JPS60113124A - Spectrum data interpolating device - Google Patents

Spectrum data interpolating device

Info

Publication number
JPS60113124A
JPS60113124A JP22168783A JP22168783A JPS60113124A JP S60113124 A JPS60113124 A JP S60113124A JP 22168783 A JP22168783 A JP 22168783A JP 22168783 A JP22168783 A JP 22168783A JP S60113124 A JPS60113124 A JP S60113124A
Authority
JP
Japan
Prior art keywords
value
interpolation
width
data
law
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22168783A
Other languages
Japanese (ja)
Inventor
Eiichi Hiraoka
平岡 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP22168783A priority Critical patent/JPS60113124A/en
Publication of JPS60113124A publication Critical patent/JPS60113124A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method

Abstract

PURPOSE:To use effectively a CPU by performing the interpolating processing of spectrum data in a short time on a basis of the method of weighed moving arranges of minimum square-law adaptation type. CONSTITUTION:Two actually measured data before and after an interpolation object within a minimum square-law adaptation width are inputted to a temporary interpolating value calculator 2 to calculate a temporary interpolating value, and actually measured data within the minimum square-law adaptation width and coefficients of weight which are allowed to correspond to actually measured data on a basis of the minimum square-law adaptation width are inputted to a multiplier 4, and both of them are multiplied. Plural multipliers 4 are provided in accordance with the set minimum square-law adaptation width. Multiplied values of individual multipliers 4 are added by an adder 6. The added value from the adder 6 and a coefficient of normalization based on the minimum square-low adaptation width are inputted to a divider 8, and the added value is divided by the coefficient of normalization to calculate an interpolating value.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光電子分光分析、発光分光分析、X線分析など
で得られるスペクトルデータの各実測データ間を補間す
る場合に使用されるスペクトルデータ補間装置に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to spectral data used when interpolating between each measured data of spectral data obtained by photoelectron spectroscopy, emission spectroscopy, X-ray analysis, etc. Regarding an interpolation device.

(CI)従来技術 一般に、光電子分光分析、発光分光分析、X線分析など
で得られるスペクトルデータをXYプロッタ、CRTな
どの表示器に出力したときには多数のピークを含む分布
曲線として表示される。ところで、り〕析時には得られ
たスペクトルデータを拡大表示したい場合がある。この
ような場合、観察を容易にするため実測データ間を補間
する手法が採られることかある。従来、各データ間を補
間するには、まず、測定して得られるスペクトルデ−タ
用して補間データを逐次4算していく。ところが、この
ような最小二乗法に茫づくデータ袖間ではスペクトルデ
ータの数が多いと演算時間が長くかかり、即拡大表示が
できないばかりてなく、CPUの有効活用も図れないと
いう不具合がある。
(CI) Prior Art Generally, when spectral data obtained from photoelectron spectroscopy, emission spectroscopy, X-ray analysis, etc. is output to a display such as an XY plotter or CRT, it is displayed as a distribution curve containing many peaks. By the way, there are cases where it is desired to enlarge and display the obtained spectral data during analysis. In such cases, a method of interpolating between actually measured data may be used to facilitate observation. Conventionally, in order to interpolate between each data, first, interpolated data is sequentially calculated by 4 using spectrum data obtained by measurement. However, in the case of data processing that relies on the least squares method, if there is a large number of spectral data, it takes a long calculation time, and there are problems in that not only is it not possible to immediately enlarge the display, but also it is not possible to make effective use of the CPU.

(ハ) 目 0勺 本発明はこのような目的を達成するため従来に比べて短
時間でデータ捕間処理ができるようにして、CPUの有
効活用か図れるようにすることを目的とする。
(c) In order to achieve the above object, the present invention aims to enable data capture processing to be performed in a shorter time than in the past, thereby making it possible to utilize the CPU more effectively.

