JPS60112751A - Production of tetrafluorophthalonitrile - Google Patents

Production of tetrafluorophthalonitrile

Info

Publication number
JPS60112751A
JPS60112751A JP21947483A JP21947483A JPS60112751A JP S60112751 A JPS60112751 A JP S60112751A JP 21947483 A JP21947483 A JP 21947483A JP 21947483 A JP21947483 A JP 21947483A JP S60112751 A JPS60112751 A JP S60112751A
Authority
JP
Japan
Prior art keywords
tetrachlorophthalonitrile
benzonitrile
reaction
fluorinating agent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21947483A
Other languages
Japanese (ja)
Other versions
JPS635023B2 (en
Inventor
Osamu Kaieda
修 海江田
Masaru Awashima
粟嶋 優
Isao Okidaka
沖高 勲
Tomoaki Nakamura
智明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP21947483A priority Critical patent/JPS60112751A/en
Priority to EP84300911A priority patent/EP0120575B1/en
Priority to DE8484300911T priority patent/DE3478681D1/en
Publication of JPS60112751A publication Critical patent/JPS60112751A/en
Priority to US06/776,085 priority patent/US4684734A/en
Publication of JPS635023B2 publication Critical patent/JPS635023B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound in high yield, by reacting a tetrachlorophthalonitrile with a fluorinating agent in benzonitrile within a specific temperature range under autogenous pressure conditions to exchange halogens. CONSTITUTION:A tetrachlorophthalonitrile, e.g. tetrachloroisophthalonitrile, is reacted with a fluorinating agent, e.g. potassium fluoride, in benzonitrile medium within 190-400 deg.C temperature range under autogenous pressure conditions to give the aimed tetrafluorophthalonitrile, e.g. tetrafluoroisophthalonitrile. The benzonitrile is thermally stable, and usable within the above-mentioned temperature range necessary for the halogen exchange. There is no side reaction between the raw materials or products. The formation of carbonized materials in a large amount can be prevented with easy temperature control. The amount of the tetrachlorophthalonitrile to be used is within about 5-50pts.wt. range based on 100pts.wt. solvent.

Description

【発明の詳細な説明】 本発明は、テトラクロロ7タロニトリル類をベンゾニト
リル媒体中で190℃から400℃の温度範囲でフッ素
化剤、とくにフッ化カリウムと反応させるいわゆるハロ
ゲン交換反応によるテトラフルオロフタロニトリル類の
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the preparation of tetrafluorophthalonitriles by the so-called halogen exchange reaction, in which tetrachloro heptalonitriles are reacted with a fluorinating agent, in particular potassium fluoride, in a benzonitrile medium in the temperature range from 190°C to 400°C. Concerning the manufacturing method of nitriles.

芳香族ハロゲン化物にフッ化アルカリ等を作用させてハ
ロゲン原子をフッ素原子と交換させる、いわゆるハロゲ
ン交換反応は古くから知られている。その際溶媒として
一般的には、ジメチルスルホキシド(DMSO) 、ス
ルホラン(TMSCh)、N−ジメチルホルムアミド(
DMF)、N−メチル−2−ピロリドン(NMP)、ジ
メチルスルホン(DMSO2)など非プロトン性極性溶
媒が主に用いられ、溶媒の沸点以下の温度でハロゲン交
換反応を行っている〔例えば石川、有機合成化学協会誌
ひ、808. (1967)、M、 Hudlicky
、 Chemistry ofOrganic Flu
orine Compounds 112頁(1976
年) JohnWi Iey & 5ons出版等〕。
The so-called halogen exchange reaction, in which a halogen atom is exchanged with a fluorine atom by reacting an alkali fluoride or the like with an aromatic halide, has been known for a long time. At that time, the solvents generally used are dimethyl sulfoxide (DMSO), sulfolane (TMSCh), and N-dimethylformamide (
Aprotic polar solvents such as DMF), N-methyl-2-pyrrolidone (NMP), and dimethylsulfone (DMSO2) are mainly used, and the halogen exchange reaction is carried out at a temperature below the boiling point of the solvent [for example, Ishikawa, Journal of the Society of Synthetic Chemistry, 808. (1967), Hudlicky, M.
, Chemistry of Organic Flu
orine Compounds 112 pages (1976
2003) John Wi Iey & 5ons Publishing, etc.].

