JPS6011268A - Member for crusher - Google Patents

Member for crusher

Info

Publication number
JPS6011268A
JPS6011268A JP58117287A JP11728783A JPS6011268A JP S6011268 A JPS6011268 A JP S6011268A JP 58117287 A JP58117287 A JP 58117287A JP 11728783 A JP11728783 A JP 11728783A JP S6011268 A JPS6011268 A JP S6011268A
Authority
JP
Japan
Prior art keywords
sintered body
tetragonal
zirconia
powder
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117287A
Other languages
Japanese (ja)
Inventor
興一 山田
毛利 正英
幸男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP58117287A priority Critical patent/JPS6011268A/en
Publication of JPS6011268A publication Critical patent/JPS6011268A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は粉砕時における粉砕物の汚損の少ない粉砕機用
部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a member for a pulverizer that causes less contamination of pulverized materials during pulverization.

近年、各種産業分野において金属やセラミック等の微粉
化要求が高まり、大部分はボールミル、チューブミル、
ロッドミル、コニカルミル、トリコンミル、ジェットミ
ル、遠心ローラミル、遠心ボールミル、リングロールミ
ル、高速ボールミル、低速ボールミル、ハイスイングボ
ールミル、乳鉢と乳棒等のi■j撃圧縮粉圧型或いは摩
擦粉砕型等の粉砕機により処理されているが、該粉砕機
はその内壁或い(よボールやロール等の粉砕媒体が鋼球
、アルミナ、ガラス、磁器、天然石、陶器、プラスチッ
ク、ゴム等の物質で構成されているため粉砕時に粉砕機
の内壁や粉砕媒体が摩耗或いは剥離を生じ粉砕物中に混
入し、粉砕物の純度低下という不都合を招(。
In recent years, there has been an increasing demand for pulverization of metals, ceramics, etc. in various industrial fields, and most of them are made using ball mills, tube mills,
Processed by a crusher such as a rod mill, conical mill, tricone mill, jet mill, centrifugal roller mill, centrifugal ball mill, ring roll mill, high-speed ball mill, low-speed ball mill, high-swing ball mill, mortar and pestle, etc., or a friction crushing type. However, because the crushing media such as the inner walls or balls and rolls of this crusher are composed of materials such as steel balls, alumina, glass, porcelain, natural stone, ceramics, plastic, and rubber, there is a The inner walls of the pulverizer and the grinding media wear out or peel off, which causes them to mix into the pulverized material, resulting in a reduction in the purity of the pulverized material.

かかる事情下に鑑み、本発明者らは耐衝撃性、耐摩耗性
に優れた粉砕機用部材を冑るべく鋭意検討した結果、特
定物性を有するジルコニア焼結体は耐衝撃性、耐摩耗性
に優れ、粉砕機用部材として用いた場合には粉砕物の純
度低下が殆どないこことを見い出し、本発明を完成する
に至った。
In view of these circumstances, the inventors of the present invention conducted intensive studies to find a crusher member with excellent impact resistance and abrasion resistance. The present inventors have discovered that the powder has excellent properties, and when used as a part for a pulverizer, there is almost no decrease in the purity of the pulverized product, leading to the completion of the present invention.

すなわち本発明は、8乃至15モル%のCe 01を含
有するジルコニア固溶体の焼結体からなり、該焼結体の
平均結晶粒径が2μ以下、嵩密度が6、Q B /ca
1以上でかっ、結晶相の70%以上が正方品で残部が単
斜晶よりなるジルコニア焼結体を用いることを特徴とす
る粉砕機用部材を提供するにある。
That is, the present invention comprises a sintered body of a zirconia solid solution containing 8 to 15 mol % of Ce 01, the average crystal grain size of the sintered body is 2μ or less, the bulk density is 6, and Q B /ca
To provide a member for a crusher, which is characterized by using a zirconia sintered body having a crystalline size of 1 or more, 70% or more of the crystal phase being tetragonal, and the remainder being monoclinic.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の粉砕機用部材はCe02B〜15モル%、残部
92〜85モル%を主としてZrO2により構成される
。焼結体中に占めるC e O2の量が8モル%未満の
場合には単斜晶が増加し、耐衝撃性等の機械的強度、更
には耐摩耗性等の物性を具備した結晶相の70%以上と
いう実質的に正方晶構造を有する焼結体は得られず、又
Ce O2の割合が15モル%を越える場合には、その
焼結体は常温で安定な正方晶より構成され、機械的強度
の低下に伴って焼結部材自体の耐摩耗性も低下するので
好ましくない。
The pulverizer member of the present invention is mainly composed of Ce02B to 15 mol% and the remainder 92 to 85 mol% ZrO2. When the amount of C e O2 in the sintered body is less than 8 mol%, monoclinic crystals increase and a crystalline phase with mechanical strength such as impact resistance and physical properties such as abrasion resistance is formed. A sintered body having a substantially tetragonal structure of 70% or more cannot be obtained, and if the proportion of CeO2 exceeds 15 mol%, the sintered body is composed of tetragonal crystals that are stable at room temperature. This is not preferable because the wear resistance of the sintered member itself decreases as the mechanical strength decreases.

