JPS60112105A - Numerical control system - Google Patents
Numerical control systemInfo
- Publication number
- JPS60112105A JPS60112105A JP21941283A JP21941283A JPS60112105A JP S60112105 A JPS60112105 A JP S60112105A JP 21941283 A JP21941283 A JP 21941283A JP 21941283 A JP21941283 A JP 21941283A JP S60112105 A JPS60112105 A JP S60112105A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- data
- processing
- area
- curved surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
- G05B19/40931—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36383—Manual input combined with input from computer or tape
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、金型等の被加工物をNC工作機械を利用して
切削加工する場合の部分領域加工方式に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a partial area machining method when cutting a workpiece such as a mold using an NC machine tool.
金型等の被加工物をNC工作機械を利用して切削加工す
る場合、通常は被加工形状を複数の基本形状(一般的に
は曲面となる。以下曲面という。)に分割して、各々の
曲面ごとに切削処理を行ない加工工具(以下カッタとい
う。)の切削移動制御データ(以下切削パスという6、
)を作成している。一般に2次元形状からなる金型加工
の場合、形状そのものの複雑さに加えて金型構造も複雑
になるため多くの曲面に分割して処理しなければ々らず
、かつ、又各々の曲面がお互いに相貫関係として存在す
る場合が多く必然的に複数曲面間の相貫問題となるいわ
ゆる干渉壁処理が多くなり、大型計算機を用いても厖大
な計算時間を要することになる。しかも、従来のNC装
置は、例えばNCテープ等に出力し7’cNC命令を入
力データとして解読し、実行するだけであるから、予め
全ての曲面に対して最終の仕上げ形状全忠実に生成でき
るように、例夕げ曲面上に円柱等の複数の部分形状が相
貫しているような場合でも、詳細な細部の形状も含めて
切削パスを作成しておく必要がある。従って、例えば対
象としている切削曲面に対して干渉壁となる複数の干渉
曲面のうちの1曲面のしかも部分的な形状の修正を行な
うような場合で4、必ず該当する切削曲面については、
再度切削バ、ツを計算し、NCCチー1作成しなければ
ならず、効率的でない。When cutting a workpiece such as a mold using an NC machine tool, the shape of the workpiece is usually divided into multiple basic shapes (generally curved surfaces, hereinafter referred to as curved surfaces), and each The cutting process is performed for each curved surface, and the cutting movement control data (hereinafter referred to as cutting path) of the processing tool (hereinafter referred to as cutter) is processed.
) is being created. In general, when processing a mold made of a two-dimensional shape, the shape itself is complex, and the mold structure is also complicated, so it is necessary to process it by dividing it into many curved surfaces, and each curved surface is In many cases, these surfaces exist in an interrelated relationship with each other, and so-called interference wall processing, which is inevitably a mutual problem between multiple curved surfaces, increases, and even if a large-scale computer is used, an enormous amount of calculation time is required. Moreover, because conventional NC devices only output the 7'cNC command to an NC tape, decipher it as input data, and execute it, it is possible to generate the final finished shape in advance for all curved surfaces with complete fidelity. For example, even in the case where a plurality of partial shapes such as cylinders are interconnected on a curved surface, it is necessary to create a cutting path including detailed shapes. Therefore, for example, in the case of partially modifying the shape of one of a plurality of interference surfaces that serve as interference walls for the target cutting surface, 4, for the corresponding cutting surface,
It is necessary to calculate the cutting angle and angle again and create the NCC chip 1, which is not efficient.
この間開をもう少し具体的に説明すると、例えば第1図
(lL) 、 (b)に示したようなモデル形状10の
NC切削加工においてミ今基本形状即ち曲面11を切削
曲面として、その切削パスを計算する場合を考えると、
曲面12.13を干渉壁曲面として処理することになる
。ここで、例えば設計変更等の理由で、曲面15の形状
を1.第2図に示すように、曲面14の形状に修正する
場合、白油111の形状は同一であるにも拘らず、再計
算をしなければならないことになる。しかも、このよう
な形状修正に起因するNCテープの再出力作業は、決し
て希少ではなく実際問題としては非常に多く、そのため
の作業量の増大は無視できない。また、CAD/CAM
の導入が進むと、段重設計等の上流の工程で作成された
図形データを全工程で共用するようになるため、部分修
正追加などの形状変更の機会が必然的に増大することに
なり、金型加工部署等の下流工程への影響は非常#(大
きい。しかも、一般的には計算機を利用してNCテープ
を作成りる部署とそのNCテープを用いて実際の加工を
行なう工作機械の操作者とは担当が異なるため、上記の
ようなNCテープの再出力作業が頻繁に発生する。と計
算機の負荷が増大するだけでなく、その都度上流の工程
に作業が戻ることになり、作業時間並びに待ち時間等が
増加し、必然的に金型製作工程の全体の工数が増大して
しまうという問題もある。To explain this gap a little more concretely, for example, in NC cutting of a model shape 10 as shown in FIGS. Considering the case of calculating,
The curved surfaces 12 and 13 will be processed as interference wall curved surfaces. Here, for example due to a design change, the shape of the curved surface 15 is changed to 1. As shown in FIG. 2, when modifying the shape of the curved surface 14, recalculation is required even though the shape of the white oil 111 is the same. Moreover, the work of re-outputting NC tapes due to such shape corrections is by no means rare, but actually quite common, and the increase in the amount of work cannot be ignored. Also, CAD/CAM
As the introduction of this progresses, the shape data created in upstream processes such as layered design will be shared in all processes, which will inevitably increase the opportunities for shape changes such as adding partial corrections. The impact on downstream processes such as the mold processing department is extremely large.In addition, it generally affects the departments that use computers to create NC tapes and the machine tools that perform actual machining using the NC tapes. Since the person in charge is different from the operator, the NC tape re-output work as described above occurs frequently.This not only increases the load on the computer, but also causes the work to go back to the upstream process each time, making the work difficult. There is also the problem that the time and waiting time etc. increase, which inevitably increases the total number of man-hours in the mold manufacturing process.
