JPS6011276A - Manufacture of ceramic sintered body - Google Patents

Manufacture of ceramic sintered body

Info

Publication number
JPS6011276A
JPS6011276A JP11594983A JP11594983A JPS6011276A JP S6011276 A JPS6011276 A JP S6011276A JP 11594983 A JP11594983 A JP 11594983A JP 11594983 A JP11594983 A JP 11594983A JP S6011276 A JPS6011276 A JP S6011276A
Authority
JP
Japan
Prior art keywords
molded
degreased
ceramic
molding
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11594983A
Other languages
Japanese (ja)
Other versions
JPH0375510B2 (en
Inventor
仲 克
片野 靖
安藤 元英
村手 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
Nissan Motor Co Ltd
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical Nissan Motor Co Ltd
Priority to JP11594983A priority Critical patent/JPS6011276A/en
Publication of JPS6011276A publication Critical patent/JPS6011276A/en
Publication of JPH0375510B2 publication Critical patent/JPH0375510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、セラミンク焼結体の製造方法に関し、例え
ばガスタービンやターボチャージャに使用されるタービ
ンロータのように形状が複雑でしかも一部に厚肉部を有
するセラミック焼結体の製造に適するセラミック焼結体
の製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a ceramic sintered body, and relates to a method for manufacturing a ceramic sintered body, for example, for manufacturing a ceramic sintered body that has a complex shape and some The present invention relates to a method for manufacturing a ceramic sintered body suitable for manufacturing a ceramic sintered body having a thick portion.

(従来技術) 従来、セラミック焼結体の製造方法としては、例えば第
1図に示す工程を経るものがある。この方法は、セラミ
ック粉末を有機バインダと混合したのちペレタイジング
して粒状化し、次いて樹脂の射出成形と同様に射出成形
して成形体を作製し、次いで脱脂工程において前記成形
体から有機バインダを加熱除去し、その後焼結工程を経
たのち適宜仕上加工を施すことによってセラミック焼結
体を得るものである。この射出成形を利用したセラミッ
ク焼結体の製造方法は、とくに自動車部品のように複雑
な形状を有し且つ大量生産される部品の製造に適したも
のとして有望であるが、実際には、前記成形および脱脂
工程において種々の問題があり、製造可能なセラミック
焼結体の形状や肉厚に制限を生じているという状況であ
る。
(Prior Art) Conventionally, as a method for manufacturing a ceramic sintered body, there is a method that goes through the steps shown in FIG. 1, for example. In this method, ceramic powder is mixed with an organic binder and then pelletized into granules, then injection molded in the same manner as resin injection molding to produce a molded body, and then the organic binder is heated from the molded body in the degreasing process. A ceramic sintered body is obtained by removing the ceramic material, followed by a sintering process, and then performing appropriate finishing processing. This method of manufacturing ceramic sintered bodies using injection molding is particularly promising as a method suitable for manufacturing parts that have complex shapes and are mass-produced, such as automobile parts. There are various problems in the molding and degreasing processes, which limit the shape and thickness of ceramic sintered bodies that can be manufactured.

すなわち、複雑形状でかつ厚肉部を有する部品を射出成
形によって成形しようとする場合には、凝固収縮による
引けや温度低下と圧力伝達不足による溶着不良などが生
じ、成形工程において欠陥のない健全な成形体が得難い
という問題を有し、また、たとえ成形工程において成形
方法、成形条件、有機バインダ等を考慮することにより
欠陥のない成形体が得られたとしても、次の脱脂工程に
おいて有機バインダの化学的・物理的変化(例えば、揮
発・分解、溶融、架橋反応など)を生じやすいため健全
な脱脂体を得るのが困難であるという問題を有していた
In other words, when attempting to mold parts with complex shapes and thick parts by injection molding, shrinkage due to solidification shrinkage, poor welding due to temperature drop and insufficient pressure transmission, etc. occur, and the molding process is not defect-free and healthy. The problem is that it is difficult to obtain a molded product, and even if a defect-free molded product can be obtained by considering the molding method, molding conditions, organic binder, etc. in the molding process, it is difficult to obtain a molded product without removing the organic binder in the next degreasing process. Since chemical and physical changes (for example, volatilization/decomposition, melting, crosslinking reactions, etc.) tend to occur, it is difficult to obtain a healthy degreased product.

このため、厚肉部品であっても脱脂が可能である射出成
形用セラミック組成物の検討(例えば、特公昭54−9
5616号、特公昭55−23097号など)や、脱脂
工程の改良(例えば、特公昭57−17468号など)
が種々行われているが、それでも脱脂可能な肉厚には限
界があるという問題が残っていた。
For this reason, we investigated ceramic compositions for injection molding that can be degreased even for thick-walled parts (for example,
5616, Japanese Patent Publication No. 55-23097, etc.) and improvements in the degreasing process (e.g., Japanese Patent Publication No. 57-17468, etc.)
However, there remains the problem that there is a limit to the wall thickness that can be degreased.

そこで、例えば第2図に示すような翼部1と軸部2とか
らなるタービンロータ3の場合には、このタービンロー
タ3を翼部1と軸部2とに分割し、第3図に示す工程に
従って、セラミック粉末と有機バインダとを混合したの
ちペレタイジングによって粒状化し、次いで翼部1と軸
部2とを別々に射出成形して、得られた成形体中の有機
バインダを脱脂除去した後、画成形体を組合わせ嵌合し
たのちゴム被覆し、次いで静水圧加圧により一体に結合
し、その後焼結して適宜仕上加工を施すことも考えられ
た。
Therefore, for example, in the case of a turbine rotor 3 consisting of a blade section 1 and a shaft section 2 as shown in FIG. 2, the turbine rotor 3 is divided into the blade section 1 and shaft section 2 as shown in FIG. According to the process, the ceramic powder and the organic binder are mixed and then granulated by pelletizing, and then the wing part 1 and the shaft part 2 are separately injection molded, and the organic binder in the obtained molded body is degreased and removed. It has also been considered to combine and fit the image moldings, cover them with rubber, then bond them together by hydrostatic pressure, and then sinter and finish as appropriate.

この方法によれば、翼部1と軸部2とにおいて同一の射
出成形材料を使用しているので、脱脂後の密度および静
水圧加圧結合時の密度変化は第4図(成形体中の有機バ
インダ量が45体積%の場合を例示。)に示すように一
致しているため、収縮率の相違に起因する割れは発生せ
ず、多少の厚肉を有するタービンロータであっても欠陥
のない健全な焼結体を得ることができる。
According to this method, since the same injection molding material is used for the wing part 1 and the shaft part 2, the density after degreasing and the density change during isostatic pressurization are shown in Figure 4 (Fig. 4). (For example, the case where the amount of organic binder is 45% by volume is shown.) As a result, cracks due to differences in shrinkage ratio do not occur, and even if the turbine rotor has a somewhat thick wall, there will be no defects. A healthy sintered body can be obtained.

しかしながら、射出成形による場合には、セラミック粉
末中に40〜50体積%の有機バインダを添加しなけれ
ば良好に成形することができず、したがって脱脂工程で
除去すべき有機バインダの量が多く、脱脂可能な肉厚限
界が小さく、特に軸部の脱脂がむずかしいという問題を
有するほか、射出成形の際の凝固収縮や熱勾配に起因す
る欠陥および残留応力の発生を伴うことがあるという問
題を有していた。
However, when injection molding is used, good molding cannot be achieved unless 40 to 50% by volume of organic binder is added to the ceramic powder. In addition to the problem that the possible wall thickness limit is small and it is difficult to degrease the shaft part in particular, there is also the problem that defects and residual stress may occur due to solidification shrinkage and thermal gradients during injection molding. was.

