JPS60113152A - Analyzing method of catechol amine - Google Patents

Analyzing method of catechol amine

Info

Publication number
JPS60113152A
JPS60113152A JP58221675A JP22167583A JPS60113152A JP S60113152 A JPS60113152 A JP S60113152A JP 58221675 A JP58221675 A JP 58221675A JP 22167583 A JP22167583 A JP 22167583A JP S60113152 A JPS60113152 A JP S60113152A
Authority
JP
Japan
Prior art keywords
reaction
reaction reagent
reagent
sample
mobile phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58221675A
Other languages
Japanese (ja)
Other versions
JPS6359107B2 (en
Inventor
Morimasa Hayashi
守正 林
Hiroyuki Murakita
宏之 村北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58221675A priority Critical patent/JPS60113152A/en
Publication of JPS60113152A publication Critical patent/JPS60113152A/en
Publication of JPS6359107B2 publication Critical patent/JPS6359107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To enable analysis of a low concn. of catechol amine with good sensitivity by converting the catechol amine is a sample to trihydroxy indole. CONSTITUTION:A mobile phase 1 is supplied by a pump 2 to the entire analyzing system. The 1st reaction reagent 5, the 2nd reaction reagent 6 and the 3rd reaction reagent 7 are injected thereto via a pump 14 after the stationary state is attained and thereafter a sample is injected thereto from a sample injecting part. The ratio between the flow rate of the mobile phase and the flow rate of the reaction reagents is made 4-1.5:1. A buffer soln. contg. 0.02-0.06w/v% potassium ferrocyanide and having 6-7pH is used for the 1st reaction reagent, an aq. soln. contg. 0.02-0.08w/v% ascorbic acid and <=0.3v/v% mercaptoethanol is used for the 2nd reaction reagent and a 5-10 normal sodium hydroxide soln. is used for the 3rd reaction reagent. The reaction time for the 1st, 2nd and 3rd reaction reagents is made to respectively 5-20sec, 5-15sec and 5-10sec. The eluate is converted to trighdroxy indole by the reaction reagents and a fluorometric analysis chromatogram is obtd. from an analytical data procesor 12 via a fluorescence detector 11.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はシリカを担体とする化学結合型逆相カラムの
高速液体クロマトグラフィを用いポストカラム反応とし
てトリヒドロキシインドール法を利用し商感度でカテコ
ールアミンを分析する方法に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention utilizes high-performance liquid chromatography using a chemically bonded reverse-phase column with silica as a carrier, and utilizes the trihydroxyindole method as a post-column reaction to produce catecholamines at commercial sensitivity. Concerning how to analyze.

(ロ)従来技術 血漿、尿などの生体試料中のカテコールアミン5 の分
析法としては、試料中のカテコールアミンを同相抽出し
、次いで酸で溶離し、これをシリカを担体とする化学結
合型逆相カラムを用いる商速液体クロマトグラフィに付
して分離し次いで分離されたカテコールアミン類を反応
試薬によってトリヒドロキシインドール類に変換し螢光
分析する方法が知られているが、この分析法は従来、生
体試料、特に血漿中のカテコールアミンを測定する際に
は充分に感度が得られなかった。
(b) Prior art The method for analyzing catecholamines in biological samples such as plasma and urine involves in-phase extraction of the catecholamines in the sample, then elution with acid, and a chemically bonded reverse phase column using silica as a carrier. A method is known in which the catecholamines are separated by commercial liquid chromatography using a reaction reagent, and the separated catecholamines are converted into trihydroxyindoles using a reaction reagent and then subjected to fluorescence analysis. In particular, sufficient sensitivity was not obtained when measuring catecholamines in plasma.

[/埼 発明の目的 この発明は上記問題点を改善するためになされたもので
、高感度で血漿や尿などの生体試料中のカテコールアミ
ンを分析する方法を提供するのを目的とするものである
[/Sai Purpose of the Invention This invention was made in order to improve the above-mentioned problems, and its purpose is to provide a highly sensitive method for analyzing catecholamines in biological samples such as plasma and urine. .