明細書の浄書(内容に変更なし)
〔発明の目的〕
本発明の目的は、金星等の被加工物を計算機を用いてN
CC切削−を行う場合に、被加工形状を構成する各曲面
について、切削ノくスを作成する第1の処理と曲面の平
面曲線による部分領域化を行なうル2の処理とに分離し
、易1の処理で作成した切削パスを入力データとして、
NC装置において第2の処理を実行させる事にまり、計
算機の負荷を軽減するとともに、加工時に部分修正への
対応を簡便にかつ迅速に実行し得る部分領域加工方式並
びにその制御装置を実現することにある。Engraving of the specification (no change in content) [Object of the invention] The object of the present invention is to process a workpiece such as Venus by using a computer to
When CC cutting is performed, each curved surface constituting the workpiece shape is separated into the first process of creating cutting marks and the second process of dividing the curved surface into partial areas using planar curves. Using the cutting path created in step 1 as input data,
To realize a partial area machining method and its control device that allows an NC device to execute a second process, thereby reducing the load on a computer and easily and quickly responding to partial corrections during machining. It is in.
被加工形状を構成する1つの基本形状として曲面Aが曲
面Bおよび曲面Cと相貫関係にあって曲面Aが曲面B、
Cによりて部分化されている形状、即ち、XY平面又は
、YZ平面又は。As one basic shape constituting the workpiece shape, curved surface A has an interrelated relationship with curved surface B and curved surface C, and curved surface A has curved surface B,
The shape that is segmented by C, ie, the XY plane or the YZ plane.
ZX平面のうちのいずれかの平面を射影面とした時1曲
面Aと曲面BおよびCとの相員巌の平行射影曲線が1曲
面BおよびCの輪郭線の同じく平行射影曲線と同一の平
面曲線となり、かつ又その平面曲線によ、って、曲面A
が複数領域に分割されるような形状を想定する。ここで
、曲面Aを切削処理の対象曲面とし、曲面Aをカロエす
る切削パスの作成処理時に、曲面BおよびCは存在しな
いものとして、NC切削処理を行ない、曲面Aの全領域
を加工する切削パスを計算し、例えばNCテープに出力
する3、かくして、NC工作機械の制御装置に、上記N
Cテープを入力データとして読み込んで曲面AのNC加
工を行かう前に、まずそのNC装置から曲面Bおよび曲
面Cによって曲面A’に部分化する前述の平面曲線情報
ならびに加工領域指定などの附加情報を入力し、この平
面曲線を曲面Aを切削領域と非切削領域との境界曲線と
して、曲線データを生成し、附加情報とともにバッファ
に格納する。しかる後、上記NCテープから切削パスデ
ータを順次読み込み、各切削パスと前記曲線データとの
交点計算処理を行ない、交点が存在しない切削パスにつ
いては、その切削パスが切削領域にある場合(以下切削
モードという。)は切削し、即ち入力ンータをそのま\
NC装置のデータ処理部から補間回路へ渡して周知の如
くカラタラ移動制御し、非切削領域(以下非切削モード
という。)ならば、不要データとして読み飛ばす。また
、交点が存在した場合は、該切削パスをその交点で2分
割し、切削モードならば、2分割した切削パスのうち、
交点までを切削し、非切削モードに変換し、他方の交点
以降の切削パスは読み飛ばす。また、非切削モードなら
ば、遊に交点までを読み飛ばし1、切削モードに変?J
L、て、他方は切削処理を行なう。但し、この場合は
、事前のカッタ位置、即ち、切削領域が杯数存在する場
合は1つ前の切削領域の終了やからその交点までの非切
削領域を飛び越す切削パス、通常は早送りの切削、+ス
、を新たに生成1.た後、交点以降の切削ノくスで切削
することにする。以上述べた処理を全切削ノ々スに対し
て行なうことにより、曲面Aの部分領域加工を実現する
ことができる。本発明の基本的な考え方は、2次元の図
形データに対する簡略な演算処理ぜt構を、周知のNC
装置に印加することにより、結果と1.ては、3次元形
状の部分領域加工機能を実現することにある。即ち、各
切削パンは、通常3次元の線分データで作成されている
が、本方式では前記の如く、射影平面上で処理すればよ
く、従って射影方向と一致する第3軸座標値は、領域判
定処理には開力しないから、2次元データとして扱える
ことにカリ、かつ又、境界曲線を構成する平素を単純な
幾何形状、例えば線分と円など、に限定しても本発明の
目的には差し支えなく、従って基本的には2次元の線分
と線分或いは線分と円又はFl孤の交点をめる処理とな
るので、初加工形状が、例えば3次元自由曲面であぢて
も大型計η機を使用する必要はなく、Nc装ff4にマ
イクロプロセッサによる比較的簡単な演算製筒を附加す
ることにより、本発明の3次元形状の部分細切加工方式
を提供し得る。ここでは、曲面Aの全領域を加工する切
削パスデータをNCテープかちNC装置に入力する例で
説明したけれども、もちろんフレキシブルディスクの読
取り装置が附加されているNC装置でも同様であり、更
に、計算機で直接NC工作機械を制御する、いわゆるC
NC装置として本方式を実現することも、上記切削パス
を例えば磁気ディスクに出力しておくことにより、同様
の部分領域加工が可能となる。When one of the ZX planes is used as a projection surface, the parallel projection curve of the member of curved surface A and curved surfaces B and C is the same plane as the parallel projection curve of the contour lines of curved surfaces B and C. It becomes a curve, and due to its plane curve, the curved surface A
Assume a shape that is divided into multiple regions. Here, curved surface A is the target curved surface for cutting processing, and when creating a cutting path to carve curved surface A, NC cutting processing is performed assuming that curved surfaces B and C do not exist, and cutting to process the entire area of curved surface A. The path is calculated and outputted to, for example, an NC tape 3. Thus, the above-mentioned N
Before reading the C tape as input data and performing NC machining on curved surface A, first, the above-mentioned plane curve information that is divided into curved surface A' by curved surface B and curved surface C, and additional information such as machining area designation are sent from the NC device. is input, curve data is generated using this plane curve with curved surface A as the boundary curve between the cutting area and the non-cutting area, and is stored in a buffer together with additional information. After that, the cutting pass data is sequentially read from the NC tape, and the intersection point calculation process between each cutting pass and the curve data is performed. For cutting passes where there is no intersection, if the cutting pass is in the cutting area (hereinafter referred to as "cutting") (referred to as mode) cuts, that is, inputs the input
