JPS6011200A - Boiling water reactor - Google Patents

Boiling water reactor

Info

Publication number
JPS6011200A
JPS6011200A JP58119343A JP11934383A JPS6011200A JP S6011200 A JPS6011200 A JP S6011200A JP 58119343 A JP58119343 A JP 58119343A JP 11934383 A JP11934383 A JP 11934383A JP S6011200 A JPS6011200 A JP S6011200A
Authority
JP
Japan
Prior art keywords
reactor
main steam
valve
water
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58119343A
Other languages
Japanese (ja)
Inventor
影山 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58119343A priority Critical patent/JPS6011200A/en
Publication of JPS6011200A publication Critical patent/JPS6011200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は沸騰水型原子炉に係り特に主然気配管系に介挿
された主蒸気(隔訓弁の閉弁方式ケ制御する制御装置に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a boiling water nuclear reactor, and more particularly to a control device for controlling the main steam (separate valve closing method) inserted in the main gas piping system. .

〔発明の技術的背規〕[Technical requirements for invention]

例えば沸騰水型原子炉(以後BWRと称す)は以下のよ
うな構成となっている。すなわち原子炉建屋内には原子
炉格紅1容器が設けられており、この原子炉格納容器内
には原子炉圧力容器が設iiQされている。この原子炉
圧力ネI器内には冷却水と複数の燃料集付、体および’
1tilj 1卸樺寺から然気の2相流状襲となる。そ
して気水分B(1,器により水と蒸気に分Fifjされ
その内ρと気はβ′ミ気乾繰器により乾燥蒸気となる。
For example, a boiling water reactor (hereinafter referred to as BWR) has the following configuration. That is, a nuclear reactor 1 vessel is provided in the reactor building, and a reactor pressure vessel iiQ is provided in this reactor containment vessel. Inside this reactor pressure reactor are cooling water and multiple fuel collections, bodies and
1 tilj 1 From Kabaji Temple, it becomes a two-phase flow situation. Then, the steam and moisture B(1) are separated into water and steam by a steamer, and ρ and steam are turned into dry steam by a steam dryer.

この乾燥蒸気は原子炉圧力容器に接続された主脂気配管
系を介してタービンに送られタービンを萌、勃させる。
This dry steam is sent to the turbine via the main oil piping system connected to the reactor pressure vessel, causing the turbine to erect.

このタービンの1駆動により発心(畿が回転し発心する
One drive of this turbine causes centering (the ridge rotates and centering occurs).

タービンを1駆動させたを気はliJ、水器内に轡入さ
れて復水となり再賎原子炉圧力谷器内に供給される。
The air generated by driving the turbine once is pumped into the water vessel and becomes condensed water, which is then re-supplied into the reactor pressure valley vessel.

前記主然気配管系の原子炉炎1川容、奢鷺:1m部前優
には王蒸気隔:”11i”、弁(以後MSIVと称す)
が介挿されている。このIJsIVは万一主蒸気配管系
が破断して放射性物質を含む蒸気が漏洩したj名合に蒸
気が原子炉伯納谷器外に流出するのを原子炉の隔離は上
述した放射籠病洩の場合以外にも例えば原子炉水位低ヤ
4.にょっても行なわれる。一般にBVlll’Rは負
の反応量係数を有しておりボイドがつぶれることにより
原子炉に正の反応度が訓わり原子炉出力は−l−昇する
。したがってMSIVが一度に短時間で全数閉弁した場
合には原子炉に加わる正の反応度は大きなものとなりそ
れに伴ない)g+、子炉出カおよび原子炉F[−カも上
昇する。
The reactor flame of the main air piping system has a volume of 1 meter, a 1m section, and a king steam separation: "11i", valve (hereinafter referred to as MSIV).
is inserted. This IJsIV is designed to prevent the above-mentioned radiation cage disease leak from occurring in the event that the main steam piping system ruptures and steam containing radioactive materials leaks out of the reactor. In addition to the above cases, for example, when the reactor water level is low, 4. It is also done in Nyoyo. Generally, BVll'R has a negative reaction amount coefficient, and when the void collapses, a positive reactivity is imparted to the reactor, and the reactor output increases by -l-. Therefore, if all MSIVs are closed at once in a short period of time, the positive reactivity applied to the reactor becomes large, and accordingly, g+, child reactor output, and reactor F[-k also rise.

