソ全周期整流した電流、第6図Eに限流される
ので、2次側には過電流が流れることはなく、さらに過
電圧を発生することもない。
When a large current flows as the primary current ie, the iron core is saturated in a relatively short time and the DC current transformer impedance becomes zero, but the secondary current does not depend on the primary current and the control power supply phase V divided by the resistance value RL of burden resistor 9: IL=v/R
Since L is limited to the current rectified during all cycles, E in FIG. 6, no overcurrent flows to the secondary side, and no overvoltage is generated.

従ってこの発明を適用した場合には地絡検出レベルの設
定を比較的低いレベルに設定する事により、第2図の如
き電圧差の大きい電圧が生ずる′t1山源設備のいずれ
のタイミングにおいて地絡が発生しても常に検出する事
が可能になり、かつ、整流回路7によりい1−れの方向
の電圧に対しても有効である。
Therefore, when this invention is applied, by setting the ground fault detection level to a relatively low level, it is possible to detect a ground fault at any timing in the equipment where a large voltage difference as shown in Fig. 2 occurs. Even if a voltage occurs, it can always be detected, and it is also effective for voltages in the opposite direction due to the rectifier circuit 7.

また直流変流器を用いているので任意の波形の地絡電流
の検出が可能である。
Furthermore, since a DC transformer is used, it is possible to detect ground fault current with any waveform.

なお、上記の実施例は、高インダクタンス直流電源設備
に適用した場合を示したが、本発明は負荷回路の種別、
電源の交直の種別に1夕J係なく適用可能である。
In addition, although the above-mentioned embodiment showed the case where it was applied to high inductance DC power supply equipment, the present invention is applicable to the type of load circuit,
It can be applied regardless of the type of AC or DC power source.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、可飽和リアクタ方式の
直流変流器と地絡検出側副を′電源負荷間と天地間に接
続した構成としだので、比較的低レベルの地絡電流を検
出し、大電流地絡電流にも耐え、且つ任意の波形の地絡
電流を検出する地絡検出継電器回路が得られる。
As described above, according to the present invention, since the saturable reactor type DC current transformer and the ground fault detection side are connected between the power supply load and between the top and the ground, relatively low level ground fault current can be generated. A ground fault detection relay circuit can be obtained which can detect a ground fault current of any waveform and withstand a large current ground fault current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の地絡検出継電器の一例を示す回路図、第
2図は動作説明用の゛電流電圧波形図、第3図は、この
発明の一実施例を示す回路図、第4図はこの発明におけ
る直流変流器の一実施例の外観図、第5図はこの発明の
一実施例の回路図、稿)6図はこの発明の一実施例の動
作を示す波形図である。 図において、1は負荷コイル、2は直流電源設備、6a
は直流変流器、6bは地絡検出側(3)1部、6Cは直
流変流器貫通1次導体である。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人 三菱電機株式会社 第1図 第2図 t 時圃 第3図 Δ 第40 第5図 Ac<’p制制御基 原6図 手続補正書(自発) 特許庁長官殿 1、事件の表示 特願昭58−221086号2、発明
の名称 地絡検出継電器回路 3、補正をする者 代表者片由仁八部 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書をっき゛のとおり訂正する。
Fig. 1 is a circuit diagram showing an example of a conventional ground fault detection relay, Fig. 2 is a current/voltage waveform diagram for explaining operation, Fig. 3 is a circuit diagram showing an embodiment of the present invention, Fig. 4 5 is a circuit diagram of an embodiment of the invention, and FIG. 6 is a waveform diagram showing the operation of an embodiment of the invention. In the figure, 1 is a load coil, 2 is a DC power supply equipment, 6a
is a DC current transformer, 6b is a first part of the ground fault detection side (3), and 6C is a primary conductor passing through the DC current transformer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant: Mitsubishi Electric Corporation Figure 1 Figure 2 t Time field Figure 3 Δ Figure 40 Figure 5 Ac Japanese Patent Application No. 58-221086 2, Title of the invention: Ground fault detection relay circuit 3, Representative of the person making the amendment: Katayuni Kata, Part 8, Section 5: Detailed explanation of the invention in the specification subject to the amendment, 6, Details of the content of the amendment. Correct the writing exactly as written.

Claims (1)

【特許請求の範囲】[Claims] 高インダクタンス負荷に直流電流を供給するだめの電源
設備において、上記高インダクタンス負荷に対する電源
電路の一方を接地電位に保つ導体と、この導体を1欠溝
体とする可飽和リアクタ方式の直流変流器と、この直流
変流器の2次側出力で動作する継電器とを設け、この継
電器の動作によシ地絡検出を行なうように構成したこと
を特徴とする地絡検出継電器回路。
In power supply equipment for supplying DC current to high-inductance loads, a saturable reactor-type DC current transformer includes a conductor that keeps one side of the power supply circuit for the high-inductance load at ground potential, and this conductor as a groove. 1. A ground fault detection relay circuit comprising: and a relay operated by the secondary output of the DC transformer, and the ground fault is detected by the operation of the relay.
JP22108683A 1983-11-24 1983-11-24 Ground-fault detecting relay circuit Pending JPS60113618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22108683A JPS60113618A (en) 1983-11-24 1983-11-24 Ground-fault detecting relay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22108683A JPS60113618A (en) 1983-11-24 1983-11-24 Ground-fault detecting relay circuit

Publications (1)

Publication Number Publication Date
JPS60113618A true JPS60113618A (en) 1985-06-20

Family

ID=16761264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22108683A Pending JPS60113618A (en) 1983-11-24 1983-11-24 Ground-fault detecting relay circuit

Country Status (1)

Country Link
JP (1) JPS60113618A (en)

Similar Documents

Publication Publication Date Title
GB2039157A (en) Magnetic core
HU223914B1 (en) Measuring circuit and power supply for electricity meter
US4806896A (en) Electromagnetic shield for electromagnetic apparatus
JP2003348818A (en) Power conversion system, and filter
CA2229073C (en) Ground skew protection method and apparatus
JPS60113618A (en) Ground-fault detecting relay circuit
US4417130A (en) Transistor type pulse welding device
JPH01141364A (en) Instrument for measuring ac current
US3388315A (en) Excitation circuits for self-excited alternating current generators
JPH0568377A (en) Rectifier
CN210743756U (en) Transformer wiring circuit
JPH0632664Y2 (en) Output transformer of instrument transformer
JPH0154927B2 (en)
JPS6115519A (en) Method of preventing erroneous operation of leakage breaker
JPH0363311B2 (en)
JPS6325486B2 (en)
JPS5946798A (en) X-ray-tube-current detecting circuit
SU1241379A1 (en) Electric power supply system
SU1252827A1 (en) Device for de-energizing a.c.and d.c.circuits
SU457978A1 (en) AC Voltage Regulator
JP2020027541A (en) Transformer power supply circuit
JP3170002B2 (en) Split winding transformer
Kiwaki et al. A novel technology improving the response of the DCCT for lower sensed power
JPS6042504Y2 (en) magnetic amplifier
JPS6334417Y2 (en)