The data is passed from the data processing section of the NC device to the interpolation circuit, and is controlled to move randomly as is well known, and if it is in a non-cutting area (hereinafter referred to as non-cutting mode), it is skipped as unnecessary data. Also, if there is an intersection, the cutting path is divided into two at that intersection, and in cutting mode, among the two divided cutting paths,
Cuts up to the intersection, converts to non-cutting mode, and skips the cutting path after the other intersection. Also, if you are in non-cutting mode, you can easily skip past the intersection points and change to cutting mode. J
L, te, and the other perform cutting processing. However, in this case, the previous cutter position, i.e., if there are several cutting areas, a cutting path that skips over the non-cutting area from the end of the previous cutting area to its intersection, usually rapid cutting, +S, newly generated 1. After that, I decided to cut with the cutting chips after the intersection point. By performing the above-described processing on the entire cutting nose, partial area machining of the curved surface A can be realized. The basic idea of the present invention is to perform simple arithmetic processing on two-dimensional graphic data using a well-known NC system.
By applying the voltage to the device, the result and 1. The goal is to realize a partial area processing function for three-dimensional shapes. That is, each cutting pan is usually created using three-dimensional line segment data, but in this method, as described above, it is only necessary to process it on the projection plane, so the third axis coordinate value that coincides with the projection direction is Since there is no need for area determination processing, it can be treated as two-dimensional data, and the object of the present invention can also be achieved by limiting the plane elements constituting the boundary curve to simple geometric shapes, such as line segments and circles. Therefore, it is basically a process to find the intersection of two-dimensional line segments or line segments and circles or Fl arcs, so if the initial machining shape is, for example, a three-dimensional free-form surface, However, there is no need to use a large-sized machine, and by adding a comparatively simple calculation tube forming system using a microprocessor to the NC equipment ff4, the three-dimensional shape partial thin cutting method of the present invention can be provided. Here, we have explained an example in which cutting path data for machining the entire area of curved surface A is input into an NC device using an NC tape, but of course the same applies to an NC device equipped with a flexible disk reader. The so-called C that directly controls the NC machine tool with
When this method is realized as an NC device, similar partial area processing becomes possible by outputting the cutting path to, for example, a magnetic disk.
まず、本発明の効果的な利用方法の一実施例として、第
1図から第5図までに示した本発明の機能説明図を用い
て説明する。第1図から第3図までの形状は、いずれも
基本となる形状が同一であって部分的な形状が少しづつ
異なっている被加工形状をモデル化して示したものであ
る。即ち、いずれも基本形状10は曲面11および曲面
12で構成されており、この基本形状10に部分的な形
状として、第1図では曲面15.第2図では曲面14.
第3図では曲面15および曲面16が各々附加された形
状である。この様な場合、本発明による部分領域加工方
式では、例えば、第1図で切削曲面11をNC加工する
場合を考えると、周囲の壁面形状となる曲面12を干渉
壁画面として、XY平面上で円となる円柱形状の曲面1
3は無視して、予め切削曲面11の全領域を加工する切
削パスを生成し、NCテープ等に出力しておき、曲面1
3の存在する領域を非切削領域とする処理は、加工時に
、NC装置から射影平面をXY千面とし、切削曲面11
を部分化する半径R+の円を境界曲線として入力するこ
とにより、部分領域加工を行なうことができる。従って
、第2図の形状の場合は、同様に角柱形状の曲面14の
XY平面上での矩形状の曲線を境界曲線として指定する
ことにより、又、第3図の形状の場合は、複数の円柱形
状の曲面15および曲面16の同じ(XY平面上での円
の曲線データを複数の分離した境界曲線として指定する
ことによりいずれも同一のNCテープを利用できるため
、この様な複数の類似形状を加工する場合、あるいは、
例えば、第1図の形状を第2図の形状に部分修正する場
合などに、効果的にかつ迅速に対応できることになる。First, an example of how to effectively utilize the present invention will be described using functional explanatory diagrams of the present invention shown in FIGS. 1 to 5. The shapes shown in FIGS. 1 to 3 are modeled workpiece shapes that have the same basic shape but have slightly different partial shapes. That is, the basic shape 10 in each case is composed of a curved surface 11 and a curved surface 12, and as a partial shape of this basic shape 10, a curved surface 15. In Figure 2, the curved surface 14.
