JPS60111406A - On-load tap changing transformer - Google Patents

On-load tap changing transformer

Info

Publication number
JPS60111406A
JPS60111406A JP21860283A JP21860283A JPS60111406A JP S60111406 A JPS60111406 A JP S60111406A JP 21860283 A JP21860283 A JP 21860283A JP 21860283 A JP21860283 A JP 21860283A JP S60111406 A JPS60111406 A JP S60111406A
Authority
JP
Japan
Prior art keywords
winding
tap
blocks
tap winding
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21860283A
Other languages
Japanese (ja)
Inventor
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21860283A priority Critical patent/JPS60111406A/en
Publication of JPS60111406A publication Critical patent/JPS60111406A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent the generation of flashover without attaching a special device as well as to obtain an on-load tap changing transformer with which load loss can be reduced by a method wherein the potential difference generating between the contact points of a subchanger is made smaller. CONSTITUTION:The loose tap winding 8 wound around outside of a high tension main winding 3 and arranged on the upper and the lower sides in a shifting manner is arranged on the A and B blocks of 8A and 8B, and a close tap winding is arranged symmetrically on the A and B blocks of 9A and 9B in splitted form with the U- terminal of the center connecting point of a high tension main winding 3 as the center point. The upper and the lower blocks are connected in parallel and they are constituted in such a manner that they can be connected to an on-load tap changer 10. These upper and lower blocks are symmetrically formed with each other, and they are alternately arranged in such a manner that the positions of the split blocks 8A and 8B of the loose tap winding and the split blocks 9A and 9B of the close tap winding are transferred in vertical direction, and the split blocks 8A and 8B, and 9A and 9B are series-connected separately. Through these procedures, the potential Ex of the close tap winding 9 when a switching operation of the dislocation changer 10 is performed is reduced, and a high resistor and an electrostatic shielding used in the conventional device are unnecessitated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、副切換器付き負荷時タップ切換器を有する変
圧器巻線を改良した負荷時タップ切換変圧器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an on-load tap-changing transformer having an improved transformer winding having an on-load tap-changing device with a sub-switcher.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負荷時タップ切換変圧器において段絶縁の高圧巻線では
線路端子を巻線中央部から引出し、絶縁が低い中性点側
にタップ切換器を取付け、そのタップ点数を多くできる
極性切換方式が採用されている。その代表的な巻線構成
として第1図のものがある。
In the case of tap-changing transformers with stage insulation, the line terminals are pulled out from the center of the winding for high-voltage windings, and the tap changer is installed on the neutral point side where the insulation is low, thereby increasing the number of taps. ing. A typical winding configuration is shown in FIG.

第1図は、鉄心脚lに低圧巻線2を巻装し、その外側に
高圧主巻線3全巻装し、上下に分割されたタップ巻線4
を高圧主巻#J3の上下両端部側の外側に配置している
。高圧主巻線3は上下振分けで、その中央接続点を線路
端子Uに接続し、その上下両端部は接続され極性切換器
5によってタップ巻線4が直列に接続される。
Figure 1 shows a low-voltage winding 2 wound around an iron core leg l, a high-voltage main winding 3 completely wound around the outside of the core leg l, and a tap winding 4 divided into upper and lower parts.
are arranged on the outside of both the upper and lower ends of the high-voltage main winding #J3. The high-voltage main winding 3 is divided into upper and lower parts, and its center connection point is connected to the line terminal U, its upper and lower ends are connected, and the tap winding 4 is connected in series by a polarity switch 5.

このような巻線構成では、極性切換器5の切換動作の際
にタップ巻@4が高圧主巻線3から電気的に切り離され
、その時タップ巻線4は運転電位とは累なる電位をとる
ことになる。
In such a winding configuration, the tap winding @4 is electrically disconnected from the high-voltage main winding 3 during the switching operation of the polarity switch 5, and at that time the tap winding 4 assumes a potential that is different from the operating potential. It turns out.