通常原子力発電所の安全設計ではスクラム(原子炉緊急
停止)が正常に行なわれなかった場合にも十分余裕をも
って原子炉を停止させることができる構成となっており
、汐11えはMSIVを閉弁して原子炉を1%離し中・
性子毒物(列えはボロン)全原子炉内に注入することに
よりノもI子炉を停止させる。そこで全番号バイパスシ
ステムを有したプラン)(r例にとって説明する。例え
ば個々の発゛屯所捷たは発電所群としての電力系統側の
揚乱(送電系の破断律故等)として最も厳しいものに発
電機解列による全負荷遮断が想定される。このような火
1合タービンバイパス容骸の小さいプラントで1はター
ビン蒸気加減弁急閉を検出して原子炉をスクラムさせる
。しかしF>il記発1梶機負荷避断は発電所側の機器
異常に基づくものではないので解列時に所内単独運転に
入れば系統復旧後原子力発電所としてtlちに送電を開
始することができる。全容量バイパスはこれを実現させ
る方式である。
Normally, the safety design of nuclear power plants is such that the reactor can be shut down with sufficient margin even if a scram (emergency shutdown of the reactor) is not performed normally, and in the case of Shio 11, the MSIV was closed. and the reactor is separated by 1%.
By injecting a sex poison (boron in the list) into all the reactors, the I sub-reactors will be shut down. Therefore, an explanation will be given for an example (a plan with an all-number bypass system).For example, the most severe type of disturbance on the power system side (due to breakdown rules in the power transmission system, etc.) for an individual power station or a group of power plants. It is assumed that full load is cut off due to generator disconnection.In such a plant with a small turbine bypass capacity, 1 detects the sudden closing of the turbine steam control valve and scrams the reactor.However, if F>il Note 1: Since the load shedding of the pump is not based on any equipment abnormality on the power plant side, if the plant enters isolated operation at the time of grid disconnection, it is possible to immediately start transmitting power as a nuclear power plant after the system is restored.Full capacity Bypass is a method to achieve this.

すなわち全容量バイパスを有したプラントにおいて定格
出力運転中に負荷断端が起だ場合パ弁を魚床開弁する。
That is, in a plant with a full capacity bypass, if a load failure occurs during rated output operation, the PA valve is opened.

これによって約100%の主蒸気流上をバイパスさせ復
水器で処理する。
This allows approximately 100% of the main steam flow to be bypassed and processed by the condenser.

また原子炉Qまあらかじめ決定された数十本の制御棒を
挿入(選択制御棒挿入)シ、同時に再jfk猿ポンプの
襖度を落すことにより出力低下を図る。さらに給水ポン
プの連間を落すことにより炉心人口のサブクールを減少
させ原子炉出力を低下させる方法も考えられる。このよ
うに全容−耽バイパスシステムを有するプラントでは負
:t’ar遮断が生じた山、l、3合でも原子炉荀スク
ラムさ七“ることなく単独運転を開始する。したがって
原カ系統側の碗旧が完了した俊短l皆間で定格出カ迄回
復させることが可能である。なおタービンバイパス弁が
正常に作動しなかった場合に原子炉をスクラムさせるの
はもちろんである。
In addition, dozens of predetermined control rods will be inserted into the reactor Q (selective control rod insertion), and at the same time, the output will be lowered by lowering the degree of sliding of the JFK monkey pump. Furthermore, it is also possible to reduce the subcooling of the reactor core population by reducing the number of water pumps, thereby reducing the reactor output. In this way, in a plant with a full-capacity bypass system, even if a negative t'ar cutoff occurs, islanding operation starts without a reactor scram. It is possible to restore the rated output to the rated output in a short period of time when the reactor is completed.Of course, the reactor can be scrammed if the turbine bypass valve does not operate normally.

〔背景技術の間ン゛只点〕[The middle ground of background technology]