しかして、単にジルコニア粉末と酸化セリウムを本発明
で特定した量混合し、焼結せしめるのみでは単斜晶を主
振とする結晶構造の焼結体が得られ、常温で結晶粒子が
主として正方晶よりなる焼結体を得ることはできない。
Therefore, by simply mixing zirconia powder and cerium oxide in the amounts specified in the present invention and sintering, a sintered body with a crystal structure with monoclinic crystal as the main vibration can be obtained, and the crystal particles are mainly tetragonal at room temperature. It is not possible to obtain a sintered body consisting of

本発明のCeO2/ZrO2混合モル比範囲内で常温で
正方品を呈するジルコニア質セラミックを得る方法とし
ては、正方晶構造の平均粒子径を2μ以下、好ましくは
1μ以下にすればよく〜かかる手法としてば、CeO2
ZrO2構成焼結体の理論密度に対する相対密度を90
%以上(叩ち気孔率10%以下)、好ましくは95%以
上にする如く原料粒子径、粒度分布、凝集粒子径、更に
は焼結条件等をコントロールすればよい。
As a method for obtaining a zirconia ceramic exhibiting a tetragonal structure at room temperature within the CeO2/ZrO2 mixing molar ratio range of the present invention, the average particle size of the tetragonal structure may be set to 2 μ or less, preferably 1 μ or less. If, CeO2
The relative density to the theoretical density of the ZrO2 composition sintered body is 90
% or more (beating porosity of 10% or less), preferably 95% or more, by controlling the raw material particle size, particle size distribution, agglomerated particle size, and sintering conditions.

上記製造条件に於いて具体的数値は酋・用する原料の形
態例えば、固体酸化物粉末或いは共沈法等により得た粉
末、粉砕条件等により一義的に決定できないが、−製造
方法としては平均粒径1μ以下の微細なジルコニア粉末
と混合物全体に対して8〜15モル%の酸化セリウム粉
末を十分に混合し、800〜1200℃の温度で仮焼し
た後、振動ミルで粉砕する。次ぎに該粉砕後の原料粒子
を篩別し、粒径2μ以下、好ましくは1μ以下の原料粉
末となし、この粉末をラバープレス法、金型成形法、押
出成形法、射出成形法等の公知の成形方法により成形し
た後、加熱炉中に入れ1350〜1650℃まで徐々に
昇温し、その後数時間保持して焼成することにより嵩密
度6.0g/cJ以上の焼結体が得られる。
Regarding the above manufacturing conditions, the specific values cannot be determined uniquely depending on the form of the raw materials used, such as solid oxide powder or powder obtained by coprecipitation method, etc., and the pulverization conditions, etc. However, as for the manufacturing method, the average value is Fine zirconia powder with a particle size of 1 μm or less and cerium oxide powder in an amount of 8 to 15 mol % based on the entire mixture are thoroughly mixed, calcined at a temperature of 800 to 1200° C., and then pulverized with a vibration mill. Next, the pulverized raw material particles are sieved to obtain a raw material powder with a particle size of 2μ or less, preferably 1μ or less, and this powder is processed using known methods such as rubber press method, mold molding method, extrusion molding method, injection molding method, etc. After molding according to the molding method described above, the material is placed in a heating furnace and the temperature is gradually raised to 1,350 to 1,650° C., and then held for several hours and fired to obtain a sintered body having a bulk density of 6.0 g/cJ or more.

この様にして得られたジルコニア質焼結体は正方晶の結
晶構造を有しており、その平均結晶粒子径は2μ以下で
ある。
The zirconia sintered body thus obtained has a tetragonal crystal structure, and its average crystal grain size is 2 μm or less.

平均結晶粒子径が2μを越えると前述の如き所望量以上
の正方黒体結晶をi uする焼結体が得られず、正方晶
の安定性が低下して、僅かな衝撃によっても正方晶から
単斜晶に転移し、機械的強度、耐摩耗性が低下するので
好ましく、又焼結体の嵩密度が6.0g/c111に達
しない場合には外部応力に対する焼結体の破壊エネルギ
ーが小さくなり、正方品体の安定性も低下するので好ま
しくない。
If the average crystal grain size exceeds 2μ, it will not be possible to obtain a sintered body containing more than the desired amount of tetragonal blackbody crystals as described above, and the stability of the tetragonal crystals will decrease, and even a slight impact will cause the crystals to change from the tetragonal crystals. This is preferable because it transforms into a monoclinic crystal, which reduces mechanical strength and wear resistance, and when the bulk density of the sintered body does not reach 6.0 g/c111, the fracture energy of the sintered body against external stress is small. This is not preferable because the stability of the square product is also reduced.