場合によっては、反応速度を速める為にクラウン化合物
の様な相間移動触媒を加えている例4ある。しかしなが
ら、上記の方法でハロゲン交換できる芳香族ハロゲン化
物は、例えば石川ら、有機合成化学協会誌、第27巻第
174頁(1969年)に記載の2,6−シクロロベン
ゾニトリルカラ2,6−リフルオロベンゾニトリルを合
成する例の様に通常ハロゲン置換基の少ない芳香族ハロ
ゲン化物に限られ、それ以上のポリハロゲン化物では完
全にハロゲン交換を行うのは困難なことが多く、たとえ
完全にハロゲン交換できても収率が悪い。また上記の方
法で芳香族ハロゲン化物をハロゲン交換する場合、電子
吸引性基(例えば−CN基、−No2基等)のメタ位置
は、まったくハロゲン交換することができない。
In some cases, there is an example 4 in which a phase transfer catalyst such as a crown compound is added to speed up the reaction rate. However, aromatic halides that can be halogen-exchanged by the above method are, for example, 2,6-cyclobenzonitrile Kara 2,6 described in Ishikawa et al., Journal of the Society of Organic Synthetic Chemistry, Vol. 27, p. 174 (1969). -As in the example of synthesizing refluorobenzonitrile, it is usually limited to aromatic halides with a small number of halogen substituents, and it is often difficult to perform complete halogen exchange with polyhalides with larger halogen substituents. Even if halogen exchange is possible, the yield is poor. Further, when an aromatic halide is halogen-exchanged by the above method, the meta position of the electron-withdrawing group (for example, -CN group, -No2 group, etc.) cannot be halogen-exchanged at all.

すなわち、上記方法では本発明の様にポリハロゲン化物
であり、両方のシアノ基のメタの位置にハロゲン置換基
のあるテトラクロロインフタロニトリルからテトラフル
オロイソフタロニトリルを製造するには適していない。
That is, the above method is not suitable for producing tetrafluoroisophthalonitrile from tetrachloroinphthalonitrile, which is a polyhalide and has halogen substituents at the meta positions of both cyano groups, as in the present invention.

事実従来の文献中にはテトラクロロイソフタロニトリル
からテトラフルオロイソフタロニトリルをハロゲン交換
により合成する方法は皆無である。ただし、テトラクロ
ロイソフタロニトリルをハロゲン交換する例は1石川ら
、工業化学雑誌、第73巻第447頁(1970年)に
記載されているが、DMF溶媒中でフッ素化剤と−フツ
化カリウムを使用してハロゲン交換させても、5− り
o 。
In fact, in the conventional literature there is no method for synthesizing tetrafluoroisophthalonitrile from tetrachloroisophthalonitrile by halogen exchange. However, an example of halogen exchange of tetrachloroisophthalonitrile is described in Ishikawa et al., Industrial Chemistry Journal, Vol. 73, p. 447 (1970); Even if the halogen is exchanged using

−2,4,6−)リフルオロインフタロニトリルが生成
するのみで、完全に置換したテトラフルオロイソフタロ
ニトリルは、まったくえていない。
-2,4,6-)lifluoroisophthalonitrile is produced, and completely substituted tetrafluoroisophthalonitrile is not produced at all.

まだ一般的な溶媒を使ってポリハロゲン化物であるテト
ラクロロテレフタロニトリルをハロゲン交換してテトラ
フルオロテレ7タロニトリルを製造する方法は、フラン
ス特許1,397,521号(1965年)および特開
昭51−6940号に提案されているが、いずれも満足
できるテトラフルオロテレフタロニトリルの収率がえら
れていない。
A method for producing tetrafluoroterephthalonitrile by halogen exchange of polyhalide tetrachloroterephthalonitrile using a common solvent is described in French Patent No. 1,397,521 (1965) and Japanese Patent Application Laid-open No. No. 51-6940, but none of them have been able to provide a satisfactory yield of tetrafluoroterephthalonitrile.

