JPS60112106A - Drive control method of moving mechanism - Google Patents

Drive control method of moving mechanism

Info

Publication number
JPS60112106A
JPS60112106A JP22008583A JP22008583A JPS60112106A JP S60112106 A JPS60112106 A JP S60112106A JP 22008583 A JP22008583 A JP 22008583A JP 22008583 A JP22008583 A JP 22008583A JP S60112106 A JPS60112106 A JP S60112106A
Authority
JP
Japan
Prior art keywords
acceleration
time
moving
amount
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22008583A
Other languages
Japanese (ja)
Other versions
JPH0325802B2 (en
Inventor
Isao Hayazaki
早崎 勲
Fujio Takeda
竹田 芙士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Kogyo KK
Suzuki Motor Corp
Howa Machinery Ltd
Original Assignee
Howa Kogyo KK
Suzuki Motor Corp
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Kogyo KK, Suzuki Motor Corp, Howa Machinery Ltd filed Critical Howa Kogyo KK
Priority to JP22008583A priority Critical patent/JPS60112106A/en
Publication of JPS60112106A publication Critical patent/JPS60112106A/en
Publication of JPH0325802B2 publication Critical patent/JPH0325802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42173Acceleration deceleration

Abstract

PURPOSE:To move a mobile body in the shortest time even if a small positioning is conducted frequently by selecting the optimum reference table out of plural reference tables, generating a command pulse based thereupon and controlling a servomotor so as to move the mobile body. CONSTITUTION:A command pulse train generating means 7 stores a reference table representing the relation of reference mobile time - reference mobile amount based on the characteristic of plural reference acceleration/deceleration curves so as to move smoothly over the entire region from the start point to the end point via the maximum speed and plural reference tables representing the relation of reference mobile time - reference mobile amount based on the characteristic of plural acceleration/deceleration curves similar to the reference acceleration/deceleration curve set in response to the mobile amount shorter than the reference mobile amount to a table memory 12 in advance and selects the optimum reference table moving the mobile body in the shortest time in moving the body by a predetermined mobile amount. A command pulse train is generated based thereupon and given to a position controller 8 so as to control the servomotor M thereby moving the mobile body.

Description

【発明の詳細な説明】 技術分野 本願は移動機構の移動体(例えばロボットの腕など)を
高速かつ滑らかに移動させる移動機構のディジタルサー
ボ方式の駆動制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present application relates to a digital servo type drive control device for a moving mechanism that moves a moving body of the moving mechanism (for example, an arm of a robot) at high speed and smoothly.

従来技術及びその問題点 従来、ロボットの腕やNG工作機のテーブルなどの移動
機構の移動体を駆動制御するのには、電気サーボモータ
を用いたディジタルサーボによる速度位置決め制御が行
われている。その速度位置決め制御の方法として、例え
ば直線加減速が用いられているが、速度切換えが滑らか
でないため移動体に与える衝撃が大きいという問題があ
った。
BACKGROUND ART Conventionally, speed positioning control using a digital servo using an electric servo motor has been performed to drive and control a moving body of a moving mechanism such as a robot arm or a table of an NG machine tool. For example, linear acceleration/deceleration is used as a speed positioning control method, but there is a problem in that the speed change is not smooth and therefore a large impact is applied to the moving body.

こうした問題を解決するために移動体の運動をその始点
から最大速度を経て終点に到るまでの全域に亘って滑ら
かに変化させるような速度曲線に基づき速度位置決めを
行うようにしたものが提案されている。この方法は、第
1図(a)に示すような基準移動時間Tm−基準移動爪
Smの関係を示す一つの変位曲線を近似してディジタル
化し、10″とII I IIの信号に変換してこのビ
ット列を8ビツトずつに区切ってメモリに記憶し、(こ
れを基準表という。)これを基準移動時間T mより決
る一定時間毎に順次とり出して基準表の1ビツトデータ
がII I Bならばパルス発生、II O″ならばパ
ルスを発生せずとしてサーボモータを駆動制御するもの
である。例えば移動体に与えられた移動量が基準移動量
Sm(基準表の最大移動量)より大きいか等しいときは
、一定時間毎に順々に基準表の1ビツトデータを調べ1
1111ならパルス発生、u Ouならパルスを発生せ
ずを行い、基準表上の加速完了位置まできたときに、基
準移動爪Smより大きいときはその差分のパルス数を加
速完了時のパルス間隔で発生して等速移動させ、その後
再び基準表に従って減速完了位置まで行う。また、移動
体の移動量が基準移動量Smよりも小さいとき(第1図
(b))には、公知の補間処理を一定時間繰り返えして
行い移動量を小さくしでいる。
In order to solve these problems, a system has been proposed in which speed positioning is performed based on a speed curve that smoothly changes the motion of a moving object over the entire range from its starting point to its maximum speed to its end point. ing. This method approximates and digitizes a displacement curve showing the relationship between the reference moving time Tm and the reference moving claw Sm as shown in FIG. This bit string is divided into 8 bits and stored in memory (this is called a reference table), and this is sequentially extracted at fixed time intervals determined by the reference moving time Tm.If 1 bit data in the reference table is II I B, then If it is IIO'', the servo motor is driven and controlled without generating a pulse. For example, when the amount of movement given to the moving object is greater than or equal to the standard amount of movement Sm (the maximum amount of movement in the standard table), one bit of data in the standard table is checked at regular intervals.
If 1111, pulse is generated, if u Ou, pulse is not generated, and when the acceleration completion position on the reference table is reached, if it is larger than the reference moving claw Sm, the number of pulses corresponding to the difference is generated at the pulse interval at the time of acceleration completion. and then move at a constant speed, and then again according to the reference table until the deceleration is completed. Furthermore, when the amount of movement of the moving body is smaller than the reference amount of movement Sm (FIG. 1(b)), known interpolation processing is repeated for a certain period of time to reduce the amount of movement.

