JPS601116B2 - Resistance welding machine control device - Google Patents

Resistance welding machine control device

Info

Publication number
JPS601116B2
JPS601116B2 JP7134277A JP7134277A JPS601116B2 JP S601116 B2 JPS601116 B2 JP S601116B2 JP 7134277 A JP7134277 A JP 7134277A JP 7134277 A JP7134277 A JP 7134277A JP S601116 B2 JPS601116 B2 JP S601116B2
Authority
JP
Japan
Prior art keywords
phase
voltage
output
welding machine
integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7134277A
Other languages
Japanese (ja)
Other versions
JPS545841A (en
Inventor
喜久夫 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Transformer Co Ltd filed Critical Osaka Transformer Co Ltd
Priority to JP7134277A priority Critical patent/JPS601116B2/en
Publication of JPS545841A publication Critical patent/JPS545841A/en
Publication of JPS601116B2 publication Critical patent/JPS601116B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 本発明は位相制御により溶接変圧器に供給する電力を制
御する抵抗熔接機制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance welding machine control device that controls power supplied to a welding transformer by phase control.

抵抗溶接機は一般に大電力で短時間通電する低力率の負
荷であって、通電時における電源回路の内部電圧降下が
大きく電源電圧波形に大きな歪を発生させるばかりでな
く電源回路の内部インピーダンスと負荷である溶接機の
インピーダンスとの組合せによっては溶接機の入力端子
部における電圧位相が無負荷時と負荷時とで変化するこ
とがあり、溶接変圧器に供給する電力を位相制御する場
合には溶接機に通電電流の不平衡、溶接変圧器の鉄心の
飽和が発生して異常過大電流が流れ易く、時には溶接機
や電源装置を破壊することもあった。
Resistance welding machines are generally low power factor loads that apply high power for short periods of time, and the internal voltage drop in the power supply circuit during energization is large, causing not only large distortion in the power supply voltage waveform but also the internal impedance of the power supply circuit. Depending on the combination with the impedance of the welding machine, which is the load, the voltage phase at the input terminal of the welding machine may change between no load and load, so when controlling the phase of the power supplied to the welding transformer, Unbalanced current in the welding machine and saturation of the welding transformer core tended to cause abnormal excessive current to flow, sometimes destroying the welding machine and power supply.

第1図はこの現象を説明するための抵抗溶接機を使用す
る場合の等価回路図である。
FIG. 1 is an equivalent circuit diagram when a resistance welding machine is used to explain this phenomenon.

同図においてa,bは送電端の出力端子、roは送配電
線路、送配電用変圧器などのインピーダンスを等価的に
表わしたときの等価直列抵抗、のLoは同じく等価リア
クタンスである。c,dは溶接機の入力端子、r,は溶
接機の等価抵抗、wLは同じく等価IJァクタンス、S
CRはr,およびwL,よりなる溶接機に供給する電力
を位相制御するサィリスタ、H‘まサィリスタSCRに
点弧信号を供給するサイリスタの位相制御回路であって
、この位相制御回路は溶接機入力端子c,dに接続され
ている。ここで端子a,bにおける送電端の電圧をEo
、溶接機入力端子c,dの電圧をE,、線路、サィリス
タ、溶接機の回路を流れる電流を1,、電源の角周波数
をの、回路全体の力率角をの、溶接機の力率角をQとす
ると各抵抗降下rol,,r,1,、リアクタンス降下
wLol,,のL1,、電圧Eo,E,および電流1,
の間には第2図のベクトル図に示すような関係が生じる
。ここでEF〜+h芋云j;E+LJF。
In the figure, a and b are the output terminals of the power transmission end, ro is the equivalent series resistance when the impedance of the power transmission and distribution line, the power transmission and distribution transformer, etc. is equivalently expressed, and Lo is the equivalent reactance. c and d are the input terminals of the welding machine, r is the equivalent resistance of the welding machine, wL is the equivalent IJ factor, and S
CR is a thyristor consisting of r and wL, which controls the phase of the power supplied to the welding machine, and H' is a thyristor phase control circuit that supplies an ignition signal to the thyristor SCR. Connected to terminals c and d. Here, the voltage at the transmission end at terminals a and b is Eo
, the voltage at welding machine input terminals c and d is E, , the current flowing through the line, thyristor, and welding machine circuit is 1, the angular frequency of the power supply is , the power factor angle of the entire circuit is , the power factor of the welding machine is Letting the angle be Q, each resistance drop rol,,r,1,, reactance drop wLol,,L1,, voltage Eo,E, and current 1,
A relationship as shown in the vector diagram of FIG. 2 occurs between them. Here, EF~+h 芋云j; E+LJF.