In FIG. 3, a curved surface 15 and a curved surface 16 are respectively added. In such a case, in the partial area machining method according to the present invention, for example, considering the case where the cutting curved surface 11 in FIG. Cylindrical curved surface 1 that becomes a circle
3 is ignored, a cutting pass for machining the entire area of the cutting curved surface 11 is generated in advance, outputted to NC tape, etc.
3 is a non-cutting area. During machining, the projection plane from the NC device is set to XY thousand planes, and the cutting curved surface 11 is set as a non-cutting area.
Partial area processing can be performed by inputting a circle of radius R+ that partializes as a boundary curve. Therefore, in the case of the shape shown in FIG. 2, by specifying a rectangular curve on the XY plane of the prismatic curved surface 14 as the boundary curve, and in the case of the shape shown in FIG. The same NC tape can be used for both the curved surfaces 15 and 16 of the cylindrical shape (by specifying the circular curve data on the XY plane as multiple separate boundary curves, it is possible to When processing, or
For example, when partially correcting the shape shown in FIG. 1 to the shape shown in FIG. 2, this can be done effectively and quickly.
また、第4図に示すように、基本形状10のみで構成さ
れる場合は、もちろん上記のNCCチーブ、従来の方法
と同様に、そのまま利用すれば良く、更に、第5図の様
に、切削曲面11に対して干渉壁とはならず、逆に切削
曲面11ヲ深さ方向に削り込む様な穴形状の曲面17が
ある場合でも、切削曲面11ヲ加工する時は、通常曲面
17の様な穴形状部分は既に加工済であるため、その領
域の切削パ スは空切削となり、無駄な加工時間を要す
ことになる。In addition, as shown in Fig. 4, if it is composed of only the basic shape 10, it is of course possible to use the above-mentioned NCC chive as is as in the conventional method, and furthermore, as shown in Fig. 5, cutting Even if there is a hole-shaped curved surface 17 that does not act as an interference wall with respect to the curved surface 11, and conversely cuts into the cutting curved surface 11 in the depth direction, when machining the cutting curved surface 11, it is usually like the curved surface 17. Since the hole-shaped portion has already been machined, the cutting pass in that area will be an empty cut, resulting in wasted machining time.
従って、加工時間の短縮を計るためにも、曲面17℃部
分を非切削領域化する必要があり、本発明の部分領域加
工方式の加工現場での効果的な応用例の一つである。Therefore, in order to shorten the machining time, it is necessary to make the 17° C. portion of the curved surface into a non-cutting area, and this is one example of an effective application of the partial area machining method of the present invention at a machining site.
次に、上記の様な機能を実現するための本発明による部
分領域加工方式のシステム全体構成図並びに処理方式に
ついて説明する。第6図は本発明の部分領域加工方式を
実現する一実施例としてのシステム全体構成図である。Next, the overall system configuration diagram and processing method of the partial area processing method according to the present invention for realizing the above-mentioned functions will be explained. FIG. 6 is an overall system configuration diagram as an embodiment of the partial area processing method of the present invention.
即ち、まを切削・条件などNC加工に必要な附加情報と
ともに、直接あるいは一度NCテープ30又はフレキシ
ブルディスク40等に変換してからN C工作機械のN
C装置に入力する。この時、本発明による切削曲面の部
分領域加工を行なう場合には予めNC装置に附加されて
いるキーボード等のマニュアルデータインプットMDI
50t−利用して、切削曲面を部分化するために必要な
境界曲線情報を入力し、境界曲線作成処理部6oで、境
界曲線を生成し、その平面コードおよび領域コードなど
の附加情報とともに所定のバッファメモリに格納してお
く。この入力データの説明図を第7図から第10図まで
に示す。即ち、境界曲線情報としては、曲線の幾何デー
タと領域加工処理のための附加データとがあり、幾何デ
ータは、曲線の構成要素が、第7図に示す様に線分の場
合は始点P5と終点P、を指定し、第8図の様に円弧の
場合は、更に中心点Peと半径Rも指定する。又附加デ
ータとしては、曲線の定義平面即ち切削曲面の射影平面
の指定と加工領域を指定する切削開始点の領域モードの
指定者境界曲線のオフセット指定とが主なものであり、
例えば第9図の場合は、定義平面はXY平面、領域モー
ドは切削開始点PIが切削域であるから切削モード、オ
フセット指定はパスjの例で示す様にカッタを境界曲線
上まで移動する時はオフセットなし、パス量の場合は境
界曲線の始点P、から終点P6に向って右側オフセット
、パスにの場合は左側オフセット、と各々指定する。In other words, along with additional information necessary for NC machining such as cutting conditions, etc., the machining machine tool can be used directly or once converted into NC tape 30 or flexible disk 40, etc.
Input to C device. At this time, when performing partial area machining of the cutting curved surface according to the present invention, manual data input MDI such as a keyboard attached to the NC device is used in advance.
50t-, the boundary curve information necessary for segmenting the cutting surface is inputted, and the boundary curve creation processing unit 6o generates the boundary curve, and uses the predetermined information along with additional information such as its plane code and area code. Store it in buffer memory. Explanatory diagrams of this input data are shown in FIGS. 7 to 10. That is, the boundary curve information includes geometric data of the curve and additional data for area processing, and the geometric data includes the starting point P5 when the component of the curve is a line segment as shown in FIG. The end point P is specified, and in the case of a circular arc as shown in FIG. 8, the center point Pe and radius R are also specified. The additional data mainly includes the designation of the curve definition plane, that is, the projection plane of the cutting curved surface, and the designator boundary curve offset designation of the area mode of the cutting start point that designates the machining area.