ところが、このようにして予め用意しておく基準表を1
つにしておいて、移動量がこの基準表の基準移動量Sm
よりも小さい場合には補間処理を行うので、移動時間は
移動量に無関係に必ずj1!、型移動時間Tm分は要す
るため、移動量の小さい位置決めを頻繁に行うような場
合には多くの時間を要するという欠点があった。
However, the standard table prepared in advance in this way is
, and the amount of movement is the standard amount of movement Sm in this reference table.
If it is smaller than j1!, interpolation processing is performed, so the travel time is always j1!, regardless of the amount of travel. , the mold movement time Tm is required, so there is a drawback that a large amount of time is required when positioning with a small movement amount is frequently performed.

目的及び概要 本発明は前記従来技術の欠点を解消することを目的とし
、基準加減速速度曲線の特性に基づく基準移動時間−基
準移動量の面位を示す基準表と、この基準移動量よりも
短い移動量に対応して設定した、前記基準加減速速度曲
線と相似な複数の加減速速度曲線の特性に基づく基準移
動時間−基準移動量の関係を示す複数の基準表とを予め
記憶手段に記憶させ、移動体を、任意の移動量だけ移働
させるにあたって、前記複数の基準表のうちから最短時
間で移動し得る最適な基準表を選択し、この最適な基準
表1こ基づいて指令パルスを発生し、サーボモータを制
御して移動体を移動させるようにしたことを特徴とし、
最大の基準移動量のよりも小さい位置決めを頻繁に行う
ような場合でも円滑に、しかも最短時間で移動させるこ
とのできる移動機構の駆動制御方法を提供しようとする
ものである。
Purpose and Summary The present invention aims to eliminate the drawbacks of the above-mentioned prior art. Preliminary storage means includes a plurality of reference tables indicating a relationship between a reference travel time and a reference travel amount based on characteristics of a plurality of acceleration/deceleration curves similar to the reference acceleration/deceleration curve set corresponding to short travel distances. In order to move the moving object by an arbitrary amount of movement, the optimum reference table that allows the moving body to move in the shortest time is selected from among the plurality of reference tables, and the command pulse is generated based on this optimum reference table. It is characterized by generating a servo motor and moving the moving object.
The object of the present invention is to provide a drive control method for a moving mechanism that can move the moving mechanism smoothly and in the shortest possible time even when positioning is frequently performed smaller than the maximum reference moving amount.

実施例 第2図から第3図に示すように、1は移動機構として例
示するスライドテーブル機構で、本体2の2つの案内ロ
ッド3.3に摺動するようにスライドテーブル4が装着
され、このスライドテーブル4は更に、送りねじ杆5と
螺合している。この送りねじ杆5の両端は夫々本体2に
回動可能に支持されており、一方は継手6を介してサー
ボモータMの回転主軸に連結されている。
Embodiment As shown in FIGS. 2 to 3, 1 is a slide table mechanism exemplified as a moving mechanism, and a slide table 4 is attached so as to slide on two guide rods 3.3 of a main body 2. The slide table 4 is further screwed into a feed screw rod 5. Both ends of the feed screw rod 5 are rotatably supported by the main body 2, and one end is connected to the rotating main shaft of the servo motor M via a joint 6.