また、上記の方法で一般的に用いられている溶媒は収率
を向上させる為に温度を高くしたり、長時間使用すると
、溶媒の分解反応あるいは溶媒と原料あるいは生成物間
に副反応が生じ結局収率を向上できない。また溶媒の回
収、再使用等において工業的に使用するのが容易でない
等の欠点を有している。これらの溶媒が高温度で使用で
き々い欠点を回避する為に無溶媒でオートクレーブを使
用して200〜500’Cの高温度で反応を行う方法も
一般的であり、無溶媒でオートクレーブを使って300
 ℃の温度でテトラクロロテレフタロニトリルからテト
ラフルオロテレフタロニトリルをハロゲン交換する例も
、例えば、上田ら、Flull、 Chem、Soe、
Japan第40巻第688頁に記載されている。しか
しながら溶媒を使わない為、発熱反応による温度制御が
難しく、また反応終了後容器に多量の炭化物が固着した
りして工業的実施は困難な方法といえる。
Additionally, if the solvents commonly used in the above methods are heated to high temperatures or used for long periods of time to improve yields, decomposition reactions of the solvent or side reactions between the solvent and raw materials or products may occur. In the end, the yield cannot be improved. It also has the disadvantage that it is not easy to use industrially in terms of solvent recovery and reuse. In order to avoid the disadvantage that these solvents can be used at high temperatures, it is common to use an autoclave without a solvent and conduct the reaction at a high temperature of 200 to 500'C. te 300
Examples of halogen exchange of tetrafluoroterephthalonitrile from tetrachloroterephthalonitrile at a temperature of
Japan Vol. 40, p. 688. However, since no solvent is used, it is difficult to control the temperature due to the exothermic reaction, and a large amount of carbide adheres to the container after the reaction is completed, making it difficult to implement industrially.

本発明者らは、テトラフルオロフタロニトリル類を製造
するに際し、上記の一般的方法では合成が困難でたとえ
合成できても欠点が多く工業的実施は不可能と考え、可
能な方法を鋭意検討した結果、ベンゾニトリルを溶媒に
用いて自然発生圧下、テトラクロロフタロニトリル類を
190〜400℃の温度範囲で、フッ素化剤。
When producing tetrafluorophthalonitriles, the inventors thought that it would be difficult to synthesize them using the general methods mentioned above, and even if they could be synthesized, there would be many drawbacks that would make industrial implementation impossible, and therefore, we conducted intensive studies on possible methods. As a result, using benzonitrile as a solvent under spontaneous pressure, tetrachlorophthalonitrile was added as a fluorinating agent at a temperature range of 190 to 400°C.

とくにフッ化カリウムと反応させてハロゲン交換するこ
とによってテトラフルオロフタロニトリル類を容易に収
率よく製造できることを見い出し本発明を完成させた。
In particular, the inventors have found that tetrafluorophthalonitriles can be easily produced in good yield by reacting with potassium fluoride to exchange halogens, thereby completing the present invention.

本発明を以下更に詳細に説明する。The invention will be explained in more detail below.

本発明における溶媒ベンジエ) +Jルは、熱的に安定
な為、テトラクロロフタロニトリル類をハロゲン交換し
てテトラフルオロフタロニトリル類にするのに必要な温
度と考えられる190〜400℃の温度範囲でも使用で
き、また他の溶媒にみられる様な溶媒と原料あるいは生
成物間との副反応がない利点がある。またこの溶媒を使
用することによって無溶媒での製法と異なり、温度制御
が容易で多量の炭化物が生成するのを防止できる利点が
あり、工業的実施に際し高収率で目的物がえられる有利
性を持つ。
The solvent benzene in the present invention is thermally stable, so it can be used even in the temperature range of 190 to 400°C, which is considered to be the temperature necessary for halogen exchange of tetrachlorophthalonitriles to tetrafluorophthalonitriles. It has the advantage that there is no side reaction between the solvent and raw materials or products, which occurs with other solvents. In addition, the use of this solvent has the advantage of being able to easily control the temperature and prevent the formation of large amounts of carbide, unlike a manufacturing method without a solvent, and is advantageous in that the desired product can be obtained in high yield during industrial implementation. have.

ハロゲン交換反応に使用されるフッ素化剤は一般ニハフ
ツ化セシウム、フッ化カリウム、7フ化ナトリウムなど
のフッ化アルカリやフッ化バリウム、フッ化カルシウム
などアルカリ土類金属のフッ化物塩を用いる例が多い。
Examples of fluorinating agents used in the halogen exchange reaction include alkali fluorides such as cesium fluoride, potassium fluoride, and sodium heptafluoride, and fluoride salts of alkaline earth metals such as barium fluoride and calcium fluoride. many.

また場合によっては、フッ化アンチモン等の遷移金属の
フッ化物も用いられる。本発明においても一般に用いら
れているフッ素化剤ならばあらゆるものが使用できる。
In some cases, transition metal fluorides such as antimony fluoride are also used. In the present invention, any commonly used fluorinating agent can be used.