であるからE.=B云iC‐‐‐‐‐‐‐‐‐(1}A
ニ(r。
Therefore, E. = B 云iC ‐‐‐‐‐‐‐‐‐
Ni (r.

十rl)2 十山2〈L。十LI)2B=(r。十r,
)r,十w2L(L。十L)CニのL・r。一のL。r
lここでA>0であるからC=wLro一のLr.<0
のときには、E,はEoより8=の−Qだけ位相が遅れ
ることになる。
10rl) 2 10yama 2〈L. 10LI)2B=(r.10r,
) r, 10w2L (L. 10L) Cd L・r. One L. r
lHere, since A>0, C=wLro-Lr. <0
When E, is delayed in phase by 8=-Q than Eo.

第3図は通電開始時におけるEoとE,との関係を各瞬
時値e。,e,によって示したもので、同図aは送電端
電圧eo、bは位相制御回路日の入力電圧e,、cは熔
接機に流れる電流1,の瞬時値i,、dは位相制御回路
日の出力信号である。最初の半サイクルの図示していな
い負の半サイクルにおいては通電が開始されていないの
で線路の電圧降下がなく位相制御回路日の入力電圧e,
と送電端電圧eoとは同相である。通電が開始された後
最初の正の半サイクルにおいては位相制御回路日‘ま電
圧e,=eoの零点より予め定められた制御角8だけ遅
れた位相でサィリスタSCRに点弧信号を供給し溶接変
圧器に電流iが流れる。電流が流れ始めると同時に電圧
e,は第2図のベクトル図で示したように8,=の−Q
だけ遅れる。次の負の半サイクルにおいては位相制御回
路4は送電端電圧eoの零点よりBだけ遅れた入力電圧
e,の零点よりさらに制御角aだけ遅れて点弧信号をサ
ィリス夕SCRに供給する。したがってこの負の半サイ
クルの電流iの通電期間は最初の半サイクルに比べて短
くなりこの半波の電流の実効値が減少する。この負の半
サイクルの電流によって発生する位相差82は通電期間
が短いため先の正の半サイクルにおいて発生した位相差
8,よりも4・さし、。さらに次の正の半サイクルにお
いては位相差62だけ遅れた入力電圧e,の零点から制
御角8だけ遅れて点弧されるのでこの正の半サイクルの
通電期間は直前の負の半サイクルに比べて大となりこの
半波の電流の実効値が増加する。このため次に続く負の
半サイクルの電流値が小さくなり第3図cに示すように
溶接変圧器の一次巻線には△ldcなる直流分が流れる
ことになり溶接変圧器の鉄心の飽和を招き異常過大電流
が流れるようになる。これらを防止する方法として、電
源回路のインピーダンスおよび溶接機インピーダンスを
調整して前述のm式のC=のLro−のLr,ZOとす
る方法も提案されているが、本発明はこれら電源回路、
溶接機のインピーダンスを変更することなく安定した位
相制御を行うことができる制御装置を提案するものであ
る。本発明は位相制御により溶接変圧器に供給する電力
を制御する抵抗溶接機において上述の原因による溶接変
圧器鉄心の飽和を防止するために通電開始前には位相制
御信号の位相を溶接電源の電圧位相に同期させるが通電
開始後は電源電圧位相との同期を切離し、熔接開始直前
に記憶した電源電圧位相に同期して発振する発振器の発
振位相に同期して溶接変圧器に供給する電力を制御する
ことを特徴としたものである。
FIG. 3 shows the relationship between Eo and E at the start of energization at each instantaneous value e. , e, in which a is the voltage at the sending end eo, b is the input voltage e of the phase control circuit, c is the instantaneous value i,, d of the current 1 flowing through the welding machine, and d is the phase control circuit. This is the output signal of the day. In the negative half cycle (not shown) of the first half cycle, energization has not started, so there is no line voltage drop, and the input voltage e of the phase control circuit is
and the sending end voltage eo are in phase. In the first positive half cycle after energization starts, the phase control circuit supplies an ignition signal to the thyristor SCR at a phase that is delayed by a predetermined control angle 8 from the zero point of the voltage e,=eo, and welds. Current i flows through the transformer. At the same time as the current starts flowing, the voltage e, is equal to -Q of 8,= as shown in the vector diagram in Figure 2.
Only late. In the next negative half cycle, the phase control circuit 4 supplies an ignition signal to the sirensor SCR at a further delay of a control angle a from the zero point of the input voltage e, which is delayed by B from the zero point of the sending end voltage eo. Therefore, the period of current i in this negative half cycle is shorter than that in the first half cycle, and the effective value of the current in this half cycle is reduced. The phase difference 82 generated by the current in this negative half cycle is 4.0 mm larger than the phase difference 8 generated in the previous positive half cycle because the current conduction period is short. Furthermore, in the next positive half cycle, ignition is delayed by a control angle of 8 from the zero point of the input voltage e, which is delayed by a phase difference of 62, so the energization period of this positive half cycle is shorter than that of the previous negative half cycle. becomes larger, and the effective value of this half-wave current increases. Therefore, the current value in the next negative half cycle becomes smaller, and as shown in Figure 3c, a DC component of △ldc flows through the primary winding of the welding transformer, which reduces the saturation of the iron core of the welding transformer. This causes abnormal excessive current to flow. As a method for preventing these, a method has been proposed in which the impedance of the power supply circuit and the impedance of the welding machine are adjusted so that Lr, ZO of C=Lro- of the above-mentioned m-formula.
The present invention proposes a control device that can perform stable phase control without changing the impedance of a welding machine. In order to prevent saturation of the welding transformer iron core due to the above-mentioned causes in a resistance welding machine that controls the power supplied to the welding transformer by phase control, the present invention changes the phase of the phase control signal to the voltage of the welding power source before starting energization. The power supplied to the welding transformer is controlled in synchronization with the oscillation phase of the oscillator, which oscillates in synchronization with the power supply voltage phase stored just before welding. It is characterized by