次にこのスライドテーブル機構1を駆動制御する位置速
度制御装置について説明する。位置速度制御装置は中央
演算処理装置9、プログラムメモリ10、演算メモリ1
1、テーブルメモリ12、入出力装置14及びどれらを
接続するバス13等よりなる公知のマイクロコンピュー
タで構成される指令パルス列発生手段7とパルス信号弁
別器15a、減算器15b、位置偏差カウンタ16、D
/A変換器17、サーボアンプ18、回転速度検出器1
9、回転数検出器20から成る速度ループ及び位置ルー
プサーボ系を備えたディジタルサーボによる位置決め制
御装置8より成る。
Next, a position and speed control device for driving and controlling this slide table mechanism 1 will be explained. The position speed control device includes a central processing unit 9, a program memory 10, and a calculation memory 1.
1. A command pulse train generating means 7 composed of a known microcomputer including a table memory 12, an input/output device 14, a bus 13 connecting these, etc., a pulse signal discriminator 15a, a subtracter 15b, a position deviation counter 16, D
/A converter 17, servo amplifier 18, rotation speed detector 1
9, a digital servo positioning control device 8 equipped with a speed loop and a position loop servo system including a rotation speed detector 20;

次にテーブルメモリ12について説明する。いま最大速
度Vmに到達する基準加減速速度曲線が第4図(a)の
ように設定され、また、この基1曽加減速速度曲線を積
分することにより第5図(a)に示す基準移動時間Tm
−基準移動量S rnの曲線が得られる。この基準移動
時間Tmより短い移動量Tnに対応して、前記基準加減
速速度曲線と相似な、つまり時間軸と速度軸を縮小した
加減速速度曲線を複数設定しく例えば第4図(b)の曲
線)、これを積分することで第5図(b)に示す基準移
動時間Tn−基準移動量Snの曲線が得られる。こうし
てめられたいくつかの基準移動時間−基準移動量の曲線
(m個の変位曲線)に対し夫々近似となるようなディジ
タル化を行い、′0”と′l I IIの信号に直し、
ビット列にしてテーブルメモリ12 (ROM)内に予
めm個の基準表Tat(n=1.2、・・・・・・m)
として記憶させておく(第6図)。次にこのm個の基準
表のうち、最適な基準表を選ぶために用意する比較テー
ブルについて説明する。まず、m個の加減速速度曲線の
うち、第n番目の基準移動時間(加減速時間)Tnと最
大速度Vnは基準加減速速度曲線(第4図(a))に対
して相似なので、 Tn’= (n/m) ・Tm (1)Vn=(n/m
)・V m (2) (n=1.2、・・・・・・m) また、移動量は Sm=に−Vm−Tm (3) Sn=に−Vn−Tn (4) (kは定数) (1) −(4)より S n = (n /、m)”
 ・S m (5)いま、移動量Sが移動量SnとSn
+1の中間にある場合、移動所要時間と移動量の関係を
示す第9図かられかるよう、移動爪Sが境界移動爪Sc
より小さいときは第n番目の基準表Tanを、またそれ
以上のときは第(n+1)番目の基準表Tan+1を用
いればよい。
Next, the table memory 12 will be explained. The reference acceleration/deceleration speed curve that now reaches the maximum speed Vm is set as shown in FIG. 4(a), and by integrating this basic acceleration/deceleration curve, the reference movement shown in FIG. 5(a) is obtained. Time Tm
- A curve of the reference movement amount S rn is obtained. Corresponding to the movement amount Tn that is shorter than the reference movement time Tm, a plurality of acceleration/deceleration speed curves similar to the reference acceleration/deceleration speed curve, that is, the time axis and the speed axis are reduced, should be set, for example, as shown in FIG. 4(b). By integrating this curve, a curve of reference travel time Tn-reference travel amount Sn shown in FIG. 5(b) is obtained. The several reference travel time-reference travel amount curves (m displacement curves) determined in this way are digitized to approximate them, and converted into '0' and 'l I II signals.
m reference tables Tat (n=1.2,...m) are stored in advance in the table memory 12 (ROM) as bit strings.
(Figure 6). Next, a comparison table prepared for selecting the optimal standard table from among the m standard tables will be explained. First, among the m acceleration/deceleration curves, the nth reference travel time (acceleration/deceleration time) Tn and the maximum speed Vn are similar to the reference acceleration/deceleration curve (Figure 4 (a)), so Tn '= (n/m) ・Tm (1) Vn=(n/m
)・V m (2) (n=1.2,...m) Also, the amount of movement is Sm=-Vm-Tm (3) Sn=-Vn-Tn (4) (k is Constant) From (1) − (4), S n = (n /, m)”
・S m (5) Now, the movement amount S is the movement amount Sn and Sn
+1, as can be seen from FIG. 9 which shows the relationship between the travel time and the amount of movement, the moving claw S is at the boundary moving claw Sc.
If it is smaller, the n-th reference table Tan may be used, and if it is larger, the (n+1)-th reference table Tan+1 may be used.