に)発明の構成 この発明は、試料中のカテコールアミン頚を同相抽出し
次いで酸で溶離し、この酸性溶離液をシリカを担体とす
る化学結合型逆相カラムを用い酸性緩衝液の移動相で溶
出する商道液体クロマトグラフィに付して分離し、次い
で第1.2及び3反応試薬でトリヒドロキシインドール
に置換して螢光分析するカテコールアミン分析法であっ
て;移動相流量と反応試薬流量との比率が4〜1,5:
1、第1反応試薬が0.02〜0.06 w / v%
のフェリシアン化カリウム含有のpH6〜7の緩衝溶液
、第2反応試薬が0.02〜0.08w/v%のアスコ
ルビン酸と0.3マ/マ%以下のメルカプトエタノール
とを含有する水溶液、第3反応試薬が5〜1o規定の水
酸化す) IJウム溶液、並びにfill、2及び3反
応試薬それぞれの反応時間が5〜20秒、5〜15秒及
び5〜10秒であることを特徴とするカテコールアミン
分析法を提供するものである。
B) Structure of the Invention This invention involves in-phase extraction of catecholamines in a sample, then elution with acid, and elution of this acidic eluent with a mobile phase of an acidic buffer using a chemically bonded reverse phase column with silica as a carrier. A catecholamine analysis method in which the catecholamines are separated by Shodo liquid chromatography, and then replaced with trihydroxyindole by the 1st and 2nd and 3rd reaction reagents for fluorescence analysis; 4-1,5:
1. The first reaction reagent is 0.02-0.06 w/v%
a buffer solution of pH 6 to 7 containing potassium ferricyanide, a second reaction reagent containing an aqueous solution containing 0.02 to 0.08 w/v% ascorbic acid and 0.3 m/m% or less mercaptoethanol; The reaction reagent is a 5-10N hydroxide solution, and the reaction times of the fill, 2 and 3 reaction reagents are 5-20 seconds, 5-15 seconds and 5-10 seconds, respectively. Provides a catecholamine analysis method.

この発明は上記の特徴を有するが移動相流量と反応試薬
流量との比率の4〜1.5 : 1の範囲よりはずれて
移動相流量が多くても感度が低下する。
Although this invention has the above-mentioned characteristics, even if the ratio of the mobile phase flow rate to the reaction reagent flow rate is out of the range of 4 to 1.5:1 and the mobile phase flow rate is large, the sensitivity decreases.

また第1.2及び3反応試薬の濃度は上記の範囲より大
きくても小さくても感度の低下がみられる。
Furthermore, if the concentration of the 1.2 and 3 reaction reagents is greater or less than the above range, a decrease in sensitivity is observed.

さらに第1.2及び3反応試薬の反応時間は上記の範囲
より短かくても長くしても感度が低下し好ましくない。
Furthermore, if the reaction time of the 1.2 and 3 reaction reagents is shorter or longer than the above range, the sensitivity will decrease, which is not preferable.

また第1反応試薬のpHはリン酸塩緩衝液などでこの試
薬の反応に最適であることが知られていルpH6〜7の
範囲に調整される。
Further, the pH of the first reaction reagent is adjusted to a pH range of 6 to 7 using a phosphate buffer or the like, which is known to be optimal for the reaction of this reagent.

この発明において試料中のかテコールアミンの同相抽出
及び溶離には公知の方法を用いることができる。すなわ
ち試料をアルミナなどで処理してカテコールアミンとの
船体を形成させて抽出し、次いで酢酸溶液、塩酸溶液な
どを用いて1容離される。
In the present invention, known methods can be used for the in-phase extraction and elution of the calico amine in the sample. That is, a sample is treated with alumina or the like to form a hull with catecholamines and extracted, and then separated by one volume using an acetic acid solution, a hydrochloric acid solution, or the like.