本発明のジルコニア質焼結体からなる粉砕機用部材が何
故耐摩耗性、耐衝撃性等の機械的強度に優れた効果を有
するのかその理由は詳らかではないが、硬度が比較的低
く、弾性率も低いので互いに接触する相手部材をあまり
傷つけず、摩耗させないとともに本発明の物性を有する
ジルコニア質焼結体はX線回折法によればCe O2を
16%以上含有してなる常温で安定な正方晶と同様の正
方晶の回折パターンを呈示するが、該安定正方晶とは異
なり外的応力、例えば機械的9荷や熱的応力により正方
晶より単斜晶に一部変態を生じる所謂準安定正方晶であ
るため、機械的応力等により例えクランクが発生したと
しても同時に正方晶から単斜晶への転移が起こり、その
際体積膨張が生じ、これにより破壊エネルギーが吸収さ
れ、機械的強度に優れた効果を呈するものと推察される
The reason why the crusher member made of the zirconia sintered body of the present invention has excellent effects on mechanical strength such as wear resistance and impact resistance is not clear, but it has relatively low hardness and elasticity. According to the X-ray diffraction method, the zirconia sintered body having the physical properties of the present invention is stable at room temperature and contains 16% or more of CeO2. It exhibits a tetragonal diffraction pattern similar to that of a tetragonal crystal, but unlike the stable tetragonal crystal, it exhibits a so-called quasi-diffraction pattern that partially transforms from a tetragonal crystal to a monoclinic crystal due to external stress, such as mechanical stress or thermal stress. Because it is a stable tetragonal crystal, even if a crank occurs due to mechanical stress, a transition from tetragonal to monoclinic occurs at the same time, resulting in volumetric expansion, which absorbs fracture energy and improves mechanical strength. It is presumed that it has excellent effects.

更にこれはジルコニア質焼結体固有の物性でもあるが、
化学的安定性に優れているため粉砕物との化学的反応は
殆どなく、長期にわたって粉砕機部材の腐食等がなく使
用に耐える利点をも有する。
Furthermore, this is a physical property unique to zirconia sintered bodies,
Since it has excellent chemical stability, there is almost no chemical reaction with the pulverized material, and it has the advantage that it can be used for a long time without corrosion of the pulverizer members.

以上、詳述した如く本発明の特定物性を有するジルコニ
ア質焼結体よりなる粉砕機用部材は耐衝撃強度、耐摩耗
性に優れているため粉砕時に於ける粉砕物の汚染の機会
が著しく少なく、各種産業分野での粉砕機用部材による
不純物混入のない粉砕要求に応じるものとしてその工業
的価値は甚だ大なるものである。
As detailed above, the crusher member made of the zirconia sintered body having the specific physical properties of the present invention has excellent impact resistance and wear resistance, so there is significantly less chance of contamination of the crushed material during crushing. Its industrial value is enormous as it meets the requirements for grinding without contaminating impurities using parts for grinders in various industrial fields.

以下実施例により本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例 1 平均粒子径0.03μの二酸化ジルコニア粉末87モル
%に対し、硝酸セリウム水溶液を二酸化セリウム換算で
13モル%を加え、スラリー状として十分攪拌混合した
後このスラリーを乾燥、次いで1ooo℃で仮焼し、C
eO2−ZrO2粉末を得た。
Example 1 To 87 mol % of zirconia dioxide powder with an average particle size of 0.03 μ, 13 mol % of cerium nitrate aqueous solution was added in terms of cerium dioxide, and the slurry was sufficiently stirred and mixed to form a slurry. This slurry was then dried and then heated at 100°C. Calcined, C
eO2-ZrO2 powder was obtained.

この粉末を振動ミルで平均粒子径が0.1μまで粉砕し
た後、ポリビニルアルコールを粉体に対し1重量%加え
、ラバープレス(IT/c+J)により12鰭φに球状
に成形し、電気炉にて1500℃の温度で4時間焼結し
、約10鰭φのジルコニアボールを得た。この焼結体ボ
ールの焼結密度は6.20g/cJ、平均の結晶粒径は
1.0μで実質的に100%の正方晶より構成されてい
た。
After pulverizing this powder to an average particle size of 0.1μ with a vibration mill, 1% by weight of polyvinyl alcohol was added to the powder, and it was molded into a sphere with 12 fin diameters using a rubber press (IT/c+J) and placed in an electric furnace. The ball was sintered at a temperature of 1500° C. for 4 hours to obtain a zirconia ball with a diameter of about 10 fins. The sintered ball had a sintered density of 6.20 g/cJ, an average crystal grain size of 1.0 μm, and was composed of substantially 100% tetragonal crystals.