従って To+1=Tn+(Sc−3n)/Vn (6)(1)
から(5)を(6)へ代入して S c = ’(n (n +1/k)/nr) ・S
 m (7)ここでkは加減速時の移動爪を最大速度ど
加減速時間で割ったもので1より小さい値をとり、通常
はに=0.5とするのが適切である。いまk”0.5を
(7)へ代入して Sc= (n(n+2)/nf) ・Sm (8)(n
=1.2、・・・・・・m) (8)式より移動量と選択される基準表の番号(n)と
の関係が第1表のように得られ、このように比較するた
めに夫々のnに対応した比較値を第7図のように比較テ
ーブルとして予めテーブルメモリ12 (ROM)内に
記憶さ1ておく。
Therefore, To+1=Tn+(Sc-3n)/Vn (6)(1)
Substituting (5) into (6), S c = '(n (n + 1/k)/nr) ・S
m (7) Here, k is the maximum speed of the moving claw during acceleration/deceleration divided by the acceleration/deceleration time, and takes a value smaller than 1, and it is usually appropriate to set it to = 0.5. Now, substitute k”0.5 into (7) and get Sc= (n(n+2)/nf) ・Sm (8)(n
= 1.2,...m) From equation (8), the relationship between the amount of movement and the number (n) of the selected standard table is obtained as shown in Table 1, and in order to compare in this way The comparison values corresponding to each n are stored in advance in the table memory 12 (ROM) as a comparison table as shown in FIG.

第1表 ゛ また、テーブルメモリ12に記憶されている各基準表の
夫々に対応したパラメータ、即ち基準移動量Sn、基準
移動時間Tn、加速完了時間T v n(nは1・・・
・・・m)の値を予め第8aに示すテーブルパラメータ
メモリとしてテーブルメモリ12内に記憶させておく。
Table 1 In addition, parameters corresponding to each reference table stored in the table memory 12, namely, reference movement amount Sn, reference movement time Tn, acceleration completion time Tvn (n is 1...
. . m) is stored in advance in the table memory 12 as a table parameter memory shown in No. 8a.

次に、前記したm個の基準表のうちから、移動体4に与
えられた(あるいは演算の結果水められた)移動量を移
動させるにあたって最短時間で移動し得る最適な基準表
を選択する手順を第10・図に示すフローチャートによ
って説明する。プログラムがスタートすると、ステップ
Aで第7図の比較テーブルのテーブルカウンタの初期値
をc=1にセットし1次いで入出力装置14を介して移
動指令が入力されて移動体4の原点と現在位置、原点と
目標位置との差を算出してその符号により移動方向をめ
、その絶対値(移動量)を変数Bに代入しくステップB
)、次いでテーブルカウンタの指す比較テーブルの比較
値を変数Aに代入しくステップC)、ステップDで変数
Aが変数Bより大きいか等しい時はその時のテーブルカ
ウンタの値がテーブルメモリ12内の基準表の番号で、
そうでないときはステップE、ステップFを介してテー
ブルカウンタを1ずつ増していき、ステップC,Dを最
大(m−1)回繰り返してテーブルメモリ12内の最適
基準表の番号をめる。また、こうしてまった基準表の番
号からその番号の指すテーブルパラメータメモリより、
選択された基準表番;対応する基準移動量S n、基準
移動時間゛■゛■、加速完了時間T’v nのパラメー
タを読み出し、更に、テーブルパラメータメモリより読
出した基準移動量Snより、与えられた移動量が大きい
場合には等速領域移動量を算出し前記読み出したパラメ
ータと共に演算メモリ11に書き込んでおく。
Next, from among the m reference tables described above, the optimum reference table is selected that allows the mobile object 4 to move the amount of movement given (or reduced as a result of calculation) in the shortest time. The procedure will be explained with reference to the flowchart shown in Figure 10. When the program starts, in step A, the initial value of the table counter of the comparison table shown in FIG. Step B: Calculate the difference between the origin and the target position, determine the direction of movement based on its sign, and substitute the absolute value (amount of movement) into variable B.
), then the comparison value of the comparison table pointed to by the table counter is assigned to variable A (step C), and when variable A is greater than or equal to variable B in step D, the value of the table counter at that time is assigned to the reference table in table memory 12. with the number of
If not, the table counter is incremented by 1 through steps E and F, and steps C and D are repeated a maximum of (m-1) times to increment the number of the optimum reference table in the table memory 12. Also, from the reference table number stored in this way, from the table parameter memory pointed to by that number,
The selected standard table number; the parameters of the corresponding standard movement amount Sn, standard movement time ゛■゛■, and acceleration completion time T'vn are read out, and further, from the standard movement amount Sn read from the table parameter memory, the given If the amount of movement is large, the amount of movement in the constant velocity area is calculated and written in the calculation memory 11 together with the read parameters.