上記J、゛4成において定格出カ、jJi転中全負曲・
l、+汁J1が発生するとMiT述し゛たように債択制
御棒仲人が行なわれるが万一これが正常に作動しなかっ
た場合には出力病によりスクラム信号が出力され原子炉
は緊や、停止する。そして制御棒挿入が不可能となった
p合には再’fli’j 偵ポンプを停止させることに
より出力停下全図る。しがしなη3らこの場合には効果
的に出力全低下させることtri ”lf6かしく低流
壮で高出力という不女定な状g1がしばらくの間持続す
る。このような状況下において蒸気の発生が泡水γI’
C’fjt ’C−ヒ回ると原子炉水位は低下し原子炉
水位低く=号が出力される。この原子炉水位低信号によ
りMSIVはM升し原子炉は隔離される。この原子炉隔
蘭と同時に非常用炉心冷却系およびは子炉隔し411時
勺ノテ1]系が起動し、これによって原子炉水位は回狽
する。そしてこの冷却水の注入により原子炉には正の反
応度が加わるが圧力高信号により主蒸気配官系に接伏さ
れた逃し安全弁が開となり蒸気は圧力抑制室内に鳩入さ
れて凝縮する。そして原子炉を最終的に停止する為に前
記中性子−Id¥7Iが炉心V」に供給され、これによ
って原子炉は高温停止状1[’lとなる。このように万
一スクラムが失敗した場合にも原子炉k l□h H”
1tflさせることが可能であり原子炉の安全性を保持
できる構成となっている。
Rated output in the above J and 4 configurations, full negative bend during jJi rotation,
When J1 occurs, as mentioned in MiT, the selection control rod intermediary is performed, but if this does not work properly, a scram signal is output due to power failure, and the reactor is forced to shut down. do. If the control rod cannot be inserted, the output is completely stopped by stopping the pump again. In this case, the indeterminate state g1 of extremely low flow and high output will persist for some time. Under such circumstances, the steam The generation is foamy water γI'
When C'fjt'C-hi turns, the reactor water level will drop and the reactor water level will be low and = will be output. Due to this low reactor water level signal, the MSIV is reduced to M and the reactor is isolated. Simultaneously with this reactor separation, the emergency core cooling system and the sub-reactor separation 411 system are activated, thereby allowing the reactor water level to recover. The injection of this cooling water adds positive reactivity to the reactor, but a high pressure signal causes a relief safety valve connected to the main steam distribution system to open, allowing steam to enter the pressure suppression chamber and condense. Then, in order to finally shut down the nuclear reactor, the neutrons -Id\7I are supplied to the core V'', thereby placing the reactor in a high temperature shutdown state 1['l. In this way, even if the scram fails, the reactor k l□h H”
1tfl, and the structure is such that the safety of the reactor can be maintained.

しかしながらM S I Vが全数一時に短面1i4[
で閉弁するとボイドがつぶれることによって炉心に正の
反応度が加わり原子炉出力が増大し原子炉圧力が上昇す
る恐れがあった。
However, M S I V has short side 1i4[
If the valves were closed, the voids would collapse and positive reactivity would be added to the reactor core, increasing the reactor output and raising the reactor pressure.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、主蒸気加減弁が放射能漏
洩以外の理由により出方された・11号により閉弁され
る場合、この主蒸気1i1flt弁の閉弁方式を制御す
ることにより炉心に与えられる正の反応度をできるだけ
抑制することができる沸騰水型原子炉を提供することに
ある。
The object of the present invention is to control the closing method of the main steam 1i1flt valve when the main steam control valve is closed due to No. 11 caused by a reason other than radioactivity leakage. The object of the present invention is to provide a boiling water reactor that can suppress as much as possible the positive reactivity imparted to the reactor.

〔発明の概要〕[Summary of the invention]

本発明による沸騰水型原子炉は、炉心および冷却水を収
容する原子炉圧力答器と、この原子炉圧力容器で発生し
た蒸気をタービン系に供給する複数の主蒸気配管系と、
この複数の主り、(気配管系に介挿された複数の主蒸気
隔離弁とを備えた沸騰水型原子炉において、放射能漏洩
信号以外の原子炉隔離要求信号により上記複数の主蒸気
隔離弁を閉弁して原子炉を隔離する除、上記複数の主蒸
気隔離弁の0′j弁方式を制御して炉心における正の反
応1隻を抑制する原子炉隔t111系統制御装置を具備
した構成である。
The boiling water reactor according to the present invention includes a reactor pressure responder that accommodates a reactor core and cooling water, and a plurality of main steam piping systems that supply steam generated in the reactor pressure vessel to a turbine system.
In a boiling water reactor equipped with a plurality of main steam isolation valves (a plurality of main steam isolation valves inserted in a pneumatic piping system), a reactor isolation request signal other than a radioactivity leakage signal causes isolation of the plurality of main steam In addition to isolating the reactor by closing the valves, it is equipped with a reactor separation t111 system control device that controls the 0'j valve system of the plurality of main steam isolation valves to suppress one positive reaction in the reactor core. It is the composition.

すなわち放射能漏洩信号以外の原子炉隔離要求イ〔号に
より原子炉を隔離する職原子炉隔離系統iI;j制御装
置により主蒸気M離弁の閉弁方式を制御して主蒸気t!
l’i Pi(1弁螢閉弁することによQ炉心に力■わ
る正の反応度を抑制する構成である。
In other words, the reactor isolation system iI is responsible for isolating the reactor based on the reactor isolation request (I) other than the radioactivity leak signal;
l'i Pi (This is a configuration that suppresses the positive reactivity that affects the Q core by closing one valve.

したがって炉心に加わる正の反応度は抑制され原子炉圧
力の上昇を緩和することが可能とな ・り安全性および
健全性を大巾に向上させることができる。
Therefore, the positive reactivity applied to the reactor core can be suppressed, and the rise in reactor pressure can be alleviated, making it possible to greatly improve safety and soundness.