以下図面を参照して本発明の抵抗溶接機制御装置を詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The resistance welding machine control device of the present invention will be described in detail below with reference to the drawings.

第4図は本発明を実施するときの概略構成例を示す構成
図である。
FIG. 4 is a configuration diagram showing a schematic configuration example when implementing the present invention.

同図において1は溶接機の入力端子電圧E,の波形を整
形する波形整形回路でありたとえばE,の全波整流波形
の立上りから始まる一定中のパルス信号を出力する。2
は位相比較回路であり二つの入力端子P,およびP2の
入力信号位相差に対応した電圧信号を出力する。
In the figure, reference numeral 1 denotes a waveform shaping circuit that shapes the waveform of the input terminal voltage E of the welding machine, and outputs a constant pulse signal starting from the rising edge of the full-wave rectified waveform of E, for example. 2
is a phase comparator circuit which outputs a voltage signal corresponding to the phase difference between the input signals of the two input terminals P and P2.

3は位相比較回路2の出力電圧を積分する積分器、4は
積分器3の出力電圧値に応じた周波数のパルスを発生す
る電圧制御発振器、5は発振器4の出力を波形整形回路
1の出力に対応する周波数にまで低下させる分周器であ
る。
3 is an integrator that integrates the output voltage of the phase comparator circuit 2; 4 is a voltage-controlled oscillator that generates a pulse with a frequency corresponding to the output voltage value of the integrator 3; 5 is an output of the waveform shaping circuit 1 that converts the output of the oscillator 4 into the output of the waveform shaping circuit 1; This is a frequency divider that lowers the frequency to the corresponding frequency.