またシリカを担体とする化学結合型逆相カラムも公知の
ものを用いることができ例えはゾルパックスOD8 (
デュポン社製)が挙げられる。また移動相としてはpH
2,0〜5.0の緩衝液か用いられるが、これには保持
時間調節用に有機溶媒とか、イオンペア試薬としてアル
キル硫酸ナトリウム、アルカンスルホン酸ナトリウム、
強酸強塩基の塩などが適宜添加される。
Also, known chemically bonded reverse phase columns with silica as a carrier can be used, for example Solpax OD8 (
(manufactured by DuPont). In addition, as a mobile phase, pH
A buffer solution of 2.0 to 5.0 is used, which includes an organic solvent for adjusting the retention time, sodium alkyl sulfate, sodium alkanesulfonate, and ion pair reagents.
Salts of strong acids and strong bases are added as appropriate.

(ホ)実施例 次にこの発明の方法を実施例によって説明する。(e) Examples Next, the method of this invention will be explained by way of examples.

試料として、ノルアドレナリンとアドレナリンをそれぞ
れ100 p、含有する0、4規定の酢1’(?100
μlを用いこれを第1図に系統図を示す分析装置によっ
てF記条件で分析した。
As a sample, 0.4N vinegar containing 100p of norepinephrine and epinephrine (100p)
Using μl, this was analyzed under the conditions described in F using an analyzer whose system diagram is shown in FIG.

カラム:ゾルパックスOD8 (4,6111111φ
X15cm)移動 相:2mMのペンタンスルホン醗ナ
トリウム含有の20mMリン酸ナトリウ ム緩衝液(pH2,35) 移動相流量=0.6艷/min 第1反応試薬: 0.04 w/ v%のフェリシアン
化カリウム含有の0.2 Mリン酸ナトリ ウム緩衝液(pu 6.8 )、反応時間13.2秒。
Column: Solpax OD8 (4,6111111φ
x15cm) Mobile phase: 20mM sodium phosphate buffer (pH 2,35) containing 2mM sodium pentanesulfone Mobile phase flow rate = 0.6 cm/min First reaction reagent: Contains 0.04 w/v% potassium ferricyanide of 0.2 M sodium phosphate buffer (pu 6.8), reaction time 13.2 seconds.

第2反応試薬: 0.04 w/v%アスコルビン酸及
び0.2マ/V%の2−メルカプトエタ ノール含有の水溶液、反応時間 9.6秒。
Second reaction reagent: Aqueous solution containing 0.04 w/v% ascorbic acid and 0.2 m/v% 2-mercaptoethanol, reaction time 9.6 seconds.

第3反応試薬:10規定の水酸化ナトリウム溶液、反応
時間8.3秒。
Third reaction reagent: 10N sodium hydroxide solution, reaction time 8.3 seconds.

各反応試薬流Fn : 0.3 rnt / min各
反応管二0.5順門径X 1 m カラム及び反応部の温度:40℃ 検 出 器:島津凡F 500 LOA vj光検出器
(EX 410 nm 、 Vm 520 nm )次
に分析操作を第1図によって説明する。まず(1)の移
動相をポンプ(2)で全分析系統に供給して定常状態に
なってから第1.2及び3反応試薬iwg次注入する。
Each reaction reagent flow Fn: 0.3 rnt/min for each reaction tube 20.5 mm diameter x 1 m Column and reaction section temperature: 40°C Detector: Shimadzu F 500 LOA vj photodetector (EX 410 nm, Vm 520 nm) Next, the analysis operation will be explained with reference to FIG. First, the mobile phase (1) is supplied to the entire analysis system using the pump (2), and after reaching a steady state, the 1st, 2nd and 3rd reaction reagents iwg are then injected.

次いで試料を試料注入部(3)から注入し、(Illの
螢光検出器で分析する。その結果第2図に示す螢光分析
クロマトグラムが得られた(図中NAとAはそれぞれノ
ルアドレナリンとアドレナリンのピークである。以下同
様)。検出限界は約4pyである。
Next, the sample was injected from the sample injection part (3) and analyzed with a fluorescence detector (Ill). As a result, the fluorescence analysis chromatogram shown in Figure 2 was obtained (NA and A in the figure represent norepinephrine and noradrenaline, respectively). This is the peak of adrenaline (the same applies hereafter).The detection limit is about 4py.