そのため、特に焼結体の厚肉部分、すなわち第2図の例
では軸部2の部分を有機バインダの添加量が少なくても
成形できる静水圧加圧成形によって成形することも考え
られるが(特開昭57−88201号)、射出成形によ
り成形した翼部1(成形体中の有機バインダ量が45体
積%)と、静水圧加圧成形により成形した軸部2(成形
体中の有機バインダ量が10体積%、成形圧力が1 、
5 ton 7cm2)とでは、第5図に示すように、
特に脱脂後の密度さらに加うるに両者を嵌合した後の静
水圧加圧結合時の密度変化が異なっているため、収縮率
の相違に起因する割れが発生することがあるという問題
を有していた。そのため、従来の場合には、射出成形に
より成形したセラミック成形Φ脱脂体と、通常の静水圧
加圧成形により成形したセラミック成形・脱脂体とを組
合わせて結合したのち焼成して欠陥のないセラミック焼
結体を得ようとすることは困難であった。
Therefore, it is conceivable to form the particularly thick part of the sintered body, that is, the shaft part 2 in the example of FIG. The wing part 1 was molded by injection molding (the amount of organic binder in the molded product was 45% by volume), and the shaft part 2 was molded by isostatic pressure molding (the amount of organic binder in the molded product was 45% by volume). is 10% by volume, molding pressure is 1,
5 ton 7cm2), as shown in Figure 5,
In particular, there is a problem that cracks may occur due to the difference in shrinkage rate because the density after degreasing and in addition, the density change during isostatic pressure bonding after fitting the two is different. was. Therefore, in the conventional case, a ceramic molded Φ degreased body formed by injection molding and a ceramic molded / degreased body molded by ordinary isostatic pressure molding are combined and bonded, and then fired to create a defect-free ceramic body. Attempts to obtain sintered bodies were difficult.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、成形性に優れ複雑形状品の量産に適する射出
成形法により成形したセラミック成形・脱脂体と、有機
バインダの使用量が少なくとも成形可能であって脱脂欠
陥の発生のおそれが小さい静水圧加圧成形法により成形
したセラミック成形・脱脂体とを、静水圧加圧によって
支障なく結合一体化させることが可能であり、焼成後に
は強度および寸法精度に優れ、従来にない複雑かつ厚肉
部を有するセラミック焼結体を製造することができる方
法を提供することを目的としている。
(Purpose of the Invention) This invention was made by focusing on these conventional problems. It is possible to bond and integrate ceramic molded and degreased bodies molded using the isostatic pressure molding method, which uses at least the amount of binder that can be molded and has a low risk of degreasing defects, without any problems using hydrostatic pressure. It is an object of the present invention to provide a method capable of producing a ceramic sintered body having excellent strength and dimensional accuracy after firing, and having a complex and thick portion not seen in the past.

(発明の構成) この発明によるセラミック焼結体の製造方法は、射出成
形により成形したセラミック成形・脱脂体と、静水圧加
圧成形により成形したセラミック成形・脱脂体とを、積
層や嵌合等により組合わせて結合した後焼結してセラミ
ック焼結体を得るに際し、射出成形により成形したセラ
ミック成形・焼結体と、静水圧加圧成形により成形した
セラミック成形・焼結体とを、各セラミック成形・焼結
体の脱脂後の密度が相互に近似するように例えば有機バ
インダの量および種類、成形圧力、成形温度等を調整し
ておき、あるいは、成形体の脱脂後静水圧成形により密
度を調整しておき、次いで両セラミック成形・脱脂体を
積層や嵌合等により組合わせた後静水圧加圧により両セ
ラミック成形・脱脂体を結合し、その後焼結するように
したことを特徴とするものである。
(Structure of the Invention) A method for producing a ceramic sintered body according to the present invention is to combine a molded/degreased ceramic body molded by injection molding and a molded/degreased ceramic body molded by isostatic pressure molding by laminating, fitting, etc. When combining and bonding and sintering to obtain a ceramic sintered body, the ceramic molded and sintered body formed by injection molding and the ceramic molded and sintered body formed by isostatic pressing are each For example, the amount and type of organic binder, molding pressure, molding temperature, etc. may be adjusted so that the densities of the ceramic molded/sintered bodies after degreasing are similar to each other, or the density can be increased by isostatic pressing after degreasing the molded bodies. is adjusted, and then both molded and degreased ceramic bodies are combined by lamination, fitting, etc., and then both molded and degreased ceramic bodies are bonded by isostatic pressure, and then sintered. It is something to do.

第6図はこの発明の一実施態様を示すセラミック焼結体
の製造工程図であり、以下、工程図に従って説明する。
FIG. 6 is a process diagram for manufacturing a ceramic sintered body showing one embodiment of the present invention, and will be described below according to the process diagram.

なお、ここでは翼部と軸部とを組合わせたタービンロー
タを例にとって説明するが、このような部品に限定され
ないことは当然である。
Note that although a turbine rotor that combines a blade portion and a shaft portion will be described as an example, it is natural that the present invention is not limited to such parts.

まず、翼部の成形に際しては、セラミ・ンク粉末に射出
成形が可能となるだけの流動性を与えるために有機バイ
ンタ頁例えば40〜50体積%)を混合し、ペレタイジ
ングによって粒状化したのち、射出成形して成形体を得
る。次に、この成形体を適宜の雰囲気中で且つ成形体に
亀裂やふくれが発生しないような昇温速度で除々に加熱
し、有機バインダを揮発分解除去して脱脂体を得る。
First, when molding the wing parts, in order to give the ceramic powder enough fluidity to enable injection molding, organic binder powder (e.g. 40 to 50% by volume) is mixed, granulated by pelletizing, and then injection molded. A molded body is obtained by molding. Next, this molded body is gradually heated in an appropriate atmosphere at a temperature increase rate that does not cause cracks or blisters in the molded body, and the organic binder is removed by volatile decomposition to obtain a degreased body.

一方、動部の成形に際しては、セラミック粉末に加圧成
形が可能となるだけの結合性を与えるために有機バイン
ダ(例えば20〜40体積%)を混合し、粉砕および整
粒(例えば500 gm以下)した後ゴム型に充填し、
静水圧加圧によって成形体を得る。このとき、脱脂後の
密度、より好ましくはさらに静水圧加圧結合時の密度変
化が、前記翼部の脱脂体の密度および静水圧加圧結合時
の密度変化と相互に近似(例えば5%以内)するように
、有機バインダの種類および量、静水圧加圧力、加圧時
の温度を調整する。次に、得られた成形体を適宜の雰囲
気中で且つ成形体に亀裂やふくれが発生しないような昇
温速度で徐々に加熱し、有機バインダを揮発分解除去し
て脱脂体を得る。
On the other hand, when molding moving parts, an organic binder (e.g. 20 to 40% by volume) is mixed to give the ceramic powder enough bonding properties to enable pressure molding, and the powder is pulverized and sized (e.g. 500 gm or less). ) and then fill it into a rubber mold.
A molded body is obtained by hydrostatic pressing. At this time, the density after degreasing, more preferably, the density change during isostatic pressure bonding is close to the density of the degreased body of the wing portion and the density change during hydrostatic pressure bonding (for example, within 5%). ), adjust the type and amount of organic binder, hydrostatic pressure, and temperature during pressurization. Next, the obtained molded body is gradually heated in an appropriate atmosphere at a temperature increase rate that does not cause cracks or blisters in the molded body, and the organic binder is removed by volatile decomposition to obtain a degreased body.

次いで、翼部の成形−脱脂体と軸部の成形・脱脂体とを
嵌合(第2図参照)して組合わせた後表面の全体にゴム
等の弾性と気密性を有する膜を被覆し、静水圧加圧によ
り圧縮して結合する。このとき、翼部と軸部の嵌合に先
立って、軸部の成形体もしくは脱脂体(第6図では成形
体を例示)の嵌合部を加工し、組合わせ嵌合時に嵌合部
分の密着性を高めるようにすることは、静水圧加圧結合
時の亀裂発生を抑制する効果があるが、ゴム型の精度お
よび充填率の制御によって嵌合部の精度が確保できれば
、このような嵌合部の加工を省略することも可能である
Next, after the molded and degreased body of the wing part and the molded and degreased body of the shaft part are fitted and combined (see Figure 2), the entire surface is covered with a film having elasticity and airtightness such as rubber. , compressed and bonded by hydrostatic pressure. At this time, prior to fitting the wing part and the shaft part, the fitting part of the molded body or degreased body of the shaft part (the molded body is shown as an example in FIG. 6) is processed, and when the combination fitting is performed, the fitting part is processed. Increasing the adhesion has the effect of suppressing the occurrence of cracks during hydrostatic pressure bonding, but if the precision of the fitting part can be ensured by controlling the precision of the rubber mold and the filling rate, such a fit will be prevented. It is also possible to omit processing of the joint.

次に、上記静水圧加圧による結合体を適宜の雰囲気およ
び温度で焼成して焼結させることによりセラミック焼結
体を作成し、適宜仕上加工を施してセラミックタービン
ロータを得る。
Next, a ceramic sintered body is created by firing and sintering the above-described hydrostatically pressurized bonded body in an appropriate atmosphere and temperature, and a ceramic turbine rotor is obtained by appropriately finishing the combined body.