尚発振器4の出力周波数が波形整形回路1の出力周波数
と同程度のときこの分周器は不要である。6↓ま分周器
5の出力パルスから任意の位相遅れのパルスをトリガパ
ルス発生器Tに発生させるための移相調整器で、トリガ
パルス発生器7は移相調整器6で調整された位相で位相
制御素子であるサィリスタSCR1,SCR2を点弧さ
せるてめのパルスを発生する。
Note that when the output frequency of the oscillator 4 is approximately the same as the output frequency of the waveform shaping circuit 1, this frequency divider is unnecessary. 6↓This is a phase shift adjuster for causing the trigger pulse generator T to generate a pulse with an arbitrary phase delay from the output pulse of the frequency divider 5.The trigger pulse generator 7 has a phase adjusted by the phase shift adjuster 6. Then, a first pulse is generated to fire the thyristors SCR1 and SCR2, which are phase control elements.

SI−1およびSI−2は図示しない公知の溶接用時間
制御装置により動作するりレー接点などの開閉素子であ
り通電中のみそれぞれ懐点t2側に切替わるものである
。この開閉器は図に示した接点式のものでもよいがトラ
ンジスタなどの半導体スイッチング素子を使用すれば全
体を無接点化でき信頼性を向上させることができる。な
おTpはトリガパルス発生器7とサィリス夕SCR1,
SCR2との間を絶縁するためのパルストランスであり
、このトランスは必らずしも必要とはしない。またWT
は溶接用変圧器、10は溶接電極、11は被溶接物であ
る。上記装置においてまず通電開始前の状態においては
、開閉素子SI−1が接点ら側にある。
SI-1 and SI-2 are opening/closing elements such as relay contacts operated by a known welding time control device (not shown), and are respectively switched to the pocket point t2 side only when electricity is being applied. This switch may be of the contact type shown in the figure, but if a semiconductor switching element such as a transistor is used, the entire switch can be made contactless and reliability can be improved. Note that Tp is the trigger pulse generator 7 and the sirensor SCR1,
This is a pulse transformer for insulating between it and the SCR2, and this transformer is not necessarily required. Also WT
1 is a welding transformer, 10 is a welding electrode, and 11 is an object to be welded. In the above device, first, in a state before starting energization, the switching element SI-1 is on the side away from the contacts.

従って波形整形回路1の出力位相と分周器5の出力位相
が位相比較器2において比較され、その位相差に対応し
たく例えば比例した)電圧が開閉素子SI−1を経て積
分器3に入力される。ここで波形整形回路1の出力位相
が分周器5の出力位相より進んでいるときは積分器3の
積分が進み、その出力が増大して電圧制御発振器4の発
振周波数が増加するようにし、逆に波形整形回路1の出
力位相が分周器5の出力位相よりも遅れているときは積
分器3の積分が逆の方向に進んでその出力が減少し、発
振器4の発振周波数が低下するようにしておく。このよ
うに構成しておくと、位相比較器2、開閉素子SI−1
、発振器4、分周器5よりなる閉回路は波形整形回路1
の出力位相と分周器5の出力位相が等しくなったところ
で安定する。分周器5の出力はまた移相調整器6を介し
てトリガパルス発生器7に入力されているから、トリガ
パルス発生器7は分周器5の出力位相に同期して移相調
整器6によって決定される任意の位相差を有するパルス
を発生する。次に溶接開始に際し開閉素子SI−1およ
びSI−2を後点t2側に切替えると積分器3は開閉素
子SI−1が切替えられる直前の出力値を保持しトした
がって分周器5も通電開始直前の電源電圧E,の位相に
同期した出力を発生しつづける。
Therefore, the output phase of the waveform shaping circuit 1 and the output phase of the frequency divider 5 are compared in the phase comparator 2, and in order to correspond to the phase difference, for example, a proportional voltage is input to the integrator 3 via the switching element SI-1. be done. Here, when the output phase of the waveform shaping circuit 1 is ahead of the output phase of the frequency divider 5, the integration of the integrator 3 advances, its output increases, and the oscillation frequency of the voltage controlled oscillator 4 increases. Conversely, when the output phase of the waveform shaping circuit 1 lags behind the output phase of the frequency divider 5, the integration of the integrator 3 proceeds in the opposite direction, its output decreases, and the oscillation frequency of the oscillator 4 decreases. Let's do it like this. With this configuration, the phase comparator 2, the switching element SI-1
, an oscillator 4, and a frequency divider 5 form a waveform shaping circuit 1.
The signal becomes stable when the output phase of the frequency divider 5 becomes equal to the output phase of the frequency divider 5. Since the output of the frequency divider 5 is also input to the trigger pulse generator 7 via the phase shift adjuster 6, the trigger pulse generator 7 is synchronized with the output phase of the frequency divider 5 and is input to the phase shift adjuster 6. generate a pulse with an arbitrary phase difference determined by . Next, when switching the switching elements SI-1 and SI-2 to the rear point t2 side at the start of welding, the integrator 3 holds the output value immediately before switching the switching element SI-1, and therefore the frequency divider 5 also starts energizing. It continues to generate an output synchronized with the phase of the immediately preceding power supply voltage E.