〔発明の実施料J 以下第1図ないし第4図を参照して本発明の一実施例を
説明する。第1図はBWRの碩:略構成を示す系統図で
ある。図中符号1は図示しない原子炉建屋内に設置され
た原子炉格納容器を示し、この原子炉格納容器l内には
、鉋子炉圧力容器2が収容されている。この原子炉圧力
容器2内には複数の・燃かト集合体および1lfl制御
棒等からなる炉心3が設置されている。また上記原子炉
圧力容器2内には冷却水4が収容されており、前記炉心
3外周に設けられたジェットポンプ5および原子炉圧力
容器2外周に設けられた再t%壌ポンフ゛6および再#
J# j嵩11己管2から橙る再循環系8により強制循
環される(1〜成である。上記原子炉圧力容器2上部に
は主A・キ気配管9.10゜11が接続されており、こ
れら主2・≦気配肯9゜10.11は原子炉格納容器l
を貫通してタービン12まで配設されている。上記主蒸
気配置9.10.11の原子炉格7・4j賭11の貫通
部前後には主蒸気隔離弁(MsIV)13A 、13B
[Fees for Practicing the Invention J Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a system diagram showing the general configuration of a BWR. Reference numeral 1 in the figure indicates a reactor containment vessel installed in a reactor building (not shown), and a scissor reactor pressure vessel 2 is accommodated within this reactor containment vessel l. A reactor core 3 consisting of a plurality of burnt assemblies, 1lfl control rods, etc. is installed within the reactor pressure vessel 2. In addition, cooling water 4 is accommodated in the reactor pressure vessel 2, and a jet pump 5 provided on the outer periphery of the reactor core 3 and a refueling pump 6 and a refill pump 6 provided on the outer periphery of the reactor pressure vessel 2 are used.
J # j Bulk 11 It is forcedly circulated from the self-pipe 2 by the orange recirculation system 8 (1 to 1). The main A/gas pipe 9.10゜11 is connected to the upper part of the reactor pressure vessel 2. These main 2.≦Presence 9゜10.11
The turbine 12 is disposed through the turbine 12. Main steam isolation valves (MsIV) 13A and 13B are installed before and after the penetration part of reactor class 7 and 4j 11 in the main steam arrangement 9.10.11 above.
.

14に、14B、15A、15Bがそれぞれ介挿されて
いる。また主蒸気配管9,10.11には主蒸気止め弁
16.17.1B、主蒸気加減弁19.20.21がそ
れぞれ介挿されている。
14, 14B, 15A, and 15B are inserted, respectively. Further, a main steam stop valve 16.17.1B and a main steam control valve 19.20.21 are inserted into the main steam pipes 9, 10.11, respectively.

そして原子炉圧力客器2内で発生した蒸気は上記主蒸気
配管9,10.11を介してタービン12に供給され、
それによってタービン12は駆動し発電機22が回転す
る。タービン12を、!zに動させた後蒸気は1−9水
盤23に導入され1υ水となり給水加熱器24および給
水ポンプ25を介して原子炉圧力容器2内に戻される4
・6成である。主蒸気配管9,10.11のMIl18
.■v13B、74B、15Bと王蒸シ(止め弁16゜
17、I’Sとの間と復水器23との曲にはタービンバ
イパス付26”、27.28がそれぞれ自己祿されてい
る。これらタービンバイパス管26゜27.28にはタ
ービンバイパス弁2’9 、30゜31が介挿されてい
る。すなわち負荷遮断が起った賜金主蒸気加減弁19 
、、20 、21全閉弁して上記タービ/バイパス弁2
9,30.31全開弁しタービンバイパス管26 + 
27 + 28ケ介して主蒸気?r qMr水器23に
逃す構成である。
The steam generated in the reactor pressure passenger unit 2 is then supplied to the turbine 12 via the main steam piping 9, 10.11,
This drives the turbine 12 and rotates the generator 22. Turbine 12! After being moved to z, the steam is introduced into the 1-9 water basin 23 and becomes 1υ water, which is returned to the reactor pressure vessel 2 via the feed water heater 24 and the feed water pump 25.
・It is 6th generation. MIl18 of main steam pipe 9, 10.11
.. ■26'' and 27.28 with turbine bypass are installed between v13B, 74B, 15B and the stop valve 16, 17, I'S and the condenser 23, respectively. Turbine bypass valves 2'9 and 30°31 are inserted into these turbine bypass pipes 26°27.
, , 20 , 21 Fully close the above turbine/bypass valve 2
9,30.31 Fully open valve and turbine bypass pipe 26 +
Main steam via 27 + 28? This is a configuration in which water is discharged to the r qMr water dispenser 23.