第7図はこの発明の他の実施態様を示すセラミック焼結
体の製造工程図であり、以下、この工程図に従って説明
する。
FIG. 7 is a process diagram for manufacturing a ceramic sintered body showing another embodiment of the present invention, and the following description will be made according to this process diagram.

まず、セラミック粉末に適量の焼結助剤と有機溶媒とを
添加ルたのち湿式混合・粉砕を十分に行い、続いて乾燥
およびほぐしを行って均質な混合粉末とする。
First, an appropriate amount of a sintering aid and an organic solvent are added to ceramic powder, followed by sufficient wet mixing and pulverization, followed by drying and loosening to obtain a homogeneous mixed powder.

次に、翼部の成形に際しては、前記混合粉末に有機バイ
ンダを混合して混練し、これを用いて射出成形して成形
体を得る。次に、この成形体を加熱して有機バインダを
除去する脱脂を行ったのち、静水圧加圧によって脱脂体
の密度調整を行って、翼部の成形・脱脂体を得る。
Next, when molding the wing portion, an organic binder is mixed and kneaded with the mixed powder, and the mixture is injection molded to obtain a molded body. Next, this molded body is heated to perform degreasing to remove the organic binder, and then the density of the degreased body is adjusted by hydrostatic pressurization to obtain a molded and degreased body of the wing portion.

一方、軸部の成形に際しては、前記混合粉末に有機バイ
ンダおよび必要に応じて潤滑剤を添加し、泥漿として噴
霧乾燥機等により造粒を行って粉粒体としたのち、静水
圧加圧成形して成形体を得る。次に、この成形体を加工
し、加熱して有機バインダを除去する脱脂を行ったのち
、再度静水圧加圧によって脱脂体の密度調整を行い、軸
部の成形串脱脂体を得る。
On the other hand, when forming the shaft part, an organic binder and a lubricant are added to the mixed powder as necessary, and the slurry is granulated using a spray dryer or the like to form powder, and then isostatic pressure molding is performed. to obtain a molded body. Next, this molded body is processed and degreased by heating to remove the organic binder, and then the density of the degreased body is adjusted again by isostatic pressure to obtain a shaped skewer degreased body of the shaft portion.

上記した静水圧加圧による密度調整においては、翼部成
形・脱脂体の密度が、軸部成形・脱脂体の密度と±5%
以内で近似しているようにする。次いで、翼部および軸
部成形・脱脂体を嵌合し、ゴム等の気密膜を被覆したの
ち静水圧加圧によって少なくとも再成形・脱脂体の密度
が向上する圧力で結合して一体化し、その後適宜の雰囲
気および温度で焼成して焼結させることによりセラミッ
ク焼結体を製作し、適宜仕上加工を施してセラミックタ
ービンロータラ得ル。
In the density adjustment using the above-mentioned hydrostatic pressurization, the density of the wing molded and degreased body is ±5% of the density of the shaft molded and degreased body.
The approximation should be within the range. Next, the wing and shaft molded and degreased bodies are fitted together, covered with an airtight membrane such as rubber, and then joined and integrated using hydrostatic pressure to increase the density of at least the remolded and degreased body. A ceramic sintered body is manufactured by firing and sintering in an appropriate atmosphere and temperature, and a ceramic turbine rotor is obtained by applying appropriate finishing processing.

なお、翼部および軸部成形・脱脂体において、各々静水
圧加圧による密度調整を行ったのちに翼部の嵌合孔と軸
部の嵌合部とを現物合わせにより加工を施すことによっ
て、翼部と軸部の嵌合による一体化をさらに良好なもの
とすることができる。
In addition, after adjusting the density of the molded and degreased body of the wing part and the shaft part by applying hydrostatic pressure, the fitting hole of the wing part and the fitting part of the shaft part are processed by matching the actual parts. It is possible to further improve integration by fitting the wing portion and the shaft portion.

(実施例1) 平均粒径0.3pLmのβ−5iC粉末96.0重量部
と、平均粒径0.2pLmの金属B粉末0.1重量部と
、液体フェノール樹脂(レゾール)4.0重量部(Si
Cに約2.0重量%の炭素を与えるのに十分な量)とを
エタノール中にて約24時間ボールミルにより混合した
。次に、この混合物を噴霧乾燥機にて乾燥し、得られた
乾燥粉末100重量部と、可塑化したポリスチレン樹脂
8重量部と、低分子ポリエチレン樹脂5重量部と、エス
テルワックス3.6重量部と、ジブチルフタレート5重
量部と、脂肪酸エステル1.5重量部とを攪拌型加熱混
練機で混練したのち、バンバリー型混練機で150°C
で約1時間混練した。
(Example 1) 96.0 parts by weight of β-5iC powder with an average particle size of 0.3 pLm, 0.1 part by weight of metal B powder with an average particle size of 0.2 pLm, and 4.0 parts by weight of liquid phenolic resin (resol). Part (Si
(sufficient to provide about 2.0% by weight carbon) in ethanol for about 24 hours by ball milling. Next, this mixture was dried in a spray dryer, and 100 parts by weight of the obtained dry powder, 8 parts by weight of plasticized polystyrene resin, 5 parts by weight of low-molecular polyethylene resin, and 3.6 parts by weight of ester wax were added. , 5 parts by weight of dibutyl phthalate, and 1.5 parts by weight of fatty acid ester were kneaded in a stirring-type heating kneader, and then heated at 150°C in a Banbury-type kneader.
The mixture was kneaded for about 1 hour.

続いて、得られた混練体を冷却し、粉砕機を用いて約3
mm程度の大きさにペレット化し、射出成形用の供給原
料とした。なお、混線体の有機バインダ量は48体積%
である。
Subsequently, the obtained kneaded body was cooled and crushed into about 3
The pellets were pelletized to a size of about mm and used as a feedstock for injection molding. The amount of organic binder in the crosstalk body is 48% by volume.
It is.

次に、翼部の射出成形に際しては、プランジャ型の成形
装置を使用し、加熱筒温度180℃、金型温度45℃、
射出圧力1ton/cm2.加圧。
Next, when injection molding the wing part, a plunger type molding device was used, the heating cylinder temperature was 180°C, the mold temperature was 45°C,
Injection pressure 1 ton/cm2. Pressurization.

時間2分の条件で射出成形して第8図に示す形状の翼部
成形体11を得た。なお、この翼部成形体11は、焼結
後の翼外径が120mmとなるように設計してあり、図
に示すように、翼外径d、=143mmでかつ小径d2
=24mm、大径d3=57mmの嵌合孔12を有し、
かつハブ部の最大肉厚がt1=14mmにして成形後の
脱脂が容易となるように薄肉化がはかっである。
The molded wing part 11 having the shape shown in FIG. 8 was obtained by injection molding for 2 minutes. The wing molded body 11 is designed so that the outer diameter of the wing after sintering is 120 mm, and as shown in the figure, the outer diameter d of the wing is 143 mm and the small diameter d2 is 143 mm.
= 24 mm, and has a fitting hole 12 with a large diameter d3 = 57 mm,
In addition, the maximum wall thickness of the hub portion is set to t1 = 14 mm to make it thinner so that it can be easily degreased after molding.

次いで、得られた翼部成形体11を窒素雰囲気中におい
て450℃まで2.5℃/hrの昇温速度で加熱した。
Next, the obtained wing molded body 11 was heated to 450° C. at a temperature increase rate of 2.5° C./hr in a nitrogen atmosphere.

引続いて、昇温速度を7.5℃/hrに増大して900
℃まで加熱し、900°Cで2時間保持して脱脂を行い
、冷却して翼部成形・脱脂体を得た。なお、ここでは翼
部成形体を20個製作して上記の条件で脱脂したが、脱
脂後にはその全てに何らの欠陥も認められなかった。
Subsequently, the heating rate was increased to 7.5°C/hr to 900°C.
It was heated to 900°C, held at 900°C for 2 hours to perform degreasing, and cooled to obtain a molded and degreased wing part. Here, 20 wing molded bodies were manufactured and degreased under the above conditions, but no defects were observed in any of them after degreasing.