そのためこれに同期して動作するトリガパルス発生器7
も通電中の電源電圧の位相には無関係に通電開始直前の
電源電圧位相を基準としたトリガパルスを発生し、開閉
素子SI−2およびパルストランスTpを経てサィリス
タSCR1,SCR2を導通させる。この結果たとえ溶
接開始により溶接機に供給される電圧位相が遅れること
があっても位相制御には何ら擾乱が生じることなく、制
御は正常に行なわれる。第5図は本発明の他の実施例を
示す構成図である。
Therefore, the trigger pulse generator 7 operates in synchronization with this.
Regardless of the phase of the power supply voltage during energization, a trigger pulse based on the power supply voltage phase immediately before the start of energization is generated, and the thyristors SCR1 and SCR2 are made conductive via the switching element SI-2 and the pulse transformer Tp. As a result, even if the phase of the voltage supplied to the welding machine is delayed due to the start of welding, the phase control is not disturbed at all and the control is performed normally. FIG. 5 is a block diagram showing another embodiment of the present invention.

同図において8は2つの入力端子Q,,Q2を有する加
算器であり、定電圧源Eoおよび可変抵抗器Rによって
得られる任意に設定可能な基準電圧esと位相比較器2
の出力電圧との和を開閉素子SI−1を通して積分器3
に供給する。この場合分周器5の出力は第4図の実施例
に〈らべて加算器8の端子P2に加えられた基準電圧e
sに相当する位相だけ異なる値で安定することになる。
すなわち第5図の実施例においては基準電圧esを変化
させることにより分周器5の出力位相を波形整形回路1
の出力位相(即ち電源電圧位相)から任意の位相だけ遅
らせることができる。したがって第4図の場合に使用し
た移相調整器6は不要となり、分周器5の出力は直接ト
リガパルス発生器7に供給される。通電開始に際して第
4図の実施例と同様に開閉素子SI−1およびSI一2
を接点t2側に切替えると、分周器5は切替直前の位相
で出力をトリガパルス発生器7に供給しつづけるので、
通電により電源電圧位相E,に遅れが生じても何ら位相
制御に擾乱を生じることなく安定した制御が行なえるも
のである。以上の通り本発明の装置によれば、電源供給
回路の内部インピーダンスと負荷である溶接機のインピ
ーダンスとの組合せの如何にかかわらず常に正確な位相
制御が行なえるので、不平衡電流が流れたり、鉄心の飽
和による異常過大電流が流れたりすることがなく、また
これらインピーダンスを調整する必要もないから従来の
電源回路や溶酸機をそのまま使用することができる利点
がある。
In the figure, 8 is an adder having two input terminals Q, , Q2, and a reference voltage es, which can be set arbitrarily, obtained by a constant voltage source Eo and a variable resistor R, and a phase comparator 2.
through the switching element SI-1 to the integrator 3.
supply to. In this case, the output of the frequency divider 5 is the reference voltage e applied to the terminal P2 of the adder 8, compared to the embodiment of FIG.
The phase will be stabilized at a different value by the phase corresponding to s.
That is, in the embodiment shown in FIG. 5, the output phase of the frequency divider 5 is adjusted to the waveform shaping circuit 1 by changing the reference voltage es.
can be delayed by an arbitrary phase from the output phase (that is, the power supply voltage phase). Therefore, the phase shift adjuster 6 used in the case of FIG. 4 becomes unnecessary, and the output of the frequency divider 5 is directly supplied to the trigger pulse generator 7. At the start of energization, the switching elements SI-1 and SI-2 are activated as in the embodiment shown in FIG.
When switching to the contact t2 side, the frequency divider 5 continues to supply the output to the trigger pulse generator 7 at the phase immediately before switching.
Even if a delay occurs in the power supply voltage phase E due to energization, stable control can be performed without any disturbance in phase control. As described above, according to the device of the present invention, accurate phase control can always be performed regardless of the combination of the internal impedance of the power supply circuit and the impedance of the welding machine that is the load. There is no abnormal excessive current flowing due to saturation of the iron core, and there is no need to adjust these impedances, so there is an advantage that conventional power supply circuits and acid melting machines can be used as they are.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抵抗溶接機を使用する場合の等価回路図、第2
図は第1図の回路のベクトル図、第3図a乃至dは通電
開始時における第1図の回路の各部の波形図、第4図お
よび第5図はそれぞれ本発明の異なる実施例を示す構成
図である。 1・・・・・・波形整形回路、2・・・・・・位相比較
器、3…・・・積分器、4・・・・・・電圧制御発振器
、5・・・…分周器、6・・・…移相調整器「 7・…
・・トリガパルス発生器、8……加算器「SCR1,S
CR2・・・…サィリスタ(位相制御素子)。 第3図 第1図 第2図 第4図 第5図
Figure 1 is an equivalent circuit diagram when using a resistance welder, Figure 2
The figure is a vector diagram of the circuit in Figure 1, Figures 3a to 3d are waveform diagrams of various parts of the circuit in Figure 1 at the start of energization, and Figures 4 and 5 each show different embodiments of the present invention. FIG. 1... waveform shaping circuit, 2... phase comparator, 3... integrator, 4... voltage controlled oscillator, 5... frequency divider, 6...Phase shift adjuster "7...