次いでこのジルコニア焼結体ボール5kgヲ:l!の容
量のアルミナ製ポットに挿入し、振幅5鶴の振動ミルで
12時間空ずり試験を行い、ボールの摩耗量を測定した
。その結果を第1表に示す。尚比較のためジルコニア焼
結体ボールに換え、焼結密度3.62g/c+Jの市販
のアルミナボール(純度92%)を用いた他は上記方法
と同様にボールの摩耗量を測定した。その結果も第1表
に示す。
Next, this zirconia sintered ball weighs 5 kg! The ball was inserted into an alumina pot with a capacity of 1, and a 12-hour dry-slip test was performed using a vibration mill with an amplitude of 5 to measure the wear amount of the ball. The results are shown in Table 1. For comparison, the wear amount of the ball was measured in the same manner as above, except that commercially available alumina balls (purity 92%) with a sintered density of 3.62 g/c+J were used instead of the zirconia sintered balls. The results are also shown in Table 1.

第 1 表 実施例 2 第2表に示す原料を用いた他は実施例工と同様に仮焼粉
末を得、次いでボールに成形した後、同一方法により耐
摩耗試験を行った。
Table 1 Example 2 A calcined powder was obtained in the same manner as in the example except that the raw materials shown in Table 2 were used, and then it was molded into a ball and subjected to an abrasion resistance test in the same manner.

その結果を第2表に示す。The results are shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 8乃至15モル%のCe O2を含有するジルコニア固
溶体の焼結体からなり、該焼結体の平均結晶粒径が2μ
以下、嵩密度が6.0g/Cnt以上でかつ、結晶相の
70%以上が正方晶で残部が単斜晶よりなるジルコニア
焼結体を用いることを特徴とする粉砕機用部材。
It consists of a sintered body of a zirconia solid solution containing 8 to 15 mol% of CeO2, and the average crystal grain size of the sintered body is 2μ.
Hereinafter, a pulverizer member characterized in that a zirconia sintered body having a bulk density of 6.0 g/Cnt or more and in which 70% or more of the crystal phase is tetragonal and the remainder is monoclinic is used.
JP58117287A 1983-06-29 1983-06-29 Member for crusher Pending JPS6011268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117287A JPS6011268A (en) 1983-06-29 1983-06-29 Member for crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117287A JPS6011268A (en) 1983-06-29 1983-06-29 Member for crusher

Publications (1)

Publication Number Publication Date
JPS6011268A true JPS6011268A (en) 1985-01-21

Family

ID=14708006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117287A Pending JPS6011268A (en) 1983-06-29 1983-06-29 Member for crusher

Country Status (1)

Country Link
JP (1) JPS6011268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508791A (en) * 2005-09-16 2009-03-05 オムヤ・デベロツプメント・アー・ゲー Method for preparing inorganic material using beads for grinding specific zirconium oxide containing zirconium oxide, product obtained and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508791A (en) * 2005-09-16 2009-03-05 オムヤ・デベロツプメント・アー・ゲー Method for preparing inorganic material using beads for grinding specific zirconium oxide containing zirconium oxide, product obtained and use thereof
KR101337751B1 (en) * 2005-09-16 2013-12-06 옴야 인터내셔널 아게 Process of preparing mineral material with particular ceria-containing zirconium oxide grinding beads, obtained products and their uses

Similar Documents

Publication Publication Date Title
KR102360147B1 (en) Magnesium oxide-containing spinel powder and manufacturing method thereof
JPS6140621B2 (en)
US4565792A (en) Partially stabilized zirconia bodies
EP0131774B1 (en) Process for the preparation of partially stabilized zirconia bodies
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPS60231462A (en) Abrasive material and manufacture
JPH027910B2 (en)
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JPS6011268A (en) Member for crusher
JP3298206B2 (en) Zirconia powder composition for tumbling granulation
JPS647030B2 (en)
JPH0544428B2 (en)
AU603692B2 (en) A powder for the production of sintered stabilized zirconia
JPH0615191A (en) Member for crushing machine
JP3566323B2 (en) Crusher components
JPS62275059A (en) Crushing media and manufacture
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JP2557290B2 (en) Abrasion resistant zirconia sintered body
JPH06106087A (en) Ball made of zircon for pulverizing machine
JPS59190265A (en) High strength zirconia ceramic
JPH0825798B2 (en) Abrasion resistant zirconia sintered body
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact
JPH05319923A (en) Abrasion-resistant zirconia sintered products and their production
JPS63134067A (en) Vessel for crusher and manufacture thereof
JPS6158431B2 (en)