一方、軸部成形体の作製に際しては、前記した翼部の成
形に用いた乾燥粉末と同一バッチの粉末を使用し、この
乾燥粉末100重量部と、低分子ポリエチレン3.7重
量部と、酸化マイクロクリスタリンワックス3重量部と
、酸化パラフィンワックス3重量部と、エステルワック
ス2.7重量部と、ジエチルフタレート3.7重量部と
、脂肪酸エステル1.1重量部とを加え、翼部と同じ方
法で混練した、ここで得られた混練体の有機ノくインダ
量は35体積%である。次に、この混練体をヘンシェル
式造粒機によりドライアイスで冷却しながら粉砕し、5
00gmのふるいを通過させて静水圧加圧成形用の原料
とした。
On the other hand, when producing the shaft molded body, powder from the same batch as the dry powder used for molding the wing parts was used, and 100 parts by weight of this dry powder, 3.7 parts by weight of low molecular weight polyethylene, and oxidized Add 3 parts by weight of microcrystalline wax, 3 parts by weight of oxidized paraffin wax, 2.7 parts by weight of ester wax, 3.7 parts by weight of diethyl phthalate, and 1.1 parts by weight of fatty acid ester, and use the same method as for the wing part. The organic powder content of the kneaded body obtained here was 35% by volume. Next, this kneaded body was pulverized using a Henschel type granulator while cooling with dry ice.
The material was passed through a sieve of 0.00 gm and used as a raw material for isostatic pressing.

次いで、ゴム型内に上記原料を振動を加えながら充填し
たのち、この充填体を60℃に保持したオーブン中に1
時間保持し、その後直ちに薄いゴム袋で被覆し、2to
n 70m2の加圧力で静水圧加圧成形して第9図に示
す形状の軸部成形体13を得た。この成形に際しては、
ゴム型の寸法と混線体の充填率を調整することによって
、直径d4=24+nm、 d5= 57mm、 d6
 = 30+nmの目標寸法の+0.2〜+1.0mm
の範囲内となるようにした。次に、得られた成形体を超
硬バイトを用いた旋盤加工に供して第9図のd4〜d6
に示す寸法に仕上げた後、窒素雰囲気中で450℃まで
5℃/hrの昇温速度で加熱した。続いて、昇温速度を
15℃/hrに増大して900℃まで加熱し、900℃
で2時間保持して脱脂した後冷却して軸部成形・脱脂体
を得た。なお、ここでは軸部成形体を20個製作して上
記の条件で脱脂したが、脱脂後にはその全てに何らの欠
陥も認められなかった。
Next, after filling the above raw material into a rubber mold while applying vibration, the filled body was placed in an oven maintained at 60°C for 1 hour.
Hold for a while, then immediately cover with a thin rubber bag and use 2 to
The molded shaft portion 13 having the shape shown in FIG. 9 was obtained by isostatic pressing at a pressure of n70 m2. During this molding,
By adjusting the dimensions of the rubber mold and the filling rate of the crosstalk body, the diameter d4 = 24 + nm, d5 = 57mm, d6
= +0.2 to +1.0mm of target dimension of 30+nm
within the range. Next, the obtained molded body is subjected to lathe processing using a carbide cutting tool, and
After finishing to the dimensions shown in , it was heated in a nitrogen atmosphere to 450° C. at a temperature increase rate of 5° C./hr. Subsequently, the temperature increase rate was increased to 15°C/hr, and the temperature was increased to 900°C.
After degreasing by holding for 2 hours, a molded and degreased shaft body was obtained. Here, 20 shaft molded bodies were manufactured and degreased under the above conditions, but no defects were observed in any of them after degreasing.

次に、上記工程によって得られた翼部成形・脱脂体およ
び軸部成形・脱脂体の各々脱脂後の密度および静水圧加
圧時の密度変化を調べたところ、第10図に示すように
±5%以内で著しく近似したものであることがわかった
Next, we investigated the density after degreasing and the density change during hydrostatic pressurization of the molded and degreased body of the wing part and the molded and defatted shaft part obtained by the above process, and found that ± It was found that they were very close to each other within 5%.

続いて、翼部成形体11の嵌合孔12に軸部成形体11
を挿入し、すり合わせて嵌合した後、薄いゴム袋により
被覆し、続いて2 ton / 0m2の静水圧加圧を
加えて両者を統合一体化した。この加圧は画成形体を1
0セツトについて行ったところ、一体化した後の成形体
には亀裂などの欠陥の発生は認められなかった。
Subsequently, the shaft molded body 11 is inserted into the fitting hole 12 of the wing molded body 11.
After inserting and rubbing them together, they were covered with a thin rubber bag, and then hydrostatic pressure of 2 tons/0 m2 was applied to integrate the two. This pressure pressurizes the image molded object by 1
0 set, no defects such as cracks were observed in the molded product after integration.

次に、上記によって得られた10個の一体成形体を黒鉛
抵抗発熱型の真空炉内に装入し。
Next, the ten integrally molded bodies obtained above were placed in a graphite resistance heating type vacuum furnace.

1500℃まで100’O/hrの昇温速度で加熱し、
1500’C!で4時間保持した後、300℃/hrの
昇温速度で2100℃まで温度を上げ、2100°Cに
約2時間保持したのち炉冷して焼結体とした。得られた
タービンロータ焼結体には亀裂などの欠陥の発生は全く
認められなかった。
Heating to 1500°C at a temperature increase rate of 100'O/hr,
1500'C! After being held for 4 hours, the temperature was raised to 2100°C at a heating rate of 300°C/hr, held at 2100°C for about 2 hours, and then cooled in a furnace to obtain a sintered body. No defects such as cracks were observed in the obtained turbine rotor sintered body.

(比較例1) 実施例1において翼部の射出成形に用いた原料と同じも
のを使用し、同じ条件で射出成形して第9図に示す軸部
成形体13を合計10個製作した。次に、得られた軸部
成形体13を450°Cまで2,5°C/hrの昇温速
度で窒素雰囲気中で加熱して脱脂を行った。次いで、冷
却後の脱脂体を調べたところ、全てに亀裂などの欠陥の
発生が認められ、脱脂可能な肉厚には限界のあることが
わかった。
(Comparative Example 1) Using the same raw materials as those used for injection molding of the wing portion in Example 1, injection molding was performed under the same conditions to produce a total of 10 shaft molded bodies 13 shown in FIG. 9. Next, the obtained shaft molded body 13 was heated in a nitrogen atmosphere to 450°C at a temperature increase rate of 2.5°C/hr to perform degreasing. Next, when the degreased bodies were examined after cooling, defects such as cracks were observed in all of them, and it was found that there was a limit to the wall thickness that could be degreased.

(比較例2) 実施例1において軸部の成形に用いた原料と同一組成の
有機バインダを乾燥粉末に対して48体積%添加した混
練体を実施例1と同一の方法で作成し、比較例1と同一
の条件で軸部の射出成形と脱脂を行った。次いで、得ら
れた脱脂体を調べたところ全てに亀裂などの欠陥の発生
が認められ、健全な脱脂体を得ることができなかった。
(Comparative Example 2) A kneaded body in which 48% by volume of an organic binder having the same composition as the raw material used for molding the shaft portion in Example 1 was added to the dry powder was prepared in the same manner as in Example 1, and a comparative example Injection molding and degreasing of the shaft portion were performed under the same conditions as in Example 1. Next, when the obtained degreased bodies were examined, defects such as cracks were found in all of them, and it was not possible to obtain a sound degreased body.

(比較例3) 実施例1において軸部の成形に用いた原料と同一組成の
有機バインダを乾燥粉末に対して19体積%添加し、た
混練体をヘンシェル型造粒機にかけて造粒し、次いで同
様にして500JLmのふるいを通過させて静水圧加圧
成形用の原料とした。次に、この原料を使用して実施例
1と同じ条件で第9図に示す軸部成形体を成形し、続い
て加工および脱脂を行った。ここで得られた脱脂体15
個には亀裂などの欠陥が認められなかったので、実施例
1と同一の方法で成形した10個の翼部成形・脱脂体と
組合わせて嵌合し、実施例1と同様にして静水圧加圧結
合を行ったところ、10個全部に亀裂が発生していた。
(Comparative Example 3) An organic binder having the same composition as the raw material used for molding the shaft portion in Example 1 was added to the dry powder in an amount of 19% by volume, and the kneaded body was granulated using a Henschel type granulator. Similarly, it was passed through a 500 JLm sieve to obtain a raw material for isostatic pressing. Next, using this raw material, a shaft molded body shown in FIG. 9 was molded under the same conditions as in Example 1, followed by processing and degreasing. Degreased body 15 obtained here
Since no defects such as cracks were observed in the pieces, they were fitted in combination with 10 molded and degreased wing parts molded in the same manner as in Example 1, and hydrostatic pressure was applied in the same manner as in Example 1. When pressure bonding was performed, cracks had occurred in all 10 pieces.