For example, in the case of Figure 9, the definition plane is the XY plane, the area mode is the cutting mode because the cutting start point PI is the cutting area, and the offset specification is when moving the cutter to the boundary curve as shown in the example of path j. In the case of a path amount, specify an offset to the right from the starting point P of the boundary curve toward the end point P6, and in the case of a path, specify an offset to the left.
又、第10図に示す様に複数の要素で構成される曲線の
場合は、要素1−と要素2の幾何データを連続して指定
する様にし、更に要素間のエツジ部に附加円を生成する
場合は附加円の半径rlを各要素の幾何データの間に指
定する。第10図の場合は、始点がQ1+終点がQ2の
円弧要素が附加され、更に要素1の終点および要素2の
始点が変更されて、結局3要素で構成される境界曲線が
作成される。第11図は境界曲線作成処理部60の処理
手順を示す図である。第11図においてまず曲線データ
入力処理部61でN hlD I soがら入力した上
記境界曲線情報を読取り、幾何データについては曲線の
各構成要素データを順次ワークエリアに転送するととも
に要素数および附加円処理データをセットし、附加デー
タは各々特定の平面コード、領域コード並びにオンセッ
トコードに変換する。附加円処理部62は各要素間に指
定された半径の附加円全生成し、1本の境界[tb m
テークとして創成するがこの附加円の生成処理手順は
例えば次の様に行なう。第12図は要素用1と要素用2
0間に半径rlの附加円1を生成し、更に要素用2と要
素線分3の間に半径r2の附加円を生成する例を示す。Also, in the case of a curve composed of multiple elements as shown in Figure 10, the geometric data of element 1- and element 2 should be specified consecutively, and additional circles should be generated at the edges between the elements. If so, specify the radius rl of the additional circle between the geometric data of each element. In the case of FIG. 10, a circular arc element with a starting point of Q1 and an ending point of Q2 is added, and the end point of element 1 and the starting point of element 2 are changed, so that a boundary curve consisting of three elements is finally created. FIG. 11 is a diagram showing the processing procedure of the boundary curve creation processing section 60. In FIG. 11, first, the curve data input processing unit 61 reads the boundary curve information inputted from NhlD Iso, and as for the geometric data, each component data of the curve is sequentially transferred to the work area, and the number of elements and additional circle processing are performed. The data is set, and the additional data is converted into specific plane codes, area codes, and onset codes. The additional circle processing unit 62 generates all additional circles with the specified radius between each element, and creates one boundary [tb m
The processing procedure for generating this additional circle, which is created as a take, is performed as follows, for example. Figure 12 shows element 1 and element 2.
An example will be shown in which an additional circle 1 with a radius rl is generated between 0 and an additional circle 1 with a radius r2 is generated between an element 2 and an element line segment 3.
この場合まず円1と円2の2又点のうち始点P8に近い
方の点Pa側に附加円を附加することとし、更に円1に
対する円2と線分3との交点Pcの関係がら円1に外接
する附加円を選択することにより、内接する2つの円を
除去し、更に残された2つの円のうち始点P8と円2と
の関係から円2に外接する附加円1を最終的に選択すれ
ばよい0又、附肺内2については、交点PaをPs と
考えて同様の処理を行なうことにより生成できる。この
様にして創成した境界曲線データは、要素分割処理部6
6で、各要素と附肺内との接点Q1〜04をめ、境界曲
線を構成する各要素データに分割し結果として、矢印で
示した5つの要素で構成される境界曲線を作成する。次
に標準形作成処理部64において、各要素ごとに線分要
素か円要素かを判定し、特定の標準形に変換する。第1
3図と第14図に線分要素と円要素の標準形の例を示す
。この場合、標漁形の式は、線分要素の場合は、始点P
sの第1座標をXs、第2座標Ysとすれば、
となり、又円要素の場合は、中心点の第1座標をXC,
第2座標をYcとすると、
の様に表わせる。ここで、Uは、O≦U≦1の値をもつ
パラメータである。更にオフセット処理部65では、上
記標準形データを用いて、境界曲線の定義方向、即ち始
点から終点に向って左側又は右側に、カッタ半径の値だ
け周知の方法でオフセット処理し、標準形データを変更
する。In this case, first of all, an additional circle is added to the point Pa side of the bifurcated point of circle 1 and circle 2, which is closer to the starting point P8, and then the relationship between the intersection point Pc of circle 2 and line segment 3 with respect to circle 1 is determined. By selecting the additional circle that circumscribes circle 1, the two inscribed circles are removed, and from the relationship between starting point P8 and circle 2, of the remaining two circles, additional circle 1 that circumscribes circle 2 is finally selected. 0 and 2 within the lung can be generated by performing the same processing by considering the intersection Pa as Ps. The boundary curve data created in this way is processed by the element division processing unit 6.
In step 6, the contact points Q1 to Q04 between each element and the inside of the lung are divided into element data constituting the boundary curve, and as a result, a boundary curve composed of five elements indicated by arrows is created. Next, the standard form creation processing unit 64 determines whether each element is a line segment element or a circular element, and converts it into a specific standard form. 1st
3 and 14 show examples of standard forms of line segment elements and circular elements. In this case, the formula for the standard shape is, in the case of a line segment element, the starting point P
If the first coordinate of s is Xs and the second coordinate Ys, then in the case of a circular element, the first coordinate of the center point is XC,
If the second coordinate is Yc, it can be expressed as follows. Here, U is a parameter having a value of O≦U≦1. Furthermore, the offset processing section 65 uses the standard shape data to offset the standard shape data by the value of the cutter radius to the left or right in the defining direction of the boundary curve, that is, from the start point to the end point, using a well-known method. change.