このようにしてm個の基準表から1つの基準表が選択さ
れ、続いて移動体−4の移動処理が開始されるが、次に
この移動処理を第11.12図に示すフローチャートに
従って説明する。ステップaで、与えられた移動量と、
選択させたテーブルパラメータメモリの基準移動量とを
比較し、基準移動量と等しいか大のときはイからハの夫
々のループを実行する。加速ルーブイでは加速処理を行
い、ステップbで選択された基準表の1ピッ1−データ
の位置を示すポインタ(以下テーブルポインタと記す)
が加速完了位置即ち加速完了時間に達したかどうかを判
断し、達していればステップhへ、そうでなければステ
ップCへ進む。ステップCでは、テーブルポインタが指
すデータがII 171かどうか判断し、n 11#な
らステップdで出力装置から移動パルスを発生し、0”
ならステップgへ進んで移動パルスを発生したのと同一
時間となるように時間調整を行い、ステップeへ進む。
In this way, one reference table is selected from the m reference tables, and then the movement process of mobile object-4 is started.Next, this movement process will be explained according to the flowchart shown in FIG. 11.12. . In step a, given the amount of movement and
It compares the amount of movement with the reference movement amount of the selected table parameter memory, and if it is equal to or greater than the reference movement amount, each of the loops A to C are executed. The acceleration Louvui performs acceleration processing and displays a pointer (hereinafter referred to as table pointer) indicating the position of 1-pi 1-data in the reference table selected in step b.
It is determined whether the acceleration completion position, that is, the acceleration completion time has been reached, and if so, the process proceeds to step h; otherwise, the process proceeds to step C. In step C, it is determined whether the data pointed to by the table pointer is II 171, and if n 11#, a movement pulse is generated from the output device in step d, and 0''
If so, proceed to step g, adjust the time so that it is the same time as when the movement pulse was generated, and proceed to step e.

ステップeではテーブルポインタを現在用していた位置
より1ビット次の位置を指すように更新し、更にステッ
プfへ進んで加速ルーブイの処理を繰返し実行する時間
が一定時間間隔となる−ように時間調整を行う。この時
間調整は、所定の加速時間で加速を実行するためのもの
であり、所定の一定時間間隔は加速時間と、加速ルーブ
イの実行回数よりめることができる。こうしてテーブル
ポインタが加速完了位置を指すと、ステップhへ進み、
先程算出しておいた等速領域移動量がOかどうか判断し
、0ならステップQへ、そうでなければステップiで出
力装置より移動パルスを発生、ステップjで等速領域移
動量を減じて更新し、ステップにで前記加速ルーブイの
処理時間と同一となるように時間調整を行い、等速領域
移動ループロの処理を繰返し実行することにより等間隔
パルス列を得て1等速移動を行う。等速領域移動量が0
になると、ステップ氾へ進み、テーブルポインタが減速
完了位置かどうかを判断し、そうでなければステップm
でテーブルポインタの指す基準表の1ピッ1−データを
調べ、1″″ならステップnで移動パルスを出力、0”
ならステップgで時間調整をし、ステップ0でテーブル
ポインタを更新、ステップPで加速ルーブイの処理時間
と減速ループハの処理時間が同一となるように時間調整
を行う。
In step e, the table pointer is updated to point to the next position by one bit from the currently used position, and then the process proceeds to step f, where the time to repeatedly execute the acceleration Louvui processing becomes a fixed time interval. Make adjustments. This time adjustment is for executing acceleration in a predetermined acceleration time, and the predetermined constant time interval can be determined from the acceleration time and the number of times the acceleration loop is executed. In this way, when the table pointer points to the acceleration completion position, proceed to step h,
Determine whether the uniform velocity area movement amount calculated earlier is O. If it is 0, proceed to step Q. If not, generate a movement pulse from the output device in step i, and reduce the constant velocity area movement amount in step j. The time is adjusted so as to be the same as the processing time of the acceleration loop buoy in step 1, and the processing of the constant-velocity area movement loop processor is repeatedly executed to obtain an equally spaced pulse train and perform one constant-velocity movement. Constant velocity area movement amount is 0
When this happens, proceed to step flood, determine whether the table pointer is at the deceleration completion position, and if not, proceed to step m.
Check the 1-pitch 1-data of the reference table pointed to by the table pointer, and if it is 1'', output a movement pulse at step n, 0''
If so, the time is adjusted in step g, the table pointer is updated in step 0, and the time is adjusted in step P so that the processing time of the acceleration loop and the processing time of the deceleration loop are the same.

こうして減速ループハを繰返しテーブルポインタが減速
完了位置になると処理は終了する。次に選択したテーブ
ルパラメータメモリの基準移動量が移動量より大のとき
は、補間処理ループ二へ進み、ステップrでテーブルポ
インタが加減速完了位置に達したかどうか、即ち移動時
間を完了したかどうかを判断し、そうなら終了、そうで
なければステップSへ進み、ステップSではテーブルポ
インタの指す基準表の1ビツトデータが1″かどうか判
断し、11177ならステップtで公知の補間処理を行
ない、ステップUでパルス発生するかどうか判断し、Y
ESならステップVで化力装置よす移動パルスを発生す
る。ステップWでテーブルポインタを次の位置へ更新し
、また、この補間処理ループのどの経路を経ても前記加
速ルーブイ、等速領域移動ループロ、減速ループハの処
理時間と同一となるように時間調整のステップX、Y、
Zが挿入さ゛れている。
In this way, the deceleration loop is repeated and the process ends when the table pointer reaches the deceleration completion position. Next, when the reference movement amount of the selected table parameter memory is larger than the movement amount, the process proceeds to interpolation processing loop 2, and in step r, it is checked whether the table pointer has reached the acceleration/deceleration completion position, that is, the movement time has been completed. If yes, the process ends; if not, the process goes to step S. In step S, it is determined whether the 1-bit data in the reference table pointed to by the table pointer is 1", and if it is 11177, known interpolation processing is performed in step t. , determine whether a pulse is generated in step U, and Y
If it is ES, in step V, a force-transforming device generates a movement pulse. In step W, the table pointer is updated to the next position, and in step W, the time is adjusted so that the processing time of the acceleration loop, constant velocity area movement loop, and deceleration loop is the same no matter which route this interpolation processing loop takes. X, Y,
Z is inserted.