Affば1″、主族気配、管9,1θ、11の原子炉圧
力容器2と=s:cv 2 s A、 J 4 A 、
 z s Aとの間には主蒸気逃し安全弁32,33.
34f介挿した主蒸気逃し管3s 、s6 、s7がそ
れぞれ接Qi6されており、これら主蒸気逃し−f!3
5 、36゜37は圧力抑制¥38内迄YId設されて
いる。そして原子炉が隔離され圧力が過度に上昇した場
倉には上記主蒸気逃し安全弁32.33,34を開弁し
主蒸気逃し管35.36.37を介して主蒸気を圧力抑
制室38内の水中に逃す構成である。また原子炉圧力容
器2には後備j東予炉停止装置としての毒物注入装向5
LC39が仇続されている。この9に中注入’;Q 1
i’l: 39により中性子毒物(例えはボロン)を弁
40を介して原子炉圧力容器2内に注入し炉心3の核反
応を停止させる構成である。
Aff=1'', main group gas, tubes 9, 1θ, 11 reactor pressure vessel 2 and = s: cv 2 s A, J 4 A,
Main steam relief safety valves 32, 33.
34f inserted main steam relief pipes 3s, s6, s7 are connected to Qi6, respectively, and these main steam relief pipes -f! 3
5, 36°37 is YId set up to pressure suppression ¥38. Then, in the warehouse where the reactor is isolated and the pressure has increased excessively, the main steam relief safety valves 32, 33, 34 are opened and the main steam is released into the pressure suppression chamber 38 through the main steam relief pipes 35, 36, 37. It is configured to escape into the water. In addition, the reactor pressure vessel 2 is equipped with a poison injection system 5 as a backup reactor shutdown device.
LC39 continues. Medium injection into this 9'; Q 1
i'l: 39 is configured to inject a neutron poison (for example, boron) into the reactor pressure vessel 2 via a valve 40 to stop the nuclear reaction in the reactor core 3.

以上の構成のB W Rには1visIV 13 A 
、13B。
BW R with the above configuration has 1visIV 13A
, 13B.

14に、14BI’15A、15Bの閉弁方式を開側1
する原子炉隔h1F系統制御i11装#441が設けら
れている。以下この原子炉隔j″′!ト系統制御装置凸
)41の構成および機能についてた)?、明する。すな
わちこの原子炉隔離゛系統制御−4f、i’vJ41は
放吋能漏洩信号以外のh4sIV全閉殻求信号に上り作
動し、レリえはスクラム不作θυ信号S1および原子炉
水位低信号S2により作動しバイパス弁IA’i信号S
3および主蒸気〃11減弁閉圓号S4を出力しバイパス
弁29,30.31および主蒸気加減弁19.20 、
21をII、11を次閉弁させるとともにMSIV 1
3A、13B、1’4A、14B。
14, 14BI'15A, 15B valve closing method open side 1
A reactor partition h1F system control i11 unit #441 is provided. The configuration and functions of this reactor isolation system control device 4f and i'vJ41 will be explained below. h4sIV is activated by the fully closed shell request signal, the relay is activated by the scram failure θυ signal S1 and the reactor water level low signal S2, and the bypass valve IA'i signal S
3 and main steam 11 Output reducing valve closing signal S4 and bypass valves 29, 30.31 and main steam regulating valve 19.20,
21 to II, 11 to the next close, and MSIV 1
3A, 13B, 1'4A, 14B.

15に、15Bを所定の時14ji費をもって順次閉弁
させる機能を有しており、その為のタイマー装置面、(
図示せず)ケ有している。
15, it has a function to sequentially close the valves 15B at a predetermined time with 14 hours, and a timer device for that purpose, (
(not shown).