そして、残り5個の軸部成形・脱脂体の脱脂後の密度お
よび静水圧加圧時の密度変化を調べたところ、第11図
に示す結果であり、翼部成形・脱脂体の脱脂後の密度お
よび静水圧加圧時の密度変化と異なるものであることが
わかった。
Then, we investigated the density after degreasing of the remaining five shaft molded and degreased bodies and the density change during hydrostatic pressurization, and the results are shown in Figure 11. It was found that the density and density change during hydrostatic pressurization were different.

(比較例4) 実施例1において使用した乾燥粉末(顆粒径80pLm
以下)をそのまま実施例1で用いたゴム型に充填し、静
水圧2 、 Oton / 0m2で10個の軸部成形
体を成形したところ、10個中8個に亀裂が発生してい
た。次いで、亀裂が発生しなかった2個を加工し、実施
例1と同一の方法で作製した2個の翼部成形・脱脂体と
組合わせて嵌合し、静水圧加圧結合を行ったところ、2
個ともに亀裂が発生した。また、亀裂が発生していた8
個の軸部成形・脱脂体の静水圧加圧時の密度変化を調べ
たところ、第12図に示す結果となり、軸部成形・脱脂
体と翼部成形・脱脂体の密度が大きく異なるものであっ
た。
(Comparative Example 4) Dry powder used in Example 1 (granule size 80 pLm
The following) was filled into the rubber mold used in Example 1 as it was, and when 10 shaft molded bodies were molded under a hydrostatic pressure of 2 Oton/0 m2, cracks had occurred in 8 of the 10 molded bodies. Next, the two pieces that did not develop cracks were processed and combined with two wing molded and degreased bodies produced in the same manner as in Example 1, fitted together, and bonded using hydrostatic pressure. ,2
Cracks occurred in both. In addition, cracks had occurred8.
When we investigated the density change of the molded and degreased shaft parts during hydrostatic pressurization, we obtained the results shown in Figure 12, which showed that the densities of the molded and defatted shaft parts and the molded and degreased wing parts were significantly different. there were.

(比較例5) 比較例4のうち、軸部成形体の成形圧力を小さくして0
 、5 ton / am2の圧力で成形したところ、
lO個中7個に亀裂が発生した。次に、亀裂が発生しな
かった3個について第9図に示した軸部の寸法に加工し
ようとしたところ、チャックの際の加圧力で成形体は破
損した。また、この゛軸部成形・脱脂体の静水圧加圧時
の密度変化を調べたところ、第13図に示すように、翼
部の成形・脱脂体の密度変化と±5%以内で合致してい
た。このように、成形會脱脂体の静水圧加圧時の密度変
化は成形体の成形圧力によっても変えうるが、ここでは
軸部成形体の成形圧力が小さすぎるため好ましくなかっ
た。
(Comparative Example 5) In Comparative Example 4, the molding pressure of the shaft molded body was reduced to 0.
, when molded at a pressure of 5 tons/am2,
Cracks occurred in 7 out of 10 pieces. Next, when an attempt was made to process the three pieces in which no cracks had occurred to the dimensions of the shaft shown in FIG. 9, the molded bodies were damaged by the pressure applied during chuck. In addition, when we investigated the density change of the molded and degreased body of the shaft part during hydrostatic pressurization, we found that it matched the density change of the molded and degreased body of the wing part within ±5%, as shown in Figure 13. was. As described above, the density change of the degreased body during isostatic pressing can be changed by the molding pressure of the molded body, but in this case, the molding pressure of the shaft molded body was too low, which was not preferable.

(実施例2) この実施例は、軸流形のタービンロータの製造例である
(Example 2) This example is an example of manufacturing an axial flow type turbine rotor.

すなわち、平均粒径0.6μmのSi3N4粉末90重
量部と、平均粒径0.4ルmのY2O3粉末lO重量部
とをアルミナ製のポットとポールを用いてエタノール中
で100時間混合したのち、この混合物を真空攪拌乾燥
機にて乾燥した。
That is, 90 parts by weight of Si3N4 powder with an average particle size of 0.6 μm and 10 parts by weight of Y2O3 powder with an average particle size of 0.4 μm were mixed in ethanol for 100 hours using an alumina pot and pole. This mixture was dried in a vacuum stirring dryer.

次に、得られた乾燥粉末100重量部と、ポリプロピレ
ン樹脂8重量部と、エチレンビニルアセテート5重量部
と、酸化マイクロクリスタリンワックス1.8重量部と
、ステアリン酸1.5重量部とを攪拌型加熱混練機によ
り混練した後、バンバリー−混線機により130℃で約
1時間混練した。次いで、得られた混練体を冷却し、粉
砕機により約3mm程度の大きさにペレット化して射出
成形用の原料とした。このとき、混練体の有機バインダ
量は46体積%であった。
Next, 100 parts by weight of the obtained dry powder, 8 parts by weight of polypropylene resin, 5 parts by weight of ethylene vinyl acetate, 1.8 parts by weight of oxidized microcrystalline wax, and 1.5 parts by weight of stearic acid were mixed in a stirring mold. After kneading with a heating kneader, the mixture was kneaded with a Banbury mixer at 130° C. for about 1 hour. Next, the obtained kneaded body was cooled and pelletized into pellets having a size of about 3 mm using a pulverizer to be used as a raw material for injection molding. At this time, the amount of organic binder in the kneaded body was 46% by volume.

次に、射出成形に際してはスクリュー型の成形装置を使
用し、加熱筒温度160℃、金型温度35°C9射出圧
力1 ton 7cm2.加圧時間2分の条件で第14
図に示す形状の軸流タービンロータ20の翼部21を成
形した。この翼部21は、焼結後の大外径が155mm
となるように設計してあり、直径d7 = 154mm
、 dB = 122mmで、かつハブ部の最大肉厚が
12=約13mmであって、成形後の脱脂が容易になる
ように薄肉化がはかっである。次いで、得られた成形体
を大気雰囲気中で、450°Cまで2.5℃/hrの昇
温速度で加熱し、450℃で2時間保持して脱脂したの
ち冷却し、翼部の成形・脱脂体を得た。この成形体は全
部で20個作製して各々脱脂したが、そのすべてに欠陥
の発生は認められなかった。
Next, for injection molding, a screw-type molding device was used, the heating cylinder temperature was 160°C, the mold temperature was 35°C, the injection pressure was 1 ton 7cm2. No. 14 under the condition of pressurization time of 2 minutes.
A blade portion 21 of an axial turbine rotor 20 having the shape shown in the figure was molded. This wing portion 21 has a large outer diameter of 155 mm after sintering.
It is designed so that the diameter d7 = 154mm
, dB = 122 mm, and the maximum wall thickness of the hub portion is 12 = approximately 13 mm, which is designed to be thin to facilitate degreasing after molding. Next, the obtained molded body was heated to 450°C in the air at a heating rate of 2.5°C/hr, held at 450°C for 2 hours to degrease, and then cooled to mold and mold the wing section. A defatted body was obtained. A total of 20 molded bodies were made and each was degreased, but no defects were observed in any of them.

一方、軸部の成形に際しては、前記翼部と同一バッチの
乾燥粉末100重量部と、パラフィンワックス2重量部
と、酸化パラフィンワックス1.7重量部と、酸化マイ
クロクリスタリンワックス1.7重量部と、エステルワ
ックス1.5重量部と、ジブチルフタレート2重量部と
、ステアリン酸0.6重量部とを加え、ヘンシェル式造
粒機を用いて混練したのち粉砕・造粒した。このとき、
混練体中の有機バインダの量は20体積%であった。そ
して、得られた混線体を500 gmのふるいに通過さ
せて静水圧加圧成形用の原料とした。
On the other hand, when forming the shaft part, 100 parts by weight of dry powder from the same batch as the wing part, 2 parts by weight of paraffin wax, 1.7 parts by weight of oxidized paraffin wax, and 1.7 parts by weight of oxidized microcrystalline wax were used. , 1.5 parts by weight of ester wax, 2 parts by weight of dibutyl phthalate, and 0.6 parts by weight of stearic acid were added, kneaded using a Henschel type granulator, and then crushed and granulated. At this time,
The amount of organic binder in the kneaded body was 20% by volume. Then, the obtained mixed wire body was passed through a 500 gm sieve to be used as a raw material for isostatic pressing.