このようにして指令パルス列発生手段7よりパルス列が
パルス信号弁別器15aへ入力され、このパルス信号弁
別器15aの他の入力には回転数検出器20からサーボ
モータMの回動量に応じた数のパルス信号が加えられ、
パルス信号弁別器】5aはこれらの入力信号力加算、減
算の弁別を行い、これを位置偏差カウンタ16へ導く。
In this way, a pulse train is inputted from the command pulse train generating means 7 to the pulse signal discriminator 15a, and the other inputs of the pulse signal discriminator 15a are supplied with a number of pulses corresponding to the amount of rotation of the servo motor M from the rotation speed detector 20. A pulse signal is applied,
[Pulse signal discriminator] 5a performs discrimination between addition and subtraction of these input signal forces, and guides this to a position deviation counter 16.

位置偏差カウンタ16のカウント値はD/A変換器17
でアナログ信号に変換されて減算器15bに加えられる
。減算器15bの他の入力には回転速度検出器19から
サーボモータMの回転速度に対応するアナログ信号が加
えられ、減算器15bはこれらの入力信号の偏差をとっ
てこれをサーボアンプ18を介してサーボモータMへ導
き、駆動する。
The count value of the position deviation counter 16 is calculated by the D/A converter 17.
The signal is converted into an analog signal and added to the subtracter 15b. An analog signal corresponding to the rotational speed of the servo motor M is added from the rotational speed detector 19 to the other input of the subtractor 15b, and the subtracter 15b takes the deviation of these input signals and sends it through the servo amplifier 18. is guided to the servo motor M and driven.

サーボモータMは送りねじ杆5を回動させて移動体4を
移動させ1.高速位置決めを実行する。
The servo motor M rotates the feed screw rod 5 to move the movable body 4.1. Perform high-speed positioning.

第13図(、)はm=8として式(5)により各移動量
Snを、式(8)により各境界移動量SCを算出して、
これを線図化したもので従来は第13図(b)のように
最大の基準移動量88以下の移動量に対しても所要時間
T8だけかかっていたのに対し、本発明では最大の基準
移動基s8以下の移動量が与えられた場合、(a)の線
図に従うことにより所要時間T8以下になる。尚、第1
3図(c)はmを大きくとって算出したときの理想的な
曲線で、この第13図によれば、m=8程度にとればこ
の理想的な曲線に十分近似させることができる。
In Fig. 13 (,), each movement amount Sn is calculated by equation (5) with m = 8, and each boundary movement amount SC is calculated by equation (8),
This is shown in a diagram as shown in Fig. 13(b), where in the past it took only the required time T8 even for a movement amount less than the maximum reference movement amount of 88, whereas in the present invention, the maximum reference movement amount If a moving amount of the moving group s8 or less is given, the required time will be less than T8 by following the diagram in (a). Furthermore, the first
FIG. 3(c) is an ideal curve calculated with a large m value, and according to FIG. 13, if m is set to about 8, it can be sufficiently approximated to this ideal curve.

本実施例では比較テーブルを予めROMに記憶させてお
き、第10図に示すフローチャートに従って最適な基準
表を選択したが、式(8)をもとに直接演算を行い、基
準表を選択してもよい。また、第11.12図に示すフ
ローチャートの時間調整は、所要時間間隔のクロックに
よる割込処理を各移動処理にて実行すれば、省略するこ
とができる。また、移動処理をソフトウェアで説明した
が、ハードウェアでも実現できる。
In this example, the comparison table was stored in the ROM in advance and the optimal reference table was selected according to the flowchart shown in FIG. Good too. Furthermore, the time adjustment in the flowcharts shown in FIGS. 11 and 12 can be omitted if interrupt processing using a clock at required time intervals is executed in each movement process. Furthermore, although the movement processing has been explained using software, it can also be realized using hardware.