最後に、境界曲線出力処理部66で、所定のバッファメ
モリに、平面コードと領域コードを出力し、更に、境界
曲線の要素数並びに各要素の標準形データ′fr:順次
出力する。Finally, the boundary curve output processing unit 66 outputs the plane code and the area code to a predetermined buffer memory, and also sequentially outputs the number of elements of the boundary curve and standard form data 'fr of each element.
一方NC装置のデータ処理部70では、前記の切削パス
データを順次読み込み、デコーダで解読して、NC工作
機械の各座標軸のカッタ移動量などの数値情報を各々定
められたバッファメモリに分類して格納し、更に部分領
域加工処理部80において各切削パスデータと上記境界
曲線の標準形データとの交点計算処理並び領域判定処理
を行ない、有効となる切削領域内の切削パスデータのみ
を取出し、編集してバッファの該当データを更新する。On the other hand, the data processing unit 70 of the NC device sequentially reads the cutting path data, decodes it with a decoder, and sorts numerical information such as the amount of cutter movement of each coordinate axis of the NC machine tool into respective predetermined buffer memories. Then, the partial area processing unit 80 performs intersection calculation processing and area determination processing between each cutting pass data and the standard form data of the boundary curve, and extracts and edits only the cutting pass data within the valid cutting area. and update the corresponding data in the buffer.
この部分領域加工処理部80の処理部J1mを第15図
に示す。The processing section J1m of the partial area processing section 80 is shown in FIG.
以下、第15図と処理の具体例を説明する第16図を用
いて、処理手順を説明する。第16図において、切削パ
スiは曲線1と曲線2の2本の境界曲線で部分化されて
おり、P1〜P s ハ切削パスlの各切削点とし、最
初の切削点Psは切削領域にあるものとする。まず、初
期化処理として、平面座標系はXY平面を設定し、領域
モードは初期値を切削モードにセットする。次に切削パ
スデータの2つの切削点PH+ P2’ff用いて、切
削パスの線分(以下パス線分という)を作成する。Hereinafter, the processing procedure will be explained using FIG. 15 and FIG. 16 explaining a specific example of the processing. In Fig. 16, cutting path i is divided into two boundary curves, curve 1 and curve 2, and P1 to Ps are each cutting point of cutting path l, and the first cutting point Ps is in the cutting area. Assume that there is. First, as an initialization process, the plane coordinate system is set to the XY plane, and the initial value of the area mode is set to cutting mode. Next, a line segment of the cutting path (hereinafter referred to as a path line segment) is created using the two cutting points PH+P2'ff of the cutting path data.
この時、各切削点は、一般に3次元データであるから、
設定した平面座標系に変排し、第1座標値および第2座
標値を定める。XY平面の場合は座標変換は不要である
から、パス線分の式は、一般に、
で表わせる。ここで、dxj I dyj l dzj
はj番目の切削点とj+ i番目の切削点と間Ω各座標
成分の増分値であり、パラメータujは、0≦ujく1
の値をとるものとする。次に、このイくス線分が境界曲
線と交わるか否かをチェックするため、境界曲線の全要
素について、曲線1の様に円要素ならば(2)式と(3
)式9曲線2の様に線分要素ならば(1)式と(3)式
を用いて交点計算処理を行ナウ。この交点は、パラメー
タが0≦U≦1でかつ0≦uj≦1となる条件から容易
にめ得る。At this time, since each cutting point is generally three-dimensional data,
The first coordinate value and the second coordinate value are determined by changing to the set plane coordinate system. In the case of the XY plane, coordinate transformation is not necessary, so the formula for the path line segment can generally be expressed as follows. Here, dxj I dyj l dzzj
is the increment value of each coordinate component Ω between the jth cutting point and the j+ith cutting point, and the parameter uj is 0≦ujku1
shall take the value of . Next, in order to check whether this intersection line intersects with the boundary curve, for all elements of the boundary curve, if it is a circular element like curve 1, then equation (2) and (3)
) Formula 9 If it is a line segment element like curve 2, use formulas (1) and (3) to calculate the intersection point. This intersection can be easily found from the conditions that the parameters are 0≦U≦1 and 0≦uj≦1.
以下交点の有無によって領域判定処理を行ない該パス線
分を切削処理とするか、非切削処理とするか決定する。Thereafter, area determination processing is performed depending on the presence or absence of an intersection to determine whether the path line segment is to be subjected to cutting processing or non-cutting processing.
ここで、切削処理とは切削点の各座標値が格納されてい
るバッファメモリの該当する切削点の値をリセットし、
有効なデータとして補間回路に渡し、カッタ移動制御を
行にう様にすることであり、非切削処理とは該パス線分
を不要データとしてバッファから削除することである。Here, cutting processing involves resetting the value of the corresponding cutting point in the buffer memory where each coordinate value of the cutting point is stored.
The path line segment is passed to the interpolation circuit as valid data to perform cutter movement control, and the non-cutting process is to delete the path line segment from the buffer as unnecessary data.