次に各条件について検討した結果を述べる。Next, we will discuss the results of examining each condition.

I)第1反応試薬中フェリシアン化カリウムの祿度 前記実施例の条件のうちフェリシアン化カリウムの腋度
のみを変えて分析し、その濃度と比螢光強度との関係を
示すグラフを第3図に示した。そのM 果0.(12〜
0.06w/v%の範囲でノルアドレナリン、アドレナ
リンが良好な感度で分析されることが分かる。
I) Degree of purity of potassium ferricyanide in the first reaction reagent The analysis was conducted by changing only the degree of purity of potassium ferricyanide among the conditions of the above-mentioned example, and a graph showing the relationship between its concentration and specific fluorescence intensity is shown in Figure 3. Ta. That M result 0. (12~
It can be seen that noradrenaline and epinephrine can be analyzed with good sensitivity in the range of 0.06 w/v%.

11)第2反応試薬中のアスコルビン1ψの濃度前記実
施例の条件のうち上記の成度のみを変えて分析した結果
を第4図に示した。その結果0.02〜0.08w/v
%の範囲でノルアドレナリンとアドレナリンが良好な感
度で分析できることが分かる。
11) Concentration of ascorbine 1ψ in the second reaction reagent Figure 4 shows the results of an analysis performed under the conditions of the above example, with only the above composition changed. The result is 0.02~0.08w/v
It can be seen that noradrenaline and adrenaline can be analyzed with good sensitivity in the % range.

II)第2反応試薬中の2−メルカプトエタノールの濃
度 前記実施例の条件のうち上記の濃度のみを変えて分析し
た結果全第5図に示した。その結果0.3v/v%以下
の濃度であればノルアドレナリン、アドレナリンが良好
な感度で分析できることを示している。
II) Concentration of 2-mercaptoethanol in the second reaction reagent The results of analysis were conducted by changing only the above concentration among the conditions of the above example, and the results are shown in FIG. The results show that noradrenaline and epinephrine can be analyzed with good sensitivity if the concentration is 0.3v/v% or less.

lv) 第3反応試薬中の水酸化ナトリウムの濃度前記
実施例の条件のうち上記の調度のみを変えて分析した結
果を第6図に示した。その結果5〜10規定の範囲であ
れはノルアドレナリン、アドレナリンが良好な感度で分
析できることが分かる。
lv) Concentration of Sodium Hydroxide in the Third Reaction Reagent Figure 6 shows the results of an analysis conducted under the conditions of the example described above, with only the preparation described above being changed. The results show that noradrenaline and adrenaline can be analyzed with good sensitivity within the range of 5 to 10 normal.