次に、前記5’00gm以下の混練体をゴム型内に振動
を加えながら充填し、この充填体を45℃に保ったオー
ブン中に2時間保持した後、直ちに薄いゴム袋で被覆し
て1 、5 ton / Cm2の静水圧加圧で第14
図に示す形状のディスクφ軸部成形体23を成形した。
Next, the kneaded body of 5'00 gm or less was filled into a rubber mold while being vibrated, and the filled body was kept in an oven kept at 45°C for 2 hours, and then immediately covered with a thin rubber bag. , 14th with hydrostatic pressurization of 5 ton/Cm2
A disc φ shaft molded body 23 having the shape shown in the figure was molded.

このとき、ゴム型の寸法と混練体の充填率とを調整する
ことによって、ディスク・軸部成形体23の寸法が第1
4図に示す寸法(d9= 33mm)の+0 、2〜l
 、 0mm以内となるようにした。続いて、得られた
成形体を超硬工具によって第14図に示す寸法に仕上げ
た後、大気雰囲気中で、450℃まで2.5°O/hr
の昇温速度で加熱し、450°Cで5時間保持して脱脂
したのち冷却して脱脂体を得た。このとき、成形体は全
部で20個作製して脱脂したが、そのすべてについて欠
陥の発生は認められなかった。
At this time, by adjusting the dimensions of the rubber mold and the filling rate of the kneaded body, the dimensions of the disk/shaft molded body 23 can be adjusted to the first
+0, 2~l of the dimensions shown in Figure 4 (d9=33mm)
, within 0mm. Subsequently, the obtained molded body was finished to the dimensions shown in Fig. 14 using a carbide tool, and then heated at 2.5°O/hr up to 450°C in an air atmosphere.
The sample was heated at a heating rate of 450° C. for 5 hours for degreasing, and then cooled to obtain a degreased body. At this time, a total of 20 molded bodies were prepared and degreased, but no defects were observed in any of them.

次に、前記翼部21の成形脱脂体と、軸部23の成形脱
脂体の各々脱脂後の密度および静水圧加圧時の密度変化
を調べたところ、第15図に示すように±5%以内でほ
ぼ一致していた。
Next, we investigated the density of the molded degreased body of the wing portion 21 and the molded degreased body of the shaft portion 23 after degreasing and the change in density when hydrostatic pressure was applied, and as shown in FIG. 15, ±5% They were almost in agreement within the same range.

このようにして得られた翼部21の成形・脱脂体と、軸
部23の成形・脱脂体とを各々嵌合部ですり合わせて嵌
合した後、薄いゴム袋で被覆し、2 ton / cm
2の静水圧加圧力で加圧結合した。このとき、全部で1
0セツトについて静水圧加圧結合を行ったところ、いず
れにも亀裂などの欠陥の発生は認められなかった。
The molded and degreased body of the wing portion 21 and the molded and degreased body of the shaft portion 23 obtained in this way were rubbed together at the fitting portions and fitted together, and then covered with a thin rubber bag and packed at 2 ton/cm.
Pressure bonding was performed using a hydrostatic pressure of 2. At this time, 1 in total
When hydrostatic pressure bonding was performed for the 0 set, no defects such as cracks were observed in any of them.

次いで、得られた合計10個の軸つきタービンロータを
黒鉛抵抗発熱の雰囲気炉内に装入し、窒素ガスを流しな
がら1700℃まで100℃/hrの昇温速度で加熱し
、1700°Cで2時間保持した後炉冷してセラミック
焼結体を得た。ここで得られた焼結体には亀裂などの欠
陥の発生は認められず、仕上加工によりセラミックター
ビンロータを得た。
Next, a total of 10 shafted turbine rotors obtained were placed in a graphite resistance heating atmosphere furnace and heated to 1700°C at a temperature increase rate of 100°C/hr while flowing nitrogen gas. After holding for 2 hours, the mixture was cooled in a furnace to obtain a ceramic sintered body. No defects such as cracks were observed in the sintered body obtained here, and a ceramic turbine rotor was obtained by finishing.

(比較例6) 実施例2において翼部21の射出成形に用いたものと同
じ原料を使用し、第14図に示すディスク・軸部23を
射出成形により10個成形した。
(Comparative Example 6) Using the same raw material as that used for injection molding of the wing portion 21 in Example 2, ten disk/shaft portions 23 shown in FIG. 14 were molded by injection molding.

次いで得られた成形体を450℃まで2.5℃/hrの
昇温速度で大気雰囲気中で加熱して脱脂し、その後冷却
した。次に得られた軸部成形・脱脂体を調べたところ1
0個全部に亀裂などの欠陥の発生が認められ、射出成形
によっては欠陥のないディスク・軸部の成形・脱脂体を
得ることができなかった。
Next, the obtained molded body was heated to 450° C. at a heating rate of 2.5° C./hr in the air to degrease it, and then cooled. Next, when the obtained shaft part molded and degreased body was examined, 1
Defects such as cracks were observed in all of the discs, and it was not possible to obtain molded and degreased discs and shaft parts that were free of defects by injection molding.

(比較例7) 実施例2において軸部23の成形に用いた原料と同一組
成の有機バインダを乾燥粉末に対して46体積%添加し
た混練体を実施例2と同じ攪拌型加熱混練機とバンバリ
ー型混練機により作製し、比較例6と同一の条件でディ
スク・軸部23を10個射出成形により成形し、その後
脱脂を行った。しかし、この場合にも得られた脱脂体に
はいずれも亀裂などの欠陥の発生が認められ、射出成形
によるディスク・軸部の製造はできなかった。
(Comparative Example 7) A kneaded body in which 46% by volume of an organic binder having the same composition as the raw material used for forming the shaft portion 23 in Example 2 was added to the dry powder was mixed with the same stirring type heating kneader as in Example 2 and Banbury. It was produced using a mold kneader, and 10 disc/shaft parts 23 were molded by injection molding under the same conditions as in Comparative Example 6, and then degreased. However, in this case as well, the degreased bodies obtained were all found to have defects such as cracks, making it impossible to manufacture disks and shafts by injection molding.

(実施例3) 平均粒径1.5pmでかつ90%以上がα相よりなるS
i3N4粉末85重量部に対し、常圧焼結助剤としてA
JljzO3粉末10重量部と、Y2O3粉末5重量部
とを添加し、ボールミルにて十分な湿式混合粉砕を行う
ことにより混合粉末を調製した。
(Example 3) S having an average particle size of 1.5 pm and consisting of 90% or more α phase
A as a pressureless sintering aid to 85 parts by weight of i3N4 powder
A mixed powder was prepared by adding 10 parts by weight of JljzO3 powder and 5 parts by weight of Y2O3 powder, and performing sufficient wet mixing and pulverization in a ball mill.

そして、翼部の成形に際しては、前記混合粉末100重
量部に、有機バインダとしてポリエチレン樹脂15重量
部と、マイクロクリスタリンワックス10重量部を加え
、滑剤としてジブチルフタレート5正門部を加熱混合し
て混練した後、第8図に示す翼部11の形状に射出成形
した。次いで、成形体を加熱して脱脂することにより前
記有機バインダを除去した後、この成形体にゴム被膜を
施し、2 ton 7cm2の圧力で静水圧加圧を行っ
て密度調整した。
When molding the wing section, 15 parts by weight of polyethylene resin as an organic binder and 10 parts by weight of microcrystalline wax were added to 100 parts by weight of the mixed powder, and dibutyl phthalate 5 main part was heated and kneaded as a lubricant. Thereafter, it was injection molded into the shape of the wing section 11 shown in FIG. Next, the organic binder was removed by heating and degreasing the molded product, and then a rubber coating was applied to the molded product, and the density was adjusted by hydrostatic pressing at a pressure of 2 tons 7 cm 2 .

一方、動部の成形に際しては、前記混合粉末100重量
部に対し、結合剤としてメチルセルロース10重量部、
滑剤としてステアリン酸亜鉛0.1重量部を添加し、泥
漿としたのち噴霧造粒機にて造粒した。次いで、得られ
た造粒粉末を0 、5 ton 7cm2の静水圧加圧
成形により軸部の形状に成形し、得られた成形体の一端
側を円錐形状に加工して第9図に示す軸部13を成形し
た。
On the other hand, when molding the moving part, 10 parts by weight of methyl cellulose as a binder was added to 100 parts by weight of the mixed powder.
0.1 part by weight of zinc stearate was added as a lubricant to form a slurry, which was then granulated using a spray granulator. Next, the obtained granulated powder was molded into the shape of a shaft by isostatic pressing of 0.5 tons and 7 cm2, and one end of the obtained molded body was processed into a conical shape to form the shaft shown in FIG. Part 13 was molded.