以上の構成をもとに作用を、、71!明する。第2図は
全容−Stバイパスシステム(Il−ゼするプラントに
おいて発′1坂機負a:i避断が角生した場合のフロー
チャート図である。まず発電磯貝イi工遮断が発生する
と主蒸気力ロ減弁19,20.21が閉弁し、バイパス
弁29,30.’31が開弁する。それと同時に再循環
ポンプ6をトリップ(あるいは部分トリップ)、給水ポ
ンプ25を部分トリップおよびあらかじめ選択されたー
f¥i≦の制i+L11棒の急速挿入を行なうことによ
り原子炉出力の低下を図るこれはその後給水加熱器24
の加熱源喪失により給水温j及が低下すること等を考慮
した上での模作である。ここで選択制御棒挿入が正常に
作動しないと前述したように再循環ポンプ6がトリップ
(あるいは・部分トリップ)しかつ給水加熱源を喪失し
ている為に第3図中実フハで示すように原子炉運転点は
炉心流量低、原子!P出力高の状態を逓移する。氾3図
は横軸に炉ノら流flk 4M号をとり、A’υC!1
Ililに原子炉出力信号ケとり炉心シif、tと原子
炉出力とのは1係全示した図であり、点0は初期点、裏
編は匁択制御棒挿入失敗時、破線は、;、a折制イノ1
1律挿入成功時、1点鎖線は原子炉スクラム要求信号設
定曲線をそれぞれ示す。そしてサブクールの」・搾加に
より原子炉出力は上昇し続けるかフロ線で示すように原
子炉スクラム要求信号面?課を越える為原子炉はスクラ
ムされる。しかしここで万一スクラムが不可能となった
場合には1h11勺棒位置ケ確認する手により出力され
るスクラム失敗信号により再循環ポンプ6を全数トリッ
プさせる。こJtによって炉心3へのサブクール水の強
制循項構能は停止するが給水は続けられている為に原子
炉出力は上昇し、その後トリップしていない給水ポンプ
25の定格流量を上回るぺへ気が流出する。したがって
原子炉水位は低下し淳子炉隔離要求情号の1つである原
子炉水位(4信号が出力される。なお原子炉出力の上昇
を抑制する為に給水、I(ンフ。
The action is based on the above configuration, 71! I will clarify. Figure 2 is a flowchart for the case where the power generator Isogai I bypass occurs in a plant that uses the full capacity St bypass system. The power reduction valves 19, 20.21 are closed and the bypass valves 29, 30.'31 are opened.At the same time, the recirculation pump 6 is tripped (or partially tripped), and the water pump 25 is partially tripped and previously selected. The reactor output is then reduced by rapidly inserting the i+L11 rod, which controls f¥i≦.
This is a mock-up, taking into consideration the fact that the supply water temperature will drop due to the loss of the heating source. At this point, if the selective control rod insertion does not operate normally, the recirculation pump 6 will trip (or partially trip) and the feed water heating source will be lost as described above, as shown by the solid box in Figure 3. The reactor operating point is low core flow rate, atomic! Shift the state of P output high. Flood 3 has Furano-ra flow flk 4M on the horizontal axis, and A'υC! 1
Ilil shows the reactor output signal, the reactor core Sif, t, and the reactor output. Point 0 is the initial point, the back part is when the control rod insertion fails, and the broken line is; , a-fold system inno 1
When the uniform insertion is successful, the dashed-dotted lines indicate the reactor scram request signal setting curves. And will the reactor output continue to increase due to subcooling? Does the reactor scram request signal surface continue to rise as shown by the flow line? The reactor is scrammed to cross sections. However, if scram becomes impossible at this point, all recirculation pumps 6 are tripped by a scram failure signal outputted by the hand that confirms the position of the 1h11 rake rod. Due to this Jt, the forced circulation system for subcooling water to the reactor core 3 is stopped, but since water supply continues, the reactor output increases, and after that, the flow rate exceeds the rated flow rate of the water supply pump 25 that has not tripped. flows out. Therefore, the reactor water level decreases, and the reactor water level signal (4 signals), which is one of the Junshi reactor isolation request information, is output.

25を全数停止させた尻合にも水位+−r ih下し原
子炉水位低信号が発信され原子炉1’4+・七1系統f
itll @i装置41が作動する。原子炉隔pm系統
1HII l’l装置41はまずタービン・くイノくス
弁29を1−弁する。
Even after all 25 reactors were shut down, the water level dropped +-r iih and a reactor water level low signal was sent, causing reactors 1'4+ and 71 system f.
itll@i device 41 is activated. The reactor remote pm system 1HII l'l device 41 first turns the turbine valve 29 into the 1-valve.

このタービンノくイノくス弁29の閉弁QてよりMS工
v13A、13BI、11信号S、か出ブコされ主蒸気
隔離弁13 A 、、 13 B力輸4弁する。そして
所定時間経過後原子炉V’A Mt系統制御ul装j俄
41は内蔵するタイマーP k“の作ルζ)1によりタ
ービン・(イパス弁5okf;弁する。このタービンノ
くイノくス弁30の閉弁によりVLSIV14A、J4
B開化+386が出力され主蒸気1均離弁14 A 、
14Bが閉弁する。同様に所定時間経1尚イ麦上古己タ
イマー装置の作動によりタービンノくイノくス弁31カ
ー閉弁する。このタービン・(イノ(ヌ弁31の閉弁に
よりVLSIV75A、15B閉イ6号5775二出力
され主蒸気隔に弁15に、15B、カニ閉弁する。
As a result of the closing of the turbine output valve 29, the MS engineering signals V13A, 13BI, and 11 S are output, and the main steam isolation valves 13A, 13B are activated. After a predetermined period of time has elapsed, the reactor V'A Mt system control unit 41 opens the turbine (pass valve 5okf) by the built-in timer Pk''. VLSIV14A, J4 by closing the valve.
B opening +386 is output and main steam 1 isolation valve 14A,
14B closes. Similarly, after a predetermined period of time has elapsed, the turbine exhaust valve 31 is closed by the operation of the timer device. When the turbine valve 31 is closed, the VLSIV 75A and 15B are closed, and the output is output to the main steam valve 15 and 15B.