以下同様に、全パス線分についてて、パス線分をP2P
3.P3P4.・・・P7 P8と順次作成し、交点計
算並びに領域判定ヲくす返すことにより、意図する部分
領域加工が実現できることになる。即ち、交点がない場
合は、切削モードならば該パス線分(この場合、例えば
PIP2が該当する。以下同様。)を切削処理とし、非
切削モづならば竺パス線分(P3P4 )、 ffi削
除する。又、交点が存在する場合は、切削モードならば
該パス線分(PzPa)を交点までのパス線分(肩)に
変換して切削処理を行ない、更に領域モードを反転して
非切削モードに変更する。Similarly, for all path segments, the path segments are P2P
3. P3P4. By sequentially creating P7 and P8 and reversing the intersection calculation and region determination, the intended partial region processing can be realized. That is, if there is no intersection, if it is in cutting mode, the path line segment (in this case, for example, PIP2 is applicable. The same applies hereinafter) will be processed for cutting, and if it is in non-cutting mode, it will be processed as a straight path line segment (P3P4), ffi delete. Also, if an intersection exists, in cutting mode, convert the path segment (PzPa) into a path segment (shoulder) up to the intersection and perform the cutting process, and then reverse the area mode and switch to non-cutting mode. change.
一方弁切削モードの場合は、該パス線分(P4P5)の
うち、交点までのパス線分(P4Q2)を削除し非切削
領域間、即ちQI QZ 間、を飛び越す切削パスを新
たに生成してバッファに追加し、更に領域モードを切削
モードに変換して、交点以降のパス線分(Q2 Ps
)を切削処理とする。切削点P6以降も同様であり、パ
ス線分Ps Psは切削処理となり、パス線分Pa P
7け曲線2と交点をもつから、PeQ3を切削処理し、
Q3P7を削除し、更にパス線分P7P8も削除するこ
とになる。この様に、本発明の場合、原理的には境界曲
線の数に関係なく、同様の領域判定処理を曲面上の全て
の切削点について、くり返し実行するだけであるから、
容易に、部分領域加工処理を実現し得る0
こうして所定のバッファメモリに格納された各NCデー
タは、周知の如く補間回路90でカッタ移動量に対応す
るパルス列に変換した後、サーボ系回路100でD−A
変換を行彦ってNC工作機械110を駆動させることに
より意図する部分領域加工が実現できる訳である。In the case of one-way valve cutting mode, among the path line segments (P4P5), the path line segment (P4Q2) up to the intersection is deleted and a new cutting path that jumps between non-cutting areas, that is, between QI and QZ is generated. Add it to the buffer, convert the area mode to cutting mode, and add the path line segment after the intersection (Q2 Ps
) is the cutting process. The same goes for the cutting point P6 and after, and the path line segment Ps Ps becomes the cutting process, and the path line segment Pa P
Since it has an intersection with the 7-point curve 2, cut PeQ3,
Q3P7 is deleted, and path line segment P7P8 is also deleted. In this way, in the case of the present invention, in principle, the same area determination process is simply executed repeatedly for all cutting points on the curved surface, regardless of the number of boundary curves.
As is well known, each NC data stored in a predetermined buffer memory is converted into a pulse train corresponding to the cutter movement amount by an interpolation circuit 90, and then converted into a pulse train by a servo system circuit 100. D-A
By performing the conversion and driving the NC machine tool 110, the intended partial area machining can be realized.
(イ)新しい機能
金型等の被加工形状を構成する各曲面をNC加工する場
合に、NCテープ等に出力した切削パスデータを利用し
、加工時に、切削曲面を部分化する平面曲線を指定する
ことにより、その平面曲線を切削領域と非切削領域の境
界曲線とする曲面の部分領域加工機能を実現するNC装
置。(b) When performing NC machining of each curved surface that constitutes the shape of the workpiece of a new functional mold, etc., use the cutting path data output to NC tape, etc. to specify a planar curve to partialize the cut curved surface during machining. By doing so, the NC device realizes a partial area processing function of a curved surface that uses the plane curve as a boundary curve between a cutting area and a non-cutting area.
e→ 経済性、簡略化
形状の部分修正などに対して加工現場で迅速に対応でき
るので、NCテープの再出力作業が、軽減されることに
なり、大−計算の使用時間および計算費用が削減できる
。また、NCテープ作成部署などの上流工程へのフィー
ドバックの回数が少なくなるので、金型製作工程全体の
工数が低減される。更に、類似形状のN C加工に同一
のNCテープを利用できるという効果もある。e→Economical and simplified It is possible to quickly respond to partial corrections of shapes at the processing site, which reduces the need to re-output NC tapes, reducing large-scale calculation time and calculation costs. can. Furthermore, the number of times of feedback to upstream processes such as the NC tape production department is reduced, so the man-hours of the entire mold manufacturing process are reduced. Another advantage is that the same NC tape can be used for NC machining of similar shapes.