(へ)発明の効果 この発明の分析法によれは100py/ 100μ!と
いうような極めて低い濃度のカテコールアミンでも良好
な感度で分析できる。
(f) Effect of the invention The analysis method of this invention yields 100 py/100 μ! Even extremely low concentrations of catecholamines can be analyzed with good sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法に用いられる分析装置の一例の
系統図、第2図はこの発明の方法の一実施例のカテコー
ルアミン分析のクロマトグラム、第3〜6図は、第1反
応試薬のフェリシアン化カリウムの9度、第2反応試薬
のアスコルビン酸Ie度、同試薬の2−メルカプトエタ
ノールp度及び第3反応試薬の水酸化ナトリウム#度の
それぞれと、螢光分析で得られたクロマトグラムの比螢
光強度との関係を示すグラフである。 (1)・・・移動相、 +21 +141・・・ポンプ
部、(3)・−・試料注入部、 (4)−・逆相カラム
、(5)・・・第1反応試薬、(6)・・・第2反応試
薬、(7)・・・第3反応試薬、(8)・第1反応試薬
反応管、(9)・・・第2反応試薬反応管、 ill!・・・第3反応試薬反応管、 (11)・・・螢光検出器、 021・・・分析データ
処理器及び(131・・分析准排出管路。 第3図 濤1反応名謹のフ1リヲァブ化カリウム已創東0ノ。)
一方2反応・詞東呼のアス])vヒJ白にの濃度(01
0) −オフ反府1式薬中の2−ノルカブにエタノーノ
νのj農&(010)−第6図
Figure 1 is a system diagram of an example of an analytical device used in the method of this invention, Figure 2 is a chromatogram for catecholamine analysis in an example of the method of this invention, and Figures 3 to 6 are a diagram of the first reaction reagent. 9 degrees of potassium ferricyanide, ascorbic acid Ie degree of the second reaction reagent, 2-mercaptoethanol p degree of the same reagent, and sodium hydroxide # degree of the third reaction reagent, and the chromatogram obtained by fluorescence analysis. It is a graph showing the relationship with specific fluorescence intensity. (1) Mobile phase, +21 +141 Pump section, (3) -- Sample injection section, (4) -- Reverse phase column, (5) First reaction reagent, (6) ...Second reaction reagent, (7)...Third reaction reagent, (8)-First reaction reagent reaction tube, (9)...Second reaction reagent reaction tube, ill! ...Third reaction reagent reaction tube, (11)...Fluorescence detector, 021...Analysis data processor and (131...Analysis secondary discharge pipe. )
On the other hand, the concentration of 2 reactions/words East call As]) v HiJ White (01
0) - 2-Norkab in Off-Anfu Type 1 drug and Ethanono ν j Agriculture & (010) - Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、試料中のカテコールアミン類を固相抽出し次いで酸
で溶離し、この酸性溶離液をシリカを担体とする化学結
合型逆相カラムを用い酸性緩衝液の移動相で溶出する高
速液体クロマトグラフィに付して分離し、次いで第1,
2及び3反応試薬でトリヒドロキシインドールに変換し
て螢光分析するカテコールアミン分析法であって;移動
相流量と反応試薬流量との比率が4〜1゜:1、第1反
応試薬か0.02〜0.06 w / v%のフェリシ
アン化カリウム含有のpH6〜7の緩衝溶液、第2反応
試薬が0.02〜0.08 w/ v%のアスコルビン
酸と0.3v/v%以下のメルカプトエタノールとを含
有する水溶液、第3反応試薬か5〜10世市の水酸イ1
′、ナトリウム溶液−並びに第1.2及び3反応試薬そ
れぞれの反応時間が5〜20秒、5〜15秒及び5〜1
0秒であることを特徴とするカテコールアミン分析法。
1. Catecholamines in the sample are extracted with solid phase, then eluted with acid, and this acidic eluent is subjected to high performance liquid chromatography using a chemically bonded reverse phase column with silica as a carrier and eluted with an acidic buffer mobile phase. and then the first,
A catecholamine analysis method in which the reaction reagents 2 and 3 are converted into trihydroxyindole and then subjected to fluorescence analysis; the ratio of the mobile phase flow rate to the reaction reagent flow rate is 4 to 1°:1, and the first reaction reagent is 0.02°. A pH 6-7 buffer solution containing ~0.06 w/v% potassium ferricyanide, the second reaction reagent being 0.02-0.08 w/v% ascorbic acid and 0.3 v/v% or less mercaptoethanol. an aqueous solution containing the third reaction reagent or 5th to 10th hydroxyl 1
', sodium solution - and reaction times of 1.2 and 3 reaction reagents, respectively, 5-20 seconds, 5-15 seconds and 5-1
A catecholamine analysis method characterized in that the time is 0 seconds.
JP58221675A 1983-11-24 1983-11-24 Analyzing method of catechol amine Granted JPS60113152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221675A JPS60113152A (en) 1983-11-24 1983-11-24 Analyzing method of catechol amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221675A JPS60113152A (en) 1983-11-24 1983-11-24 Analyzing method of catechol amine

Publications (2)

Publication Number Publication Date
JPS60113152A true JPS60113152A (en) 1985-06-19
JPS6359107B2 JPS6359107B2 (en) 1988-11-17