これで主益気隔t41F弁全数が閉弁し1区子炉は1l
Hr) !jliされる。このように主蒸気隔離4F1
.9へ、 13B。
With this, all the main benefit interval t41F valves are closed, and the 1st ward sub-furnace is 1l.
Hr)! be criticized. Main steam isolation 4F1 like this
.. To 9, 13B.

14A、14B、15A、15Bは従来のように同時に
閉弁するのではなくそれぞれ所定の時間差をもって閉弁
するので原子炉水4中のボイドをつぶす効果は小さくし
たがって炉心3に加わる正の反応度全抑制することがで
きる。これを第4図で説明すると、簾、4図は51黄軸
に時間(秒)をとり縦、軸に原子炉圧力(%定格)ケと
9原子炉出力の時間変化を示す図であり笑口は本実施例
の場合ケ示し破竹は従来例を示す。これでも明らかなよ
うに従来に比べて原子炉圧力の上昇は緩オI]されてい
る。その後原子炉隔F!11時冷却系および非常用炉心
冷却系が起動することにより原子炉水位は回楕する。そ
して中性子毒物注入系5LC39゛を起動させることに
より原子炉は高温停止する。
14A, 14B, 15A, and 15B are not closed at the same time as in the past, but are closed at a predetermined time difference, so the effect of crushing voids in the reactor water 4 is small, and therefore the total positive reactivity added to the reactor core 3 is Can be suppressed. To explain this with Figure 4, Figure 4 shows time (seconds) on the 51 yellow axis, reactor pressure (% rating) on the vertical axis, and time changes in reactor output (9). The opening shows the case of this embodiment, and the broken bamboo shows the conventional example. As is clear from this, the rise in reactor pressure has been slower than in the past. After that, reactor separation F! By starting the 11 o'clock cooling system and the emergency core cooling system, the reactor water level will be reversed. Then, by activating the neutron poison injection system 5LC39', the reactor is brought to a high temperature shutdown.

すなわち原子炉隔離系統制用i装置t4Zにより主蒸気
隔離弁13A、13B、14A、14B。
That is, the main steam isolation valves 13A, 13B, 14A, and 14B are controlled by the reactor isolation system control i device t4Z.

15に、15Bを所定の時間差をもたせて順次閉弁する
ことにより従来のように一時に全数閉弁した場合に比べ
て原子炉水4中のボイドを・つぶす効果を小さくするこ
とができボイドがつぶれることによって生じる正の反応
度全抑制することができ原子炉圧力の上昇を緩和するこ
とが可能となる。
15, by sequentially closing the valves 15B with a predetermined time difference, the effect of crushing voids in the reactor water 4 can be reduced compared to the conventional case where all valves are closed at once. The positive reactivity caused by the collapse can be completely suppressed, making it possible to alleviate the rise in reactor pressure.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明による沸騰水型原子炉による
と、放射能漏洩信号以外の原子炉隔離要求信号により原
子炉ff:隔離させる際原子炉せることにより原子炉を
隔離する際ボイドをつぶす効果を小さくすることができ
るのでボイドがつぶれることによって生じる正の反応度
を抑制して原子炉圧力の上昇を緩和することができ安全
性および健全性を著しく向上させることが可能となる。
As detailed above, according to the boiling water reactor according to the present invention, the reactor ff: is activated when the reactor is isolated in response to a reactor isolation request signal other than a radioactivity leak signal, thereby eliminating voids when isolating the reactor. Since the effect can be reduced, the positive reactivity caused by the collapse of voids can be suppressed and the rise in reactor pressure can be alleviated, making it possible to significantly improve safety and soundness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示す図で、第
1図は沸騰水型原子炉の概P@構成を示す系統1へ第2
図は負荷遮断が発生した場合の動作を示すフローチャー
ト図、第3図は負荷芳断が発生した場合の原子炉出力と
炉心流量との曲1糸?示す図、第4図は主j)≦気隔離
、弁を閉弁して原子炉を隔911させる際の・原子炉圧
力のE寺1t41髪化を示す図であめ。 2・・・原子炉圧力容器、3・・・炉心、4・・・冷却
水、9.10.11・・・主族気配シ肖;、12・・・
タービン、13A、13B、14A、14B、15A。 z5B・・・主蒸気隔離弁、41・・・原子炉隔離系統
制(i+i]装置。 出願人代理人 弁理士 鈴 江 武 彦−へ34− 第4図
Figures 1 to 4 are diagrams showing one embodiment of the present invention, and Figure 1 shows the general P@ configuration of a boiling water reactor.
The figure is a flowchart showing the operation when a load shedding occurs, and Figure 3 shows the curve of reactor output and core flow rate when a load shedding occurs. Figure 4 is a diagram showing the change in reactor pressure when the valve is closed and the reactor is isolated. 2...Reactor pressure vessel, 3...Reactor core, 4...Cooling water, 9.10.11...Main group signs;, 12...
Turbines, 13A, 13B, 14A, 14B, 15A. z5B...Main steam isolation valve, 41...Reactor isolation system control (i+i) device. Applicant's representative Patent attorney Takehiko Suzue-he34- Figure 4