この中でも取り扱いが容易で実用上商業的に容易に入手
できるフッ化カリウムが特に好ましい。
Among these, particularly preferred is potassium fluoride, which is easy to handle and commercially available.

フッ素化剤は、原料のテトラクロロフタロニトリル類中
のフッ素原子に置換されるクロル原′子に対し少なくと
も当量以上必要であり、フッ化カリウムの場合テトラク
ロロフタロニトリル類1モルに対し4モル倍以上存在す
れば良い。
The amount of fluorinating agent required is at least equivalent to the chlorine atoms substituted by fluorine atoms in the raw material tetrachlorophthalonitrile, and in the case of potassium fluoride, the amount is 4 times the mole per mole of tetrachlorophthalonitrile. It is sufficient if there are more than that.

特にテトラクロロフタロニトリル類に対しフッ化カリウ
ム4〜8モルの範囲が適当である。
In particular, a range of 4 to 8 moles of potassium fluoride is suitable for tetrachlorophthalonitrile.

本発明の反応温度は190〜400℃の範囲が好ましい
。特にテトラフルオロイソフタロニトリルを製造する場
合は、250〜350℃、テトラフルオロテレフタロニ
トリルを製造する場合は、210〜330℃の温度範囲
が好ましい。
The reaction temperature of the present invention is preferably in the range of 190 to 400°C. In particular, when producing tetrafluoroisophthalonitrile, the temperature range is preferably 250 to 350°C, and when producing tetrafluoroterephthalonitrile, the temperature range is preferably 210 to 330°C.

低温度で反応させた場合塩素がフッ素に完全に置換され
ていない化合物が生成し易くなり、高温度では炭化物が
生成し、いずれもテトラフルオロフタロニトリル類の収
率が低下する。
When the reaction is carried out at a low temperature, a compound in which chlorine is not completely replaced by fluorine is likely to be produced, and at a high temperature, a carbide is produced, and in both cases, the yield of tetrafluorophthalonitriles is reduced.

本発明では自然発生圧力下で反応させる為に210℃か
ら350℃の温度範囲で約2kg肩〜12に9/cIt
ゲージ圧を示すが、窒素の様な不活性ガスで更に加圧し
ても良い。
In the present invention, in order to carry out the reaction under naturally occurring pressure, approximately 2 kg shoulder to 12 to 9/c It is
Gauge pressure is shown, but it may be further pressurized with an inert gas such as nitrogen.

反応時間は、反応温度によって異なるが、約2時間から
48時間の範囲が適当である。
The reaction time varies depending on the reaction temperature, but is suitably in the range of about 2 hours to 48 hours.

原料のテトラクロロフタロニトリル類は、溶媒100重
量部に対して約5部から50部の範囲で反応系に加えら
れるとよい。
The raw material tetrachlorophthalonitrile is preferably added to the reaction system in an amount of about 5 parts to 50 parts per 100 parts by weight of the solvent.

一般にノ・ロゲン交換反応は、できるだけ無水条件下で
行うのが反応速度を高めまた副反応をさける為好ましい
と云われている。
It is generally said that it is preferable to carry out the nitrogen exchange reaction under anhydrous conditions as much as possible in order to increase the reaction rate and avoid side reactions.

一般に使用されるDMSO,TMSO,、DMF、 N
MP 。
Commonly used DMSO, TMSO,, DMF, N
M.P.

DMS Otなどの非プロトン性極性溶媒は吸湿性が高
く、かなりの水分が含有されている。その為反応に先だ
ってベンゼン、トルエンなどを加えて水分を共沸混合物
としてあらかじめ蒸留除去する必要がおる。本発明にお
いては、ベンゾニトリルは吸湿性がない為その操作を原
則的には必要としない。しかしながら、フッ素化剤とし
て使用するフッ化カリウムなどは吸湿性が高い為場合に
よってはベンゼン、トルエンなどヲ加えて水分をあらか
じめ共沸混合物として蒸留除去するのが良い。
Aprotic polar solvents such as DMS Ot are highly hygroscopic and contain considerable water content. Therefore, prior to the reaction, it is necessary to add benzene, toluene, etc. and remove water by distillation as an azeotrope. In the present invention, benzonitrile does not have hygroscopic properties, so its operation is not required in principle. However, since the potassium fluoride used as a fluorinating agent is highly hygroscopic, in some cases it is preferable to add benzene, toluene, etc. to remove water in advance by distillation as an azeotrope.