Family

ID=16770506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221675A Granted JPS60113152A (en) 1983-11-24 1983-11-24 Analyzing method of catechol amine

Country Status (1)

Country Link
JP (1) JPS60113152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070456A1 (en) * 2001-03-01 2002-09-12 Technological Resources Pty Limited Benzene-1 2-diol mannich bases ligands polymers and method of selective metal ions removal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449474Y2 (en) * 1988-12-12 1992-11-20

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827062A (en) * 1981-08-12 1983-02-17 Sekisui Chem Co Ltd Liquid chromatograph for measuring catecholamine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827062A (en) * 1981-08-12 1983-02-17 Sekisui Chem Co Ltd Liquid chromatograph for measuring catecholamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070456A1 (en) * 2001-03-01 2002-09-12 Technological Resources Pty Limited Benzene-1 2-diol mannich bases ligands polymers and method of selective metal ions removal

Also Published As

Publication number Publication date
JPS6359107B2 (en) 1988-11-17

Similar Documents

Publication Publication Date Title
Allison et al. Dual electrode liquid chromatography detector for thiols and disulfides
Fitzpatrick High performance liquid chromatographic determination of prostaglandins F2. alpha., E2, and D2 from in vitro enzyme incubations
Kissinger et al. Recent developments in the clinical assessment of the metabolism of aromatics by high-performance, reversed-phase chromatography with amperometric detection.
Vakh et al. An automatic chemiluminescence method based on the multi-pumping flow system coupled with the fluidized reactor and direct-injection detector: Determination of uric acid in saliva samples
Carlqvist et al. Determination of amoxicillin in body fluids by reversed-phase liquid chromatography coupled with a post-column derivatization procedure
Hashimoto et al. Compact detection cell using optical fiber for sensitization and simplification of capillary electrophoresis–chemiluminescence detection
Walker et al. High-performance liquid chromatographic method for determination of gentamicin in biological fluids
Qu et al. Simultaneous separation of nine metal ions and ammonium with nonaqueous capillary electrophoresis
Cobo et al. Continuous solid-phase extraction and dansylation of low-molecular-mass amines coupled on-line with liquid chromatography and peroxyoxalate chemiluminescence-based detection
Chafer-Pericas et al. Application of solid-phase microextraction combined with derivatization to the enantiomeric determination of amphetamines
Lambert et al. Determination of vitamin K in serum using HPLC with post-column reaction and fluorescence detection
Kamei et al. Polyamine detection system for high-performance liquid chromatography involving enzymic and chemiluminescent reactions
Kito et al. Fluorometric determination of hypoxanthine and xanthine in biological fluids by high-performance liquid chromatography using enzyme reactors
JPS60113152A (en) Analyzing method of catechol amine
Stewart Post column derivatization methodology in high performance liquid chromatography (HPLC)
Molins-Legua et al. Off-line dansylation of amines using C18 solid-phase packings: study of the fluorescence and chemiluminescence detection by post-column derivatization with oxalic acid bis (2, 4, 6-trichloro phenyl ester)/H2O2 in liquid chromatography. Determination of amphetamines in urine samples
De Jong et al. Postchromatographic reaction detection
Uchikura Fluorometric determination of urinary Vanilmandelic acid and Homovanillic acid by high performance liquid chromatography after electrochemical oxidation
Bolner et al. Determination of apomorphine in human plasma by alumina extraction and high-performance liquid chromatography with electrochemical detection
JP2526600B2 (en) Method for analyzing reducing sugar and / or sialic acid
JPS5938651A (en) Quantitative analysis of catecholamine
Schlabach et al. Solution Chemistry for Post-Column Reactions
CN109632986B (en) Post-column derivatization detection method for sugar and sugar alcohol compounds
Tomer et al. Nonionic micellar liquid chromatography coupled to immobilized enzyme reactors
Johnson et al. The Use of Solid‐Phase Supports for Derivatization in Chromatography and Spectroscopy