...Trigger pulse generator, 8... Adder "SCR1, S
CR2...Thyristor (phase control element). Figure 3 Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 位相制御素子により供給電圧の実効値を制御する抵
抗溶機機の制御装置において、溶接機の入力端子電圧の
位相に対応した位相の信号を発生する波形整形回路と、
二つの入力端子を有し各入力端子に入力される信号の位
相差に対応する電圧を出力する位相比較器と、前記位相
比較器の出力電圧を積分する積分器と、前記積分器の出
力電圧に対応した周波数の信号を発生する電圧制御発振
器と、前記電圧制御発振器の出力信号に対して任意の位
相遅れを有し前記位相制御素子の導通を制御するパルス
を前記電圧制御発振器の出力信号に同期して発生するト
リガパルス発生器と、前記位相比較器と積分器との間に
接続され溶接通電停止時にのみ位相比較器の出力を積分
器に伝達する開閉素子とを具備し、前記位相比較器の一
方の入力端子には波形整形回路の出力信号を入力し、他
の入力端子には電圧制御発振器の出力信号を入力したこ
とを特徴とする抵抗溶接機制御装置。 2 位相制御素子により供給電圧の実効値を制御する抵
抗溶接機の制御装置において、溶接機の入力端子電圧の
位相に対応した位相の信号を発生する波形整形回路と、
二つの入力端子を有し各入力端子に入力される信号の位
相差に対応する電圧を出力する位相比較器と、前記位相
比較器の出力電圧と任意に調整可能な基準電圧との和を
出力する加算器と、前記加算器の出力電圧を積分する積
分器と、前記積分器の出力電圧に対応した周波数の信号
を発生する電圧制御発振器と、前記電圧制御発振器の出
力信号に同期して前記位相制御素子の導通を制御するパ
ルスを発生するトリガパルス発生器と、前記加算器と積
分器との間に接続され溶接通電停止時のみ加算器の出力
を積分器に伝達する開閉素子とを具備し、前記位相比較
器の一方の入力端子には波形整形回路の出力信号を入力
し、他の入力端子には電圧制御発振器の出力信号を入力
したことを特徴とする抵抗溶接機制御装置。
[Claims] 1. A control device for a resistance welding machine that controls the effective value of a supply voltage using a phase control element, comprising: a waveform shaping circuit that generates a signal with a phase corresponding to the phase of an input terminal voltage of a welding machine;
a phase comparator that has two input terminals and outputs a voltage corresponding to a phase difference between signals input to each input terminal; an integrator that integrates the output voltage of the phase comparator; and an output voltage of the integrator. a voltage controlled oscillator that generates a signal with a frequency corresponding to the voltage controlled oscillator, and a pulse that has an arbitrary phase delay with respect to the output signal of the voltage controlled oscillator and controls conduction of the phase control element to the output signal of the voltage controlled oscillator. The phase comparator includes a trigger pulse generator that generates synchronized signals, and a switching element that is connected between the phase comparator and the integrator and transmits the output of the phase comparator to the integrator only when welding energization is stopped. 1. A resistance welding machine control device, characterized in that an output signal of a waveform shaping circuit is inputted to one input terminal of the device, and an output signal of a voltage controlled oscillator is inputted to the other input terminal of the device. 2. In a control device for a resistance welding machine that controls the effective value of the supply voltage using a phase control element, a waveform shaping circuit that generates a signal with a phase corresponding to the phase of the input terminal voltage of the welding machine;
A phase comparator that has two input terminals and outputs a voltage corresponding to the phase difference of the signals input to each input terminal, and outputs the sum of the output voltage of the phase comparator and an arbitrarily adjustable reference voltage. an integrator that integrates the output voltage of the adder; a voltage controlled oscillator that generates a signal with a frequency corresponding to the output voltage of the integrator; It includes a trigger pulse generator that generates a pulse to control conduction of the phase control element, and a switching element that is connected between the adder and the integrator and transmits the output of the adder to the integrator only when welding current is stopped. A resistance welding machine control device, wherein an output signal of a waveform shaping circuit is input to one input terminal of the phase comparator, and an output signal of a voltage controlled oscillator is input to the other input terminal.
JP7134277A 1977-06-16 1977-06-16 Resistance welding machine control device Expired JPS601116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134277A JPS601116B2 (en) 1977-06-16 1977-06-16 Resistance welding machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134277A JPS601116B2 (en) 1977-06-16 1977-06-16 Resistance welding machine control device