本発明では、反応系に相間移動触媒を存在させても良い
。即ち、相間移動触媒を存在させると反応速度が速くな
り、反応時間を短縮できる利点があるからである。
In the present invention, a phase transfer catalyst may be present in the reaction system. That is, the presence of a phase transfer catalyst has the advantage of increasing the reaction rate and shortening the reaction time.

相間移動触媒としては、ジベンゾ−18−クラウン−6
−エーテル等のクラウン化合物、分子量300〜600
のポリエチレングリコール等が使用できる。
As a phase transfer catalyst, dibenzo-18-crown-6
- Crown compounds such as ethers, molecular weight 300-600
Polyethylene glycol and the like can be used.

添加量としてはテトラクロロフタロニトリル類に対して
0.01モル〜0.25モルが適当である。
The appropriate amount to be added is 0.01 mol to 0.25 mol based on the tetrachlorophthalonitrile.

本発明の溶媒であるベンゾニトリルは、蒸留によって生
成物と容易に分離でき、次の反応に溶媒として再使用で
きる。
Benzonitrile, the solvent of the present invention, can be easily separated from the product by distillation and can be reused as a solvent in the next reaction.

以下本発明を実施例により更に具体的に説明するが、本
発明はこれらに限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1 s o o ccのステンレス容器のオートクレーブに
ベンゾニトリル2009.テトラクロロインフタロニト
リルso、of(o3otモル)、超微粒子の乾燥フッ
化カリウム83.9f(1,445モル)を仕込み1反
応容器内の空気を窒素ガスで置換した後、320℃で1
8時間加熱撹拌した。反応終了後、室温まで冷却し懸濁
している塩化カリウム及び未反応のフッ化カリウムを濾
過で除去した。母液のペンゾニ) IJル溶液を充填剤
:5E52171L、カラム槽温度60℃のガスクロマ
トグラフで内部標準法を用いて分析したところ仕込みの
テトラクロロイソフタロニトリルに対してテトラフルオ
ロインフタロニトリル90.5モルチがえられた。この
分析チャートにおいては未置換のイソフタロニトリルの
ピークなどの他の成分のピークはほとんど認められなか
った。
Example 1 Benzonitrile 2009. Tetrachloroinphthalonitrile so,of (o3 ot mol) and ultrafine dried potassium fluoride 83.9f (1,445 mol) were charged, the air in the reaction vessel was replaced with nitrogen gas, and the mixture was heated at 320°C.
The mixture was heated and stirred for 8 hours. After the reaction was completed, the mixture was cooled to room temperature and suspended potassium chloride and unreacted potassium fluoride were removed by filtration. Analyzing the mother liquor (penzoni) IJ solution using an internal standard method using a gas chromatograph using a packing material of 5E52171L and a column tank temperature of 60°C, it was found that 90.5 mol of tetrafluoroinphthalonitrile was found relative to the charged tetrachloroisophthalonitrile. It was raised. In this analysis chart, almost no peaks of other components such as the peak of unsubstituted isophthalonitrile were observed.

なお、この生成物ピークは質量分析スペクトル(70e
v ; m/e= 200.131.100.31 )
によりテトラフルオロインフタロニトリルであることを
確認した。上述の母液から溶媒ベンゾニトリルを減圧蒸
留で留去することによって、テトラフルオロイソフタロ
ニトリルの結晶52.59(M、P、;73〜76℃)
を回収できた。この結晶の元素分析値は炭素48.0%
、フッ素383チ、窒素13,7%(理論値炭素48チ
、フッ素38チ、窒素14チ)であった。
Note that this product peak can be seen in the mass spectrometry spectrum (70e
v; m/e=200.131.100.31)
It was confirmed that it was tetrafluoroinphthalonitrile. By distilling off the solvent benzonitrile from the above mother liquor by vacuum distillation, 52.59 crystals of tetrafluoroisophthalonitrile (M, P,; 73-76°C) were obtained.
was able to be recovered. The elemental analysis value of this crystal is 48.0% carbon.
, fluorine: 383%, and nitrogen: 13.7% (theoretical values: carbon: 48%, fluorine: 38%, nitrogen: 14%).