(ニ)構 成 本発明はこのような目的を達成するため、データの平消
化処理の一つである最小二乗適合形重みイ」き移動平均
法に基づきスペクトルデータを補間するようにしたもの
である。すなわち、本発明は最小二乗適合幅内にある補
間λ]象の前後2つの実測データを入力して仮補間値を
算出する仮補闇値算出器と、前記最小二乗適合幅内の実
測データならびにこの最小二乗適合幅に基づき前記実利
データにそれぞれ対応づけられる重み係数を入力して両
者を乗算する複数の乗算器と、これらの各乗算器から出
力される乗算値を入力してこれらを加算する加算器と、
この加算器から出力される加算値ならびに前記最小二乗
適合幅に基づく正規化係数を入力して加算値を正規化係
数で除算する除算器とを備えていることを特徴とするス
ペクトルデータ補間装置。
(d) Structure In order to achieve the above object, the present invention interpolates spectral data based on the moving average method with least squares adaptive weighting, which is one of the data flattening processes. . That is, the present invention provides a temporary correction value calculator that calculates a provisional interpolation value by inputting two measured data before and after an interpolation A plurality of multipliers are inputted with weighting coefficients respectively associated with the actual profit data based on this least squares adaptation width and multiplied by both, and multiplier values output from each of these multipliers are inputted and added together. an adder;
A spectral data interpolation device comprising: a divider that inputs the added value output from the adder and a normalization coefficient based on the least squares adaptation width and divides the added value by the normalization coefficient.

(ホ)実施例 以下、本発明を図面に示す一実施例に基づいて詳細に説
明する。
(E) Example Hereinafter, the present invention will be explained in detail based on an example shown in the drawings.

第1図はこの実施例のスペクトルデータ補間装置のブロ
ック図である。同図において符号1はスペクトルデータ
補間装置、2は最小二乗適合幅内にある補間対象の前後
の2つの実測データを入力して仮補間値(この実施例で
は二点間の平均値)を算出する仮補間値算出器、4は最
小二乗適合幅内の実測データならびにこの最小二乗適合
幅に基づき上記実測データにそれぞれ対応づけられる重
み係数を入力して両者を希算する乗算器で、この乗p器
4は設定される最小二乗適合幅に合うよう復数設けられ
ている。6は各乗算器4から出力される乗算値を入力し
てこれらを加算する加算器、8はこの加算器6から出力
される加算値ならびに前記最小二乗適合幅に基づく正規
化係数を入力し、加算値を正規化係数で除算して補間値
を算出する除算器である。
FIG. 1 is a block diagram of the spectral data interpolation device of this embodiment. In the figure, numeral 1 is a spectral data interpolation device, and 2 is a spectral data interpolation device that inputs two actual measured data before and after the interpolation target within the least squares fitting width and calculates a provisional interpolation value (in this example, the average value between two points). 4 is a multiplier that inputs the measured data within the least squares fitting width and the weighting coefficients respectively associated with the above measured data based on this least squares fitting width and dilutes both. A plurality of p-devices 4 are provided to match the set least squares adaptation width. 6 is an adder that inputs the multiplication values output from each multiplier 4 and adds them; 8 inputs the addition value output from this adder 6 and a normalization coefficient based on the least squares adaptation width; This is a divider that calculates an interpolated value by dividing the added value by the normalization coefficient.

次に上記構成を有するスペクトルデータ補間装置1にお
けるデータ補間動作について説明する。
Next, a data interpolation operation in the spectral data interpolation device 1 having the above configuration will be explained.

光電子分光分析装置、X線分析装置等で測定されたスペ
クトルデータは図示省略したCPUに一担取り込まれて
ここに記憶される。ざらにCPUには最小二乗適合形重
み付き移動平均法に基づ(最小二乗適合幅のパラメータ
、この最小二乗適合幅に従かう重み係数ならびに正規化
係数の各データが予じめ記憶されている。この状態から
、次にパラメータP(Pは整数)をCPUに刻して設定
すると最小二乗適合幅2P+1が同時に定まり、しかも
この最小二乗適合幅2P+1に従かう重み係数Wおよび
正規化係数Nが一義的に設定される(ステップ1)。そ
してCPUは第2図に示すように最小二乗適合幅2P+
1内にある補間対象の前後2つの実imデータDn、 
Dn++をスペクトルデータ補間装置1の仮補間値算出
器2へ出力する。仮補間値算出器2はとの2つの実測デ
ータDn、 Dn−+−+に基づき次式により仮補間値
Doを算出する(ステップ2)。
Spectral data measured by a photoelectron spectrometer, an X-ray analyzer, etc. is taken in and stored in a CPU (not shown). Roughly, the CPU is based on the least squares fitting type weighted moving average method (the parameters of the least squares fitting width, the weight coefficients according to this least squares fitting width, and the normalization coefficient data are stored in advance. From this state, if we then set the parameter P (P is an integer) in the CPU, the least squares fitting width 2P+1 is determined at the same time, and the weighting coefficient W and normalization coefficient N that follow this least squares fitting width 2P+1 are It is set uniquely (step 1).The CPU then sets the least squares fitting width 2P+ as shown in Fig. 2.
Two actual im data Dn before and after the interpolation target within 1,
Dn++ is output to the temporary interpolation value calculator 2 of the spectral data interpolation device 1. The temporary interpolation value calculator 2 calculates the temporary interpolation value Do using the following equation based on the two actual measurement data Dn and Dn-+-+ (step 2).