効果 以上のように本発明では、移動体の運動をその始点から
最大速度を経て終点に到るまでの全域に亘って滑らかに
変化させるような基準加減連速一度曲線の特性に基づく
基準移動時間−基準移動量の関係を示す基準表と、前記
基準移動量よりも短い移動量に対応して設定した、前記
基準加減速速度曲線と相似な複数の加減速速度曲線の特
性に基づく基準移動時間−基準移動量の関係を示す複数
の基準表とを予め記憶手段に記憶させ、移動機溝の移動
体を、予め与えられた任意の移動量だけ移動させるにあ
たって、前記複数の基準表のうちから最短時間で移動し
得る最適な基準表を選択し、この基準表に基づいて指令
パルスを発生し、サーボモータを制御して移動体を移動
させるようにしたので、従来のように、一つだけの基準
移動時間−基準移動量の関係を示す基準表に基づいてこ
の基準移動量よりも短い移動量に対しては公知の補間処
理を行なって基準移動時間だけかかって移動体を移動さ
せていたのに対し、短い時間で移動させることができ、
しかも基準加減速速度曲線と略同−の加速度、減速度と
なるため、どのような移動量に対しても移動体に与える
衝撃を同じにでき、円滑な移動を期待できる。更に、複
数の基準表を予め記憶手段に記憶させたので、いちいち
演算する時間が省略でき、より高速な移動体の移動がで
きる。
Effects As described above, the present invention provides a standard travel time based on the characteristics of a standard continuous acceleration/deceleration curve that smoothly changes the motion of a moving object over the entire range from its starting point to its maximum speed to its end point. - A reference table showing the relationship between reference travel amounts and a reference travel time based on the characteristics of a plurality of acceleration/deceleration curves similar to the reference acceleration/deceleration curve, which are set corresponding to travel distances shorter than the reference travel amount. - A plurality of reference tables indicating the relationship between reference movement amounts are stored in advance in the storage means, and when moving the moving body in the moving machine groove by an arbitrary movement amount given in advance, one of the reference tables is selected from among the plurality of reference tables. The optimal reference table that allows movement in the shortest time is selected, command pulses are generated based on this reference table, and the servo motor is controlled to move the moving object. Based on a reference table showing the relationship between reference travel time and reference travel amount, known interpolation processing is performed for travel distances shorter than this reference travel amount, and the moving object is moved by the standard travel time. In contrast, it can be moved in a short time,
Furthermore, since the acceleration and deceleration are approximately the same as the reference acceleration/deceleration curve, the same impact can be applied to the moving body regardless of the amount of movement, and smooth movement can be expected. Furthermore, since a plurality of reference tables are stored in advance in the storage means, the time required for each calculation can be omitted, and the moving body can move faster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の基準移動量−基準移動時間の関係図、第
2図はスライドテーブル機構の平面図、第3図はブロッ
ク図、第4図は基準加減速速度曲線を示す図、第5図は
第4図の変位曲線を示す図、第6図は複数の基準表のメ
モリ内配列を示す図、第7図は比較テーブルを示す図、
第8図はテーブルパラメータメモリを示す図、第9図は
境界移動量の説明図、第10図は最適な基準表をめる手
順を示すフローチャート、第11図、第12図はパルス
発生のためのフローチャート、第13図はm=8の場合
の移動所要時間と移動量の関係を示す図である。 ■・・・スライドテーブル機構、4・・・スライドテー
ブル、 7・・・指令パルス列発生手段、8・・・位置
決め制御装置、12・・・テーブルメモリ、M・・・サ
ーボモータM 第5図 第4図 第13図 (h) ハシ↑ 第6図 第7図 第8図 第10図 第12図
Fig. 1 is a diagram showing the relationship between the conventional reference movement amount and reference movement time, Fig. 2 is a plan view of the slide table mechanism, Fig. 3 is a block diagram, Fig. 4 is a diagram showing the reference acceleration/deceleration curve, and Fig. 5 is a diagram showing the reference acceleration/deceleration speed curve. The figure shows the displacement curve of Fig. 4, Fig. 6 shows the arrangement of multiple reference tables in memory, and Fig. 7 shows the comparison table.
Fig. 8 is a diagram showing the table parameter memory, Fig. 9 is an explanatory diagram of the amount of boundary movement, Fig. 10 is a flowchart showing the procedure for creating an optimal reference table, and Figs. 11 and 12 are for pulse generation. FIG. 13 is a flowchart showing the relationship between the travel time and the travel amount when m=8. ■...Slide table mechanism, 4...Slide table, 7...Command pulse train generation means, 8...Positioning control device, 12...Table memory, M...Servo motor M Fig. 5 Figure 4 Figure 13 (h) Hashi ↑ Figure 6 Figure 7 Figure 8 Figure 10 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 指令パルス列発生手段、サーボモータの回転速度をブイ
ーiバック制御する速度ループサーボ系、サーボモータ
の回転数をフィードバック制御する位置ループサーボ系
を備え、指令パルス列発生手段からの指令パルスに基づ
きサーボモータを制御して移動体を移動させる移動機構
の駆動制御方法において、移動体の運動をその始点から
最大速度を経て終点に到るまでの全域に亘って滑らかに
変化させるような基準加減速速度曲線の特性に基づく基
準移動時間−基準移動量の関係を示す基準表と、前記基
準移動量よりも竺い移動量に対応して設定した、前記基
準加減速速度曲線と相似な複数の加減速速度曲線の特性
に基づく基準移動時間−基準移動量の関係を示す複数の
基準表とを予め記憶手段に記憶させ、前記移動体を、予
め与えられた任意の移動量だけ移動させるにあたって、
前記複数の基準表のうちから最短時間で移動し得る基準
表を選択し、この基準表に基づいて指令パルスを発生さ
せるようにしたことを特徴とする移動機構の駆動制御方
法。
The servo motor is equipped with a command pulse train generating means, a speed loop servo system for controlling the rotational speed of the servo motor in buoy back, and a position loop servo system for feedback controlling the rotational speed of the servo motor, and the servo motor is controlled based on the command pulses from the command pulse train generating means. In a drive control method for a moving mechanism that moves a moving object by controlling it, a reference acceleration/deceleration curve is created that smoothly changes the motion of the moving object over the entire range from its starting point to its maximum speed to its end point. A reference table showing the relationship between reference travel time and reference travel amount based on characteristics, and a plurality of acceleration/deceleration speed curves similar to the reference acceleration/deceleration curve set in correspondence with travel distances that are longer than the reference travel amount. A plurality of reference tables showing the relationship between reference travel time and reference travel amount based on the characteristics of are stored in advance in the storage means, and in moving the moving body by an arbitrary travel amount given in advance,
A drive control method for a moving mechanism, characterized in that a reference table that allows movement in the shortest time is selected from among the plurality of reference tables, and a command pulse is generated based on this reference table.
JP22008583A 1983-11-22 1983-11-22 Drive control method of moving mechanism Granted JPS60112106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22008583A JPS60112106A (en) 1983-11-22 1983-11-22 Drive control method of moving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22008583A JPS60112106A (en) 1983-11-22 1983-11-22 Drive control method of moving mechanism