Claims (1)

【特許請求の範囲】[Claims] 炉心および冷却水を収容する原子炉圧力容器と、この原
子炉圧力容器で発生した蒸気をタービン系に供給する複
数の主1人気配管系と、この代数の主然気配管系に介挿
さ−jt 7七複畝の主蒸気隔離弁とを備えた沸騰水型
原子炉において、放射能l浦波信号以外の原子炉隅陥・
葬求信号により上記複数の主蒸気隔1苧弁を閉弁して原
子炉を隔離する際、上り己複数の主惑気肖tits弁の
閉弁方式を制御して炉心における正の反応鼓を抑制する
原子炉隔離系統制イ卸装置を具備したことを」′r徴と
する沸騰水型原子炉。
A reactor pressure vessel that accommodates the reactor core and cooling water, a plurality of main piping systems that supply the steam generated in this reactor pressure vessel to the turbine system, and In a boiling water reactor equipped with a main steam isolation valve with 77 double ridges, reactor corner failures and
When the plurality of main steam valves are closed to isolate the reactor in accordance with the request signal, the closing method of the plurality of main steam valves is controlled to generate a positive reaction in the reactor core. A boiling water reactor characterized by being equipped with a reactor isolation system control device to suppress the reactor isolation system.
JP58119343A 1983-06-30 1983-06-30 Boiling water reactor Pending JPS6011200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119343A JPS6011200A (en) 1983-06-30 1983-06-30 Boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119343A JPS6011200A (en) 1983-06-30 1983-06-30 Boiling water reactor

Publications (1)

Publication Number Publication Date
JPS6011200A true JPS6011200A (en) 1985-01-21

Family

ID=14759132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119343A Pending JPS6011200A (en) 1983-06-30 1983-06-30 Boiling water reactor

Country Status (1)

Country Link
JP (1) JPS6011200A (en)

Similar Documents

Publication Publication Date Title
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
Adamov et al. The next generation of fast reactors
JPS62187291A (en) Passive safety device for nuclear reactor
JP2010085282A (en) Nuclear power plant of pressurized water type
Chang et al. SMART behavior under over-pressurizing accident conditions
Yang et al. Transient analysis of AP1000 NPP under the similar Fukushima accident conditions
JPS6011200A (en) Boiling water reactor
JPS6375691A (en) Natural circulation type reactor
Hannerz et al. The PIUS pressurized water reactor: aspects of plant operation and availability
Collier et al. The Accident at Three Mile Island
Lee et al. Safety system consideration of a supercritical-water cooled fast reactor with simplified PSA
Kuznetsov et al. NPP with VK-300 boiling water reactor for power and district heating grids
Alblouwy et al. Evaluation of Multiple Steam Generator Tubes Rupture for SMART
Bento et al. Safety evaluation of the SECURE nuclear district heating plant
Ho et al. Dynamic operator actions analysis for inherently safe fast reactors and light water reactors
You et al. Integrity analysis of main pump shaft seal under accidents induced by SBO for CANDU
HELMY et al. ON LINE FIRST
JPH0517515B2 (en)
Stubbe et al. Analysis and Simulation of the DOEL-2 Steam Generator Tube Rupture Event
Dearing et al. Dominant accident sequences in Oconee-1 pressurized water reactor
BAKHMETYEV Obninsk, Russian Federation
Hahn et al. Preliminary safety evaluation of KALIMER under transient overpower accident
Jayanti et al. Preliminary analysis of a small, inherently safe boiling water reactor
Soa et al. Development of Probabilistic Safety Assessment Methodology for Autonomous Micro Modular Reactor
Cavicchia et al. Insights from the AP600 probabilistic safety study