Do=11士シー 算出された仮補間値DOはこの仮補間埴算出器2に接続
された次段の乗算器4に送出される。その際同時にCP
Uから最小二乗適合幅2P+1に対応した各乗算器4に
対して最小二乗適合幅2P+1内の実測7’ −9Dn
−(1)−1)−・= Dn、 Dn−+−+−・−D
n+pならびにこの最小二乗適合幅2P+1により上記
実測データDIM p−+ )・・−・Dn、 Dn十
+・−・・D(n+p )に対応づけられる重み係数W
−p・・・・・・W−+、 Wo、 W+・・・・Wp
がそれぞれ出力される。各乗算孔4は入力された実測デ
ータDn −< p −1) ・・−Dn、 Dn+ 
+−・−・Dn+pと重み係数W−po、W−+ 、 
Wo、 W+ ・・・Wpとを乗算して次式のこと(そ
れぞれ乗算値X−p・・・・X−1,Xり、 X+・・
・・・・Xpを算出する(ステップ3)。
Do=11 The calculated temporary interpolation value DO is sent to the next stage multiplier 4 connected to this temporary interpolation value calculator 2. At the same time, CP
From U to each multiplier 4 corresponding to the least squares fitting width 2P+1, the actual measurement 7' -9Dn within the least squares fitting width 2P+1
−(1)−1)−・=Dn, Dn−+−+−・−D
n+p and this least square fitting width 2P+1, the weighting coefficient W associated with the above-mentioned measured data DIM p-+ )...Dn, Dn+...D(n+p)
-p...W-+, Wo, W+...Wp
are output respectively. Each multiplication hole 4 has input actual measurement data Dn −< p −1) . . . −Dn, Dn+
+−・−・Dn+p and weighting coefficients W−po, W−+,
Wo, W+...Wp are multiplied by the following formula (multiplying values X-p...X-1, X+, X+...
...Calculate Xp (step 3).

X−p = Dn−< p −1)・W−pχ−+=D
n−W−+ Xo = Do ・W。
X-p = Dn-< p-1)・W-pχ-+=D
n-W-+Xo=Do.W.

xl−Dl・WI Xp = Dn+p−Wp 各乗算器4で算出された乗算値x−p、、、・・、X−
s、 Xo。
xl-Dl・WI Xp = Dn+p-Wp Multiply value x-p calculated by each multiplier 4
s, Xo.

xl・・・・・・X]) li共に次段の加算器6に出
力される。加算器6は各乗算器4からの乗算値X−p・
・・・X−1゜Xo、 X+・・・・・Xpを加算して
次式のごとく加算値Yを算出するfステップ4)。
xl...X]) li are both output to the adder 6 at the next stage. The adder 6 receives the multiplied value X-p from each multiplier 4.
. . X-1°Xo, X+ . . . Xp are added to calculate the added value Y as shown in the following equation.

Y=X−p+ ・−−−−に−X−++)(o+X++
°°・・=+Xpこの加算値Yは次段の除算器8に送出
される。その際CPUからは除算器8に刻して最小二乗
適合幅2P+ 1に基づく正規化係数Nが同時に送出さ
れる。
Y=X−p+ ・−−−−−X−++)(o+X++
°°...=+Xp This added value Y is sent to the divider 8 at the next stage. At this time, the CPU simultaneously sends a normalization coefficient N to the divider 8 based on the least squares fitting width 2P+1.