Publications (2)

Publication Number Publication Date
JPS545841A JPS545841A (en) 1979-01-17
JPS601116B2 true JPS601116B2 (en) 1985-01-11

Family

ID=13457721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134277A Expired JPS601116B2 (en) 1977-06-16 1977-06-16 Resistance welding machine control device

Country Status (1)

Country Link
JP (1) JPS601116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510798B2 (en) * 1974-05-08 1980-03-19

Also Published As

Publication number Publication date
JPS545841A (en) 1979-01-17

Similar Documents

Publication Publication Date Title
US6011235A (en) Method and apparatus for controlling resistance welding
US4076974A (en) Current control device and method
US3826890A (en) Welding system controller
US3588465A (en) Line voltage compensating pulsed power welding supply
JPS649114B2 (en)
JPS601116B2 (en) Resistance welding machine control device
US3588466A (en) Pulsed power welding system with suppressed pulse start
US4415793A (en) Welder for continuous resistance flash-butt welding
US3832518A (en) Welding control apparatus
US4228383A (en) Speed control circuit arrangement for an AC commutator motor
US3254194A (en) Welder
US3711058A (en) Apparatus for inductor current control in electric arc welding
US3694615A (en) Welding control system
US2173921A (en) Welding timer
JPS60231573A (en) Arc starting device of welding machine
US3008036A (en) Initiating and stabilizing welding arcs
US3588435A (en) Solid-state heat control and initiating circuit for a resistance welder control
US2721306A (en) Synchronous timing control for electric resistance welding apparatus
SU433980A1 (en) METHOD OF ELECTRIC ARC WELDING BY FLOATING ELECTRODE
JPH03210969A (en) Hot wire tig welding equipment
JPS6142679Y2 (en)
US2802168A (en) Circuit for electric welding machines
JPS6213737Y2 (en)
JPH0349808Y2 (en)
JPS637429Y2 (en)