次いで、得られた成形体を加熱して脱脂することにより
前記結合剤等を除去した後、この成形体にゴム被膜を施
し、3tb 圧を行って密度調整した。
Next, the obtained molded body was heated and degreased to remove the binder and the like, and then a rubber coating was applied to the molded body, and the density was adjusted by applying a pressure of 3 tb.

続いて、翼部11の成形・脱脂体の嵌合孔12と、軸部
13の成形・脱脂体の円錐形テーパ部を各々現物合わせ
により加工を施した後、両者を嵌合して組合わせ、この
組合わせ体にゴム被膜を施した後4 ton / am
2の圧力で静水圧加圧を加えて結合一体化し、次いで窒
素雰囲気中で且つ常圧下において1700℃で1時間加
熱して焼結することにより、常圧焼結窒化けい素製のタ
ービンロータを得た。
Subsequently, the fitting hole 12 of the molded/degreased body of the wing portion 11 and the conical taper part of the molded/degreased body of the shaft portion 13 are processed by matching the actual parts, and then the two are fitted and assembled. , after applying a rubber coating to this combination, 4 ton/am
A turbine rotor made of atmospheric pressure sintered silicon nitride is made by applying hydrostatic pressure at a pressure of 2 to combine and then heating and sintering it at 1700°C for 1 hour in a nitrogen atmosphere and under normal pressure. Obtained.

(実施例4〜13.比較例8,9) 実施例3において、翼部の成形・脱脂体と、軸部の成形
・脱脂体とを各々静水圧加圧により密度調整しているが
、ここでは、この場合の静水圧加圧時の加圧力を変える
かあるいは一部行わずに実施した。また、比較のために
静水圧加圧による密度調整を行わないかあるいは密度調
整が過剰であるものについても行った。この結果を表1
に示す。
(Examples 4 to 13. Comparative Examples 8 and 9) In Example 3, the densities of the molded and degreased body of the wing portion and the molded and degreased body of the shaft portion were adjusted by isostatic pressure. In this case, the pressure applied during hydrostatic pressurization was changed or partially omitted. In addition, for comparison, samples in which density adjustment by isostatic pressure was not performed or density adjustment was performed excessively were also conducted. The results are shown in Table 1.
Shown below.

表1に示すように、翼部成形体の密度が軸部成形体の密
度と同じである場合および軸部成形体の密度よりもわず
かに±5%以内の場合にはとくに良好な結果を得ること
ができた。
As shown in Table 1, particularly good results are obtained when the density of the wing molded body is the same as the density of the shaft molded body or when it is within ±5% of the density of the shaft molded body. I was able to do that.

次に、実施例6.10および比較例8の焼結体から高さ
4mm+、幅10mm、長さ25mmの大きさの試験片
を切り出し、室温と1000’Oにおける3点曲げによ
る抗折試験を行った。なお、このときの試験は、荷重速
度0 、5mm/min 、 7.パン20mmで行い
、各強度値は常温の場合は5木の平均値、1ooo’0
の場合は3木の平均値で評価した。
Next, test pieces with a height of 4 mm+, a width of 10 mm, and a length of 25 mm were cut out from the sintered bodies of Example 6.10 and Comparative Example 8, and subjected to a bending test by three-point bending at room temperature and 1000'O. went. Note that this test was conducted at a loading rate of 0, 5 mm/min, and 7. Performed with a 20mm pan, each strength value is the average value of 5 trees at room temperature, 1ooo'0
In the case of , the average value of the three trees was used for evaluation.

この結果を表2に示す。ただし、表2において(屯5f
3N4(7)焼結理論密度を3 、32 g/cm3と
表 2 表2に示すように、実施例6.lOでは一番問題となる
室温および1000”C!における抗折強度が比較例8
よりも高くなってψる。
The results are shown in Table 2. However, in Table 2 (tun 5f
As shown in Table 2, the theoretical sintered density of 3N4(7) was 3.32 g/cm3, and as shown in Table 2, Example 6. The bending strength at room temperature and 1000"C!, which is the most problematic in lO, is compared with Comparative Example 8.
It becomes higher than ψ.

以上説明してきたように、この発明によれば、射出成形
により成形したセラミック成形・脱脂体と、静水圧加圧
成形により成形したセラミック成形番脱脂体とを組合わ
せて結合した後焼結してセラミック焼結体を得るに際し
、簡を己各セラミック成形・脱脂体を、各セラミック成
形・脱脂体の脱脂後の密度さらに好ましくは両セラミッ
ク成形・脱脂体を組合わせた後の静水圧加圧結合時の密
度変化が相互に近似するように調整しておき、次いで両
セラミック成形・脱脂体を組合わせた後静水圧加圧によ
り両セラミック成形・脱脂体を結合し、その後焼結する
ようにしたから、 (1)有機バインダを40〜50体積%添加しなければ
成形できない射出成形に比べて、20〜40体積%の有
機バインダで成形できる静水圧加圧成形により成形した
成形体では、脱脂工程で除去すべき有機バインダの量が
はるかに少ないため、同一の有機バインダを使用したと
きでも脱脂可能な肉厚限界が大きくなり、とくに複麹形
状部と厚肉形状部とを有する焼結体を製造する場合に、
複雑形状部を射出成形により成形すると共に、厚肉形状
部を静水圧加圧により成形により成形することによって
、射出成形法と静水圧加圧成形法の各々の利点を活かす
ことが可能であり、 (2)成形体中のセラミック粉末の充填密度が同一であ
る場合(二、有機バインダ量の少ない静水圧加圧成形体
はより多くの空孔が最初から存在していることになり、
脱脂時の揮発分解ガスの逃げ道として前記空孔が有効に
働くため、とくに厚肉部における爆裂などの脱脂欠陥の
発生を効果的に抑制することが可能であり、 (3)静水圧加圧法では射出成形法と異なって溶融体か
らの凝固を伴わないので、凝固収縮や熱勾配などに起因
する血管および残留応力が発生せず、この面からも脱脂
欠陥の発生の確率は大幅に減少し、脱脂欠陥の発生しに
くい部分を射出成形により成形すると共に脱脂欠陥の発
生しやすい部分を静水圧加圧成形により成形するという
ように各々の特徴をセラミック焼結体に採り入れること
が可能であり、 (4)静水圧加圧成形法では成形性よりも脱脂特性を重
視した有機バインダの選定が可能である。
As explained above, according to the present invention, a ceramic molded/degreased body molded by injection molding and a ceramic molded degreased body molded by isostatic pressing are combined and bonded, and then sintered. When obtaining a ceramic sintered body, the density of each ceramic molded and degreased body after degreasing, and more preferably the isostatic pressure bonding after combining both ceramic molded and degreased bodies. The density changes were adjusted so that they were similar to each other, and then both molded and degreased ceramic bodies were combined, and then both molded and degreased ceramic bodies were combined using hydrostatic pressure, and then sintered. (1) Compared to injection molding, which requires the addition of 40 to 50 volume % of an organic binder, molded products formed by isostatic pressing, which can be molded with 20 to 40 volume % of an organic binder, require a degreasing process. Since the amount of organic binder to be removed is much smaller, the wall thickness limit that can be degreased becomes larger even when the same organic binder is used. When manufacturing,
By molding complex-shaped parts by injection molding and molding thick-walled parts by isostatic pressing, it is possible to take advantage of the respective advantages of injection molding and isostatic pressing. (2) When the packing density of the ceramic powder in the compact is the same (2. A hydrostatically pressed compact with a small amount of organic binder has more pores from the beginning,
Since the pores function effectively as escape routes for volatile decomposition gas during degreasing, it is possible to effectively suppress the occurrence of degreasing defects such as explosions, especially in thick-walled parts. Unlike the injection molding method, it does not involve solidification from a molten material, so there are no blood vessels or residual stress caused by solidification shrinkage or thermal gradients, and from this point of view, the probability of degreasing defects is greatly reduced. It is possible to incorporate each feature into the ceramic sintered body, such as molding the parts where degreasing defects are less likely to occur by injection molding, and molding the parts where degreasing defects are more likely to occur by isostatic pressing. 4) In the isostatic pressing method, it is possible to select an organic binder that emphasizes degreasing properties rather than moldability.