除算器8は人力された加算値Yを正規化係数Nで除算し
て次式のごとく補間値pH+ o、sを算出する(ステ
ップ5)。
The divider 8 divides the manually added value Y by the normalization coefficient N to calculate the interpolated value pH+o,s as shown in the following equation (step 5).

Dn +o、s = Y/ N 上記により2つの実測データDn、Dn++間の補間値
1)n + o、 sが算出されると、CPUは次に実
測データ列を一つシフトして仮袖間値算出器2には最小
二乗適合幅2P+1内の次の実測データD(n++)。
Dn + o, s = Y/ N When the interpolation value 1) n + o, s between the two actual measurement data Dn, Dn++ is calculated as described above, the CPU then shifts the actual measurement data string by one and calculates the interpolation value between the two actual measurement data Dn, Dn++. The value calculator 2 receives the next measured data D(n++) within the least squares fitting width 2P+1.

D(n+2)を、また、各乗算器4にはD(n++ )
=(1)−1)〜D(n+n+pまでの実測データをそ
れぞれ出力する。そしてステップ2からステップ5まで
の動作を同様に繰返して次の補間値D(n+n+o、s
を算出する。
D(n+2), and each multiplier 4 has D(n++)
=(1)-1) to D(n+n+p) are output respectively.Then, the operations from step 2 to step 5 are repeated in the same way to obtain the next interpolated value D(n+n+o, s
Calculate.

このようにしてステップ2からステップ5までの動作が
順次繰返されて実測データの間が補間される。従って、
最小二乗適合幅2P+1が一度設定されると1つの補間
値を算出するにはステップ2からステップ5までの計4
段七ト1の処理ですむので演算に要する時間は極めて短
時間である。
In this way, the operations from step 2 to step 5 are sequentially repeated to interpolate between the actually measured data. Therefore,
Once the least squares fitting width 2P+1 is set, a total of 4 steps from Step 2 to Step 5 are required to calculate one interpolated value.
The time required for the calculation is extremely short since the processing in step 7 to 1 is sufficient.

なお、この実施例では一点補間した場合について説明し
たか補間処理を繰返すことにより複数点の補間が可能と
なる。また、実測データDn、 Dn++間を直線補間
し、仮補間点を複数とした上でこれに応じた最小二乗適
合幅を選定すれば一度に複数点の補間ができることにな
る。また、スペクトルデータの補間に限らず従来の最小
二乗法の適用できるデータの補間に本装置を広く応用で
きる。
In this embodiment, although the case of single-point interpolation has been described, it is possible to interpolate multiple points by repeating the interpolation process. Furthermore, if linear interpolation is performed between the measured data Dn and Dn++, a plurality of temporary interpolation points are set, and a least squares adaptation width is selected accordingly, it is possible to interpolate a plurality of points at once. Further, the present device can be widely applied not only to interpolation of spectral data but also to interpolation of data to which the conventional least squares method can be applied.

(へ) 効 果 以−にのように本発明によれば、従来に比べてスペクト
ルデータの補間処理が短時間に行なえるのでデータの拡
大表示が簡単になり、しかも、CPUを有効に活用でき
るという優れた効果が発揮される。
(f) Effects As described above, according to the present invention, interpolation processing of spectral data can be performed in a shorter time than in the past, making it easier to enlarge and display data, and moreover, the CPU can be used more effectively. This is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はスペクトルデー
タ補間装置のブロック図、第2図はデータ補間処理の説
明図である。 1・・・・・・スペクトルデータ補間装置、2・・団・
仮袖間値算出器、4・・・・・・乗算器、6・・・・・
・加算器、8・・・・・除算器。 出願人 株式会社島津製作所 代理人 弁理士間 1)和 秀
The drawings show an embodiment of the present invention, and FIG. 1 is a block diagram of a spectral data interpolation device, and FIG. 2 is an explanatory diagram of data interpolation processing. 1...spectral data interpolation device, 2...group...
Temporary sleeve distance value calculator, 4... Multiplier, 6...
・Adder, 8...Divider. Applicant Shimadzu Corporation Representative Patent Attorney 1) Hide Kazu