第1図〜第5図は、本発明の機能説明図、第6図は、本
発明の部分領域加工方式を実現するシステム全体構成図
、第7図〜第10図は、本発明の曲面を部分化する境界
曲線の入力データの説明図、第11図は、本発明の境界
曲線作成処理部の処理手順を示す図、第12図は、本発
明の境界曲線を構成する要素間iこ附肺内を生成する方
法を示す図、第15図および第14図は、上記境界曲線
を構成する要素の標準形データを示す図、第15図およ
び第16図は、本発明の部分領域加工処理部の処理手順
の説明図である。
20・・・切削パス作成部 60・・・NCテープ40
・・・フレキシブルディスク
50・・・マニュアルデータインプット60・・・境界
曲線作成処理部
61・・・曲線データ入力処理部
62・・・附肺内処理部 66・・・要素分割処理部6
4・・・標準形作成処理部
65・・・オフセット処理部
66・・・境界曲線出力処理部
70・・・データ処理部
80・・・部分領域加工処理部
110・・・NCフライス
1、、) 第、1図 <b)
第2図 離j図
第6図
第12fI
第13図
第14図
手続補正書(方式)
事件の表示
昭和58 年特許願第 219412 号発明の名称
数値制御方式
補正をする者
小部の関係 特許出願人
称 (510,1株式会計] 日 立 製 作 を代
理 人
補正の対象
1 本願明細書・発明の詳細な説明の欄。
補正′の内容Figures 1 to 5 are functional explanatory diagrams of the present invention, Figure 6 is an overall configuration diagram of a system that realizes the partial area processing method of the present invention, and Figures 7 to 10 are diagrams that illustrate the curved surface of the present invention. An explanatory diagram of the input data of the boundary curve to be segmented, FIG. 11 is a diagram showing the processing procedure of the boundary curve creation processing section of the present invention, and FIG. FIGS. 15 and 14 are diagrams showing standard form data of the elements constituting the boundary curve, and FIGS. 15 and 16 are diagrams showing a method for generating the inside of the lung. It is an explanatory diagram of the processing procedure of the section. 20... Cutting path creation section 60... NC tape 40
...Flexible disk 50...Manual data input 60...Boundary curve creation processing section 61...Curve data input processing section 62...Internal processing section 66...Element division processing section 6
4... Standard form creation processing section 65... Offset processing section 66... Boundary curve output processing section 70... Data processing section 80... Partial area processing processing section 110... NC milling cutter 1. ) Figure 1 <b) Figure 2 Figure 6 Figure 12fI Figure 13 Figure 14 Procedural amendment (method) Indication of the case 1981 Patent Application No. 219412 Title of the invention
Relationship between the person making the numerical control method correction Patent applicant name (510, 1 stock accounting) Representing Hitachi Manufacturing
Subject of Administrator's Amendment 1 Column for detailed description of the specification/invention. Contents of amendment
Claims (1)
しくは3次元形状で構成される部品形状の切削加工用の
NC切削パスデータをNCテープ又は磁気記録媒体から
NC装置に入力し工具の移動を制御して該部品形状を加
工するNC方式において、該NC装置から加工領域を定
める特定の平面内の2次元曲線データを指定し、該曲線
データを、切削領域と非切削領域との境界曲線として生
成し7、上記全切削パスデータとの交点計算処理および
領域判定処理を行なうことにより、上記境界曲線で分割
された切削領域に存在する切削パスだけを取り出し、か
つ又、その切削パス間を接続する切削パスを新に生成す
ることにより、該部品形状の部分領域加工を実現できる
ようにしたことを特徴とするNC方式。Numerical side @ (hereinafter referred to as NC): NC cutting path data for cutting a part shape consisting of two-dimensional or three-dimensional shapes by a machine tool is input into the NC device from an NC tape or magnetic recording medium and the movement of the tool is controlled. In the NC method of controlling and machining the part shape, the NC device specifies two-dimensional curve data in a specific plane that defines the machining area, and uses the curve data as a boundary curve between the cutting area and the non-cutting area. 7, and performs intersection calculation processing and area determination processing with the above-mentioned all cutting path data, thereby extracting only the cutting passes that exist in the cutting region divided by the above-mentioned boundary curve, and also connecting the cutting passes. An NC method is characterized in that it is possible to realize partial area machining of a part shape by newly generating a cutting path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21941283A JPS60112105A (en) | 1983-11-24 | 1983-11-24 | Numerical control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21941283A JPS60112105A (en) | 1983-11-24 | 1983-11-24 | Numerical control system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60112105A true JPS60112105A (en) | 1985-06-18 |
Family
ID=16734994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21941283A Pending JPS60112105A (en) | 1983-11-24 | 1983-11-24 | Numerical control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60112105A (en) |
-
1983
- 1983-11-24 JP JP21941283A patent/JPS60112105A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0160097B1 (en) | Area machining method | |
JP4233147B2 (en) | How to determine an applicable feed rate for a machine tool | |
WO1985002692A1 (en) | Machining step determination method for automatic programming | |
JPH0736191B2 (en) | Graphic display method of structure | |
US6731090B1 (en) | Method and system for numerical control of machine tool | |
US4905158A (en) | Normal vector computation method | |
JPH07311858A (en) | Method and device for preparing free curved surface | |
JPH061404B2 (en) | Complex curved surface processing method | |
JPS60112105A (en) | Numerical control system | |
JPS6111809A (en) | Formation of composite curved surface | |
US11003158B2 (en) | Method for 3D radius correction in CNC milling and associated milling machine | |
JP3202068B2 (en) | Method of creating tool movement path for NC machining | |
JPH06100929B2 (en) | NC data creation method for machining uncut parts in NC data creation device | |
JPS63148307A (en) | Nc information generating device | |
JPH11134014A (en) | Nc data preparing device for cutting section left from cutting | |
JPH069007B2 (en) | NC data creation method for compound curved surface | |
JPS61168457A (en) | Numeric control machining system | |
JPH10307615A (en) | Automatic generating method for machining path of recessed groove position for cam | |
JP2872610B2 (en) | Bending direction recognition processing device in sheet material plastic working | |
JP2771361B2 (en) | Rough cutter path generation system | |
JPH02212904A (en) | Programming device | |
JPH01217608A (en) | Generation of spline curve | |
JPH05346814A (en) | Three-dimensional machining method | |
JP2002236509A (en) | Device and method for nc data generation | |
JPH07104699B2 (en) | Area processing method |