Publications (2)

Publication Number Publication Date
JPS60112106A true JPS60112106A (en) 1985-06-18
JPH0325802B2 JPH0325802B2 (en) 1991-04-09

Family

ID=16745691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22008583A Granted JPS60112106A (en) 1983-11-22 1983-11-22 Drive control method of moving mechanism

Country Status (1)

Country Link
JP (1) JPS60112106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289119A (en) * 1985-10-16 1987-04-23 Pioneer Electronic Corp Adjustable-speed control method
JPS63216112A (en) * 1987-03-04 1988-09-08 Oriental Motor Co Ltd Positioning device for servo motor
JPH03152605A (en) * 1989-11-09 1991-06-28 Honda Motor Co Ltd Acceleration/deceleration control method for robot
EP1755012A3 (en) * 2005-08-17 2007-11-07 Murata Kikai Kabushiki Kaisha Method for mounting pattern in actual machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289119A (en) * 1985-10-16 1987-04-23 Pioneer Electronic Corp Adjustable-speed control method
JPS63216112A (en) * 1987-03-04 1988-09-08 Oriental Motor Co Ltd Positioning device for servo motor
JPH03152605A (en) * 1989-11-09 1991-06-28 Honda Motor Co Ltd Acceleration/deceleration control method for robot
EP1755012A3 (en) * 2005-08-17 2007-11-07 Murata Kikai Kabushiki Kaisha Method for mounting pattern in actual machine
US7729821B2 (en) 2005-08-17 2010-06-01 Murata Kikai Kabushiki Kaisha Method for mounting pattern in actual machine

Also Published As

Publication number Publication date
JPH0325802B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
US5426722A (en) Method for optimizing the motion of a multi-axis robot
JP3129622B2 (en) Quadrant projection correction method in full closed loop system
US4815007A (en) Apparatus for controlling a robot
EP0320515A1 (en) Acceleration/deceleration controller
JP7376260B2 (en) numerical control device
JPS60112106A (en) Drive control method of moving mechanism
US4214192A (en) Path control apparatus for the computer directed control of a numerically controlled machine tool
US3792333A (en) Feedrate control system for numerical control apparatus
JPS581805B2 (en) Positioning control method
JPH0561651B2 (en)
JPH11114858A (en) Locus control method and locus control device
JPH0777692B2 (en) Thread cutting method
JPH0639066B2 (en) Control method for industrial robot
JPS6232508A (en) Positioning control method for servo-system of numerical controller
JPH0274185A (en) Controller of motor
JP2740691B2 (en) Control method
JPH06230818A (en) Servo controller
JP3210301B2 (en) Numerical control unit
JP2540594B2 (en) Speed control method
JP2001084019A (en) Numerical value controller,
JP2669641B2 (en) Numerical controller for machining non-round workpieces
JPH06262560A (en) Robot controller
JP2852772B2 (en) Robot acceleration / deceleration control method
JPS62150409A (en) Speed control method in digital servo control
JPS61137719A (en) Injection molder