Claims (1)

【特許請求の範囲】[Claims] (1)最小二乗適合幅内にある補間対象の前後2つの実
測データを入力して仮補間値を算出する仮補間値算出器
と、前記最小二乗適合幅内の実測データならびにこの最
小二乗適合幅に基づき前記実測データにそれぞれ対応づ
けられる重み係数を入力して両者を乗算する複数の乗算
器と、これらの各乗算器から出力される乗算値を入力し
てこれらを加算する加算器と、この加算器から出力され
る加算値ならびに前記最小二乗適合幅に基づく正規化係
数を入力して加算値を正規化係数で除算する除算器とを
備えていることを特徴とするスペクトルデータ補間装置
(1) A provisional interpolation value calculator that calculates a provisional interpolation value by inputting two measured data before and after the interpolation target within the least squares matching width, and the actual measured data within the least squares matching width and this least squares matching width. a plurality of multipliers that input weighting coefficients respectively associated with the measured data based on the above-mentioned data and multiply the two; an adder that inputs the multiplication values output from each of these multipliers and adds them together; A spectral data interpolation device comprising: a divider that inputs an added value output from an adder and a normalization coefficient based on the least squares adaptation width and divides the added value by the normalization coefficient.
JP22168783A 1983-11-24 1983-11-24 Spectrum data interpolating device Pending JPS60113124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22168783A JPS60113124A (en) 1983-11-24 1983-11-24 Spectrum data interpolating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22168783A JPS60113124A (en) 1983-11-24 1983-11-24 Spectrum data interpolating device

Publications (1)

Publication Number Publication Date
JPS60113124A true JPS60113124A (en) 1985-06-19

Family

ID=16770702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22168783A Pending JPS60113124A (en) 1983-11-24 1983-11-24 Spectrum data interpolating device

Country Status (1)

Country Link
JP (1) JPS60113124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252924A (en) * 1990-06-22 1992-09-08 Matsushita Electric Ind Co Ltd Spectrometry
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
JP2017015526A (en) * 2015-06-30 2017-01-19 日置電機株式会社 Measurement device and measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
US5305233A (en) * 1986-06-02 1994-04-19 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
JPH04252924A (en) * 1990-06-22 1992-09-08 Matsushita Electric Ind Co Ltd Spectrometry
JP2017015526A (en) * 2015-06-30 2017-01-19 日置電機株式会社 Measurement device and measurement method

Similar Documents

Publication Publication Date Title
WO2002056166A2 (en) Harmonizing color selection system and method
CN106576088B (en) The system and method suppressed for peak factor
Wang et al. A second-order scheme with nonuniform time grids for Caputo–Hadamard fractional sub-diffusion equations
JPH08316855A (en) Method of presuming signal received in state of mixed signal
De Hoog et al. An efficient method for calculating smoothing splines using orthogonal transformations
Nijhoff et al. Elliptic N-soliton solutions of ABS lattice equations
CN106021882B (en) Index weights acquisition methods and system
JPS60113124A (en) Spectrum data interpolating device
JP2003244715A5 (en)
Iacono et al. Simple analytic approximations for the Blasius problem
CA2265389A1 (en) System and method for efficient basis conversion
CN107014785A (en) A kind of improved method of emission spectrum background correction
WO2014011729A1 (en) Method and apparatus for aligning the measurements of color measurement instruments
EP2272177B1 (en) Method for transmission line analysis
CN114781720A (en) Regional carbon emission prediction method and device and terminal equipment
JP4062547B2 (en) High-speed line-by-line calculation method and program based on forked linear decomposition
US20020152248A1 (en) Accurate and cost effective linear interpolators
US6324222B1 (en) Digital receiver with polyphase structure
Moesia et al. Discrete Logistic Growth Model with Capability to Go Backward in Time, Based on Successive Operations
JP3487178B2 (en) Apparatus and method for correcting digital numerical sequence
Albasi et al. Introduction to Mazeinda
Petropulu Noncausal nonminimum phase ARMA modeling of non-Gaussian processes
EP3364369A1 (en) Decoding a bayer-mask or like coded image
JP3335769B2 (en) Fixed-point square root arithmetic unit
JPH08237500A (en) Color signal conversion method