実施例2 ジペンゾ−18−クラウン−6−エーテル5.82(O
,OISモル)をベンゾニトリルに溶解させた以外は実
施例1と同じ様に500 ccのオートクレーブに仕込
んで%280℃で10時間加熱撹拌した。反応終了後実
施例1と同様にしてえた母液をガスクロマトグラフで分
析したところ、仕込みのテトラクロロイソフタロニトリ
ルに対してナト2フルオロイソフタロニトリルフ02モ
ル%、510ロー2.4.6−)!Jフルオロイソ7タ
ロニトリル18.7 %モルチかえられた。
Example 2 Dipenzo-18-crown-6-ether 5.82(O
, OIS mol) was dissolved in benzonitrile, the same procedure as in Example 1 was carried out, and the mixture was charged into a 500 cc autoclave and heated and stirred at 280°C for 10 hours. After the reaction was completed, the mother liquor obtained in the same manner as in Example 1 was analyzed by gas chromatography, and it was found that the content was 2 mol %, 510 rho2.4.6-), based on the charged tetrachloroisophthalonitrile. ! J fluoroiso7talonitrile 18.7% mole exchanged.

実施例3 テトラクロロイソフタロニトリルの代りに、テトラクロ
ロテレフタロニトリルを原料にした以外は、実施例1と
同じ様に500 ccのオートクレーブに仕込んで、2
70℃で12時間加熱撹拌した。反応終了後実施例1と
同様にしてえた母液をガスクロマトグラフで分析したと
ころ仕込みのテトラクロロテレフタロニトリルに対して
テトラフルオロテレフタロニトリル92.2モルチが見
られた。この母液からベンゾニトリルを減圧蒸留で留去
することによってテトラフルオロテレフタロニトリルの
結晶(M、P、: 195〜197℃)がえられた。
Example 3 A 500 cc autoclave was charged in the same manner as in Example 1 except that tetrachloroterephthalonitrile was used instead of tetrachloroisophthalonitrile.
The mixture was heated and stirred at 70°C for 12 hours. After the reaction was completed, the mother liquor obtained in the same manner as in Example 1 was analyzed by gas chromatography, and it was found that 92.2 mol of tetrafluoroterephthalonitrile was found relative to the charged tetrachloroterephthalonitrile. Benzonitrile was distilled off from this mother liquor under reduced pressure to obtain crystals of tetrafluoroterephthalonitrile (M, P,: 195-197°C).

Claims (6)

【特許請求の範囲】[Claims] (1) テトラクロロフタロニトリル類をベンゾニトリ
ル媒体中で190〜400℃の範囲の温度でフッ素化剤
と自然発生圧下に反応せしめることを特徴とするテトラ
フルオロ7タロニトリル類の製法。
(1) A process for producing tetrafluoroheptalonitriles, which comprises reacting tetrachlorophthalonitriles with a fluorinating agent in a benzonitrile medium at a temperature in the range of 190 to 400° C. under spontaneous pressure.
(2)テトラクロロフタロニトリル類が、テトラクロロ
イソフタロニトリルであり、テトラフルオロフタロニト
リル類がテトラフルオロイノフタロニトリルである特許
請求の範囲(1)記載の方法。
(2) The method according to claim (1), wherein the tetrachlorophthalonitrile is tetrachloroisophthalonitrile and the tetrafluorophthalonitrile is tetrafluoroinophthalonitrile.
(3)テトラクロロフタロニトリル類が、テトラクロロ
テレフタロニトリルであわ、テトラフルオロフタロニト
リル類が、テトラフルオロテレフタロニトリルである特
許請求の範囲(1)記載の方法。
(3) The method according to claim (1), wherein the tetrachlorophthalonitrile is tetrachloroterephthalonitrile, and the tetrafluorophthalonitrile is tetrafluoroterephthalonitrile.
(4) フッ素化剤がアルカリ金属およびアルカリ土類
金属のフッ化物塩からなる群から選ばれた少なくとも1
種である特許請求の範囲(1)、(2)または(3)記
載の方法。
(4) The fluorinating agent is at least one selected from the group consisting of alkali metal and alkaline earth metal fluoride salts.
The method according to claim (1), (2) or (3), which is a species.
(5)フッ素化剤がフッ化カリウムである特許績求の範
囲(1)、(2)または(3)記載の方法。
(5) The method according to patent application scope (1), (2) or (3), wherein the fluorinating agent is potassium fluoride.
(6)相間移動触媒の存在下反応せしめてなる特許請求
の範囲(1)、(2)、(3)、(4)または(5)記
載の方法。
(6) The method according to claim (1), (2), (3), (4) or (5), wherein the reaction is carried out in the presence of a phase transfer catalyst.
JP21947483A 1983-02-18 1983-11-24 Production of tetrafluorophthalonitrile Granted JPS60112751A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21947483A JPS60112751A (en) 1983-11-24 1983-11-24 Production of tetrafluorophthalonitrile
EP84300911A EP0120575B1 (en) 1983-02-18 1984-02-14 Organic fluorine compounds
DE8484300911T DE3478681D1 (en) 1983-02-18 1984-02-14 Organic fluorine compounds
US06/776,085 US4684734A (en) 1983-02-18 1985-09-13 Method for manufacture or organic fluorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21947483A JPS60112751A (en) 1983-11-24 1983-11-24 Production of tetrafluorophthalonitrile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5847884A Division JPS60112750A (en) 1984-03-28 1984-03-28 Tetrafluoroisophthalonitrile