などの数々のすぐれた利点を有し、従来具−ヒに複雑で
且つ厚肉部を有する大型のセラミック焼結体を得ること
が可能であるという著しく優れた効果をもたらすもので
ある。
This method has a number of excellent advantages such as the following, and has a significantly superior effect in that it is possible to obtain a large ceramic sintered body having a complicated and thick portion compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセラミック焼結体の製造例を示す製造工
程図、第2図はタービンロータの部分断面図、第3図は
従来のセラミック焼結体の他の製造例を示す製造工程図
、第4図は翼部および動部を射出成形によって成形した
場合の各成形体の嵩密度の変化を示すグラフ、第5図は
翼部を射出成形によって成形し、軸部を静水圧加圧成形
によって成形した場合の各成形体従来例による嵩密度の
変化を示すグラフ、第6図はこの発明の一実施態様にお
けるセラミック焼結体の製造工程を示す製造工程図、第
7図はこの発明の他の実施態様におけるセラミック焼結
体の製造工程を示す製造工程図、第8図および第9図は
この発明の実施例において製造したタービンロータの各
々翼部成形体および軸部成形体の縦断面図および正面図
、第10図、第11図、第12図、第13図は翼部を射
出成形によって成形し、軸部を静水圧加圧成形によって
成形した場合の各成形体の各々実施例1.比較例3.比
較例4.比較例5における嵩密度の変化を示すグラフ、
第14図はこの発明の実施例において製造した軸流ター
ビンロータの縦断面図、第15図は実施例2における射
出成形体(翼部)および静水圧加圧成形体(ディスク・
軸部)の嵩密度の変化を示すグラフである。 11・・・タービンロータの翼部、13・・・タービン
ロータの軸部、20・・・軸流タービンロータ、21・
・・軸流タービンロータの翼部、23・・・軸流タービ
ンロータのディスク・軸部。 第14図 H 第15図 俵 靜木氏加江迂刀(糎/Cピ)
Figure 1 is a manufacturing process diagram showing an example of manufacturing a conventional ceramic sintered body, Figure 2 is a partial sectional view of a turbine rotor, and Figure 3 is a manufacturing process diagram showing another example of manufacturing a conventional ceramic sintered body. , Figure 4 is a graph showing the change in bulk density of each molded body when the wing part and moving part are molded by injection molding, and Figure 5 is a graph showing the change in bulk density of each molded body when the wing part is molded by injection molding and the shaft part is isostatically pressurized. A graph showing the change in bulk density of each conventional molded body when molded by molding, FIG. 6 is a manufacturing process diagram showing the manufacturing process of a ceramic sintered body in an embodiment of the present invention, and FIG. 8 and 9 are longitudinal cross-sections of a blade molded body and a shaft molded body, respectively, of a turbine rotor manufactured in an example of the present invention. The top view, front view, FIGS. 10, 11, 12, and 13 show the results of each molded product when the wing portion is molded by injection molding and the shaft portion is molded by isostatic pressure molding. Example 1. Comparative example 3. Comparative example 4. A graph showing changes in bulk density in Comparative Example 5,
FIG. 14 is a longitudinal cross-sectional view of an axial flow turbine rotor manufactured in an example of the present invention, and FIG.
It is a graph which shows the change of the bulk density of a shaft part). DESCRIPTION OF SYMBOLS 11... Blade part of a turbine rotor, 13... Shaft part of a turbine rotor, 20... Axial flow turbine rotor, 21...
...A blade portion of an axial flow turbine rotor, 23...A disk/shaft portion of an axial flow turbine rotor. Fig. 14 H Fig. 15 Tawara Sugiji Kae Toto (Tsu/C pi)

Claims (1)

【特許請求の範囲】[Claims] (1)身4出成形により成形したセラミック成形・11
(a脂体と、静水圧加圧成形により成形したセラミンク
成形・脱脂体とを組合わせて結合した後焼結してセラミ
ック焼結体を得るに際し、射出成形により成形したセラ
ミック成形φ脱脂体と、静水圧加圧成形により成形した
セラミック成形Φ脱脂体とを、各セラミック成形・脱脂
体の密度が相互に近似するように調枯しておき、次いで
両セラミック成形−脱脂体を組合わせた後静水圧加圧に
より両セラミック成形・脱脂体を結合し、その後焼結す
ることを4”!徴とするセラミック焼結体の製造方法。
(1) Ceramic molding made by body 4 molding・11
(When a fat body and a ceramic molded/degreased body formed by isostatic pressure molding are combined and bonded and then sintered to obtain a ceramic sintered body, the ceramic molded φ degreased body formed by injection molding and , a ceramic molded Φ degreased body formed by isostatic pressure molding is conditioned so that the densities of each ceramic molded and degreased body approximate each other, and then both ceramic molded and degreased bodies are combined. A method for manufacturing a ceramic sintered body, which involves bonding both molded and degreased ceramic bodies using hydrostatic pressure and then sintering them.
JP11594983A 1983-06-29 1983-06-29 Manufacture of ceramic sintered body Granted JPS6011276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11594983A JPS6011276A (en) 1983-06-29 1983-06-29 Manufacture of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11594983A JPS6011276A (en) 1983-06-29 1983-06-29 Manufacture of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS6011276A true JPS6011276A (en) 1985-01-21
JPH0375510B2 JPH0375510B2 (en) 1991-12-02

Family

ID=14675141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11594983A Granted JPS6011276A (en) 1983-06-29 1983-06-29 Manufacture of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS6011276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111975A (en) * 1984-11-07 1986-05-30 日本碍子株式会社 Manufacture of ceramic structural material
US5106550A (en) * 1987-05-13 1992-04-21 Ngk Spark Plug Co., Ltd. Method of producing ceramic rotor
JPH06272508A (en) * 1993-03-16 1994-09-27 Ngk Insulators Ltd Composite ceramics gas turbine moving blade and its manufacture
US6033619A (en) * 1991-12-02 2000-03-07 Ngk Insulators, Ltd. Method for manufacturing ceramics having fine holes
JP2002350293A (en) * 2001-05-22 2002-12-04 Kokusai Keisokki Kk Tire uniformity testing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338723A (en) * 1976-09-21 1978-04-10 Howa Machinery Ltd Apparatus for displacing doffing bar
JPS53115713A (en) * 1977-03-18 1978-10-09 Tokyo Shibaura Electric Co Manufacture of jointed ceramic articles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338723A (en) * 1976-09-21 1978-04-10 Howa Machinery Ltd Apparatus for displacing doffing bar
JPS53115713A (en) * 1977-03-18 1978-10-09 Tokyo Shibaura Electric Co Manufacture of jointed ceramic articles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111975A (en) * 1984-11-07 1986-05-30 日本碍子株式会社 Manufacture of ceramic structural material
JPH0229632B2 (en) * 1984-11-07 1990-07-02 Ngk Insulators Ltd
US5106550A (en) * 1987-05-13 1992-04-21 Ngk Spark Plug Co., Ltd. Method of producing ceramic rotor
US6033619A (en) * 1991-12-02 2000-03-07 Ngk Insulators, Ltd. Method for manufacturing ceramics having fine holes
JPH06272508A (en) * 1993-03-16 1994-09-27 Ngk Insulators Ltd Composite ceramics gas turbine moving blade and its manufacture
JP2002350293A (en) * 2001-05-22 2002-12-04 Kokusai Keisokki Kk Tire uniformity testing device

Also Published As

Publication number Publication date
JPH0375510B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
US4233256A (en) Process for injection molding sinterable carbide ceramic materials
JPS6256105B2 (en)
JP2011256050A (en) Method for producing non-oxide ceramic product
EP2607396B1 (en) Composition for injection molding, sintered compact, and method for producing sintered compact
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
JPS61287702A (en) Method of molding powdered body
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JPS6011276A (en) Manufacture of ceramic sintered body
EP0443048B1 (en) Method of producing cemented carbide or cermet alloy
WO2002045889A2 (en) Improvement of flow characteristics of metal feedstock for injection molding
US5603071A (en) Method of preparing cemented carbide or cermet alloy
JP2677675B2 (en) Method for producing sintered product consisting of powder molding binder and metal powder or ceramic powder
JPH05505588A (en) Improved method for producing large cross-section injection molded or slip cast ceramic bodies
JPH05503683A (en) Method for producing large cross-section injection molded or slip cast ceramic bodies
US5714242A (en) Ceramic material and method for manufacturing ceramic product utilizing it
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JPS59121150A (en) Injection molding material
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
EP0196600B1 (en) Method for fabricating of large cross section injection molded ceramic shapes
JP3000641B2 (en) Manufacturing method of cemented carbide or cermet alloy
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH08120307A (en) Production of powder sintered impeller
JP3245346B2 (en) Manufacturing method of ceramic turbine rotor
JPH0445201A (en) Manufacture of nb-al series intermetallic compound sintered compact body
JPS60230957A (en) Manufacture of permanent magnet