Publications (2)

Publication Number Publication Date
JPS60112751A true JPS60112751A (en) 1985-06-19
JPS635023B2 JPS635023B2 (en) 1988-02-01

Family

ID=16735995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21947483A Granted JPS60112751A (en) 1983-02-18 1983-11-24 Production of tetrafluorophthalonitrile

Country Status (1)

Country Link
JP (1) JPS60112751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741426B2 (en) 2003-06-23 2010-06-22 Nippon Shokubai Co., Ltd Method for production of fluorinated phenylenediamine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139633A (en) * 1974-09-30 1976-04-02 Daikin Ind Ltd FUTSUSOKAHOHO
JPS54109932A (en) * 1978-01-26 1979-08-29 Basf Ag Manufacture of fluorobenzol
JPS57197226A (en) * 1981-05-30 1982-12-03 Dainippon Ink & Chem Inc Preparation of aromatic fluorine compound
JPS6094919A (en) * 1983-10-31 1985-05-28 Nippon Shokubai Kagaku Kogyo Co Ltd Production of organic fluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139633A (en) * 1974-09-30 1976-04-02 Daikin Ind Ltd FUTSUSOKAHOHO
JPS54109932A (en) * 1978-01-26 1979-08-29 Basf Ag Manufacture of fluorobenzol
JPS57197226A (en) * 1981-05-30 1982-12-03 Dainippon Ink & Chem Inc Preparation of aromatic fluorine compound
JPS6094919A (en) * 1983-10-31 1985-05-28 Nippon Shokubai Kagaku Kogyo Co Ltd Production of organic fluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741426B2 (en) 2003-06-23 2010-06-22 Nippon Shokubai Co., Ltd Method for production of fluorinated phenylenediamine

Also Published As

Publication number Publication date
JPS635023B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
US4684734A (en) Method for manufacture or organic fluorine compounds
JP2006022105A (en) Improved method for producing fluorine-containing aromatic ring
KR20090121392A (en) Process for preparing 2,6-dichloro-4-(trifluoromethyl)phenylhydrazine using mixtures of dichloro-fluoro-trifluoromethylbenzenes
EP0180057B1 (en) Process for the preparation of halo aromatic compounds
EP0371563B1 (en) Preparation of halofluorobenzenes
HU193589B (en) Process for preparing fluorinated phtaloyl- and terephtaloyl compounds
GB2219292A (en) Process of preparing 1,2,2,2-tetrafluoroethyl-difluoromethyl ether
JPS60112751A (en) Production of tetrafluorophthalonitrile
JPS6241694B2 (en)
US5475165A (en) Trifluoromethylation process
JP4642241B2 (en) Generation of N (CF3) 2 anion and use thereof
TWI705055B (en) Method for preparing 5-fluoro-1h-pyrazole-4-carbonyl fluorides
JPS6147475A (en) Fluorinated phthalic anhydride
JPS60112763A (en) Production of pentafluoropyridine
JPS59152361A (en) Production of pentafluorobenzonitrile
JPS6147426A (en) Production of fluorinated cyclic hydrocarbon
JPH0313206B2 (en)
JPS60112750A (en) Tetrafluoroisophthalonitrile
JPS6354331A (en) Production of 1,1-difluorocyclohexane
JPH0149337B2 (en)
JPS60149566A (en) Preparation of tetrafluorocyanopyridine
JPS6350339B2 (en)
JPS6136241A (en) Production of octafluoroanthraquinone
JPH044309B2 (en)
JPS6365058B2 (en)