タップ巻線4のとる電位は空間的に近接する巻線部分な
いしタンク壁との間の静電容量に関係するが、近接する
巻線部分との静電容量が大きいほど、その電位は近接す
る巻線部分の平均電位に近い値となる。
The potential of the tap winding 4 is related to the capacitance between the winding portions that are spatially close to each other or the tank wall, and the larger the capacitance with the adjacent winding portions, the closer the potentials are. The value is close to the average potential of the winding part.

第1図のような巻線配置では、高圧主巻線3とタップ巻
線4の間の静電容量がタップ巻線4とタンク壁との間の
静電容量(ニルべはるかに大きいので、タップ巻線4の
とる電位は、タップ巻線4に近接する巻線部分である高
圧主巻線3の平均電位に近い値となり、その値は太きい
In the winding arrangement shown in Figure 1, the capacitance between the high voltage main winding 3 and the tap winding 4 is much larger than the capacitance between the tap winding 4 and the tank wall (Nirube). The potential of the tap winding 4 is close to the average potential of the high-voltage main winding 3, which is a winding portion close to the tap winding 4, and is large.

その結果、極性切換器5の切換動作の際、切離されたり
、接近される極性切換器5の接点間(P。
As a result, during the switching operation of the polarity switch 5, the contacts (P) of the polarity switch 5 are separated or approached.

とP、間あるいはP、と21間)に望ましくない閃絡を
ひき起工こと(二なる。この望ましくない閃絡が発生す
ると高圧巻線(二は異常市、圧が発生し、巻線の絶縁破
壊や切換器接点の損傷を招くこと(二なる。
and P, or between P and 21 (2). When this undesirable flash occurs, the high voltage winding (2 is an abnormal circuit), pressure is generated and the insulation of the winding is damaged. This may lead to destruction or damage to the switch contacts (Second).

このような事態を回避するため(:、第1図(二示すよ
う(二極性切換器5の可動接点pcとタップ巻線4の中
央であるタップ接点T3との間(二電位制御用の高抵抗
器6を取付ける必要がある。
In order to avoid such a situation, as shown in Figure 1 (2), there is a It is necessary to install resistor 6.

しかしながら、必要とされる電位制御用高抵抗器6は容
量的に巻線の足格電圧のみならず、苛酷な試験電圧(二
耐え、又雷インパルス電圧にも耐えるものでなければな
らがいので、きわめて高価なものとなり、そしてその高
抵抗器6を収容するためにタンクが大きくなり変圧器の
外形寸法が犬となり重量も重くなる欠点がある。
However, the required high potential control resistor 6 must be capable of withstanding not only the voltage required for the windings but also severe test voltages and lightning impulse voltages. It is extremely expensive, and has the disadvantage that the tank becomes large to accommodate the high resistor 6, the external dimensions of the transformer become large, and the weight becomes heavy.

高抵抗器6の代わり(二、第1図の点線に示すように高
圧主巻線3とタップ巻線4との間に、その一端を可動接
点pot二接続した静電シールド7を取付けて、高圧主
巻線3からの電位を静電じゃへい効果により、なく丁よ
うにした手段もある。
Instead of the high resistor 6 (2. As shown by the dotted line in Figure 1, an electrostatic shield 7 with one end connected to the movable contact pot 2 is installed between the high voltage main winding 3 and the tap winding 4, There is also a method in which the potential from the high-voltage main winding 3 is reduced by an electrostatic blocking effect.

しかしこの手段も、端末部の絶縁構造が複雛となり高価
である静電シールド7を必要とするほか、第1図に示す
ように高圧主巻線3とタップ巻線4との間の寸法Gが大
きくなり、その分タップ巻線4の外径寸法が大きくなる
ため発生損失が増大し、変圧器の性能が悪くなると共(
1272寸法も大きくなり変圧器の外形寸法、重量が増
大する欠点がある。
However, this method also requires an expensive electrostatic shield 7 because the insulation structure at the terminal part is complex, and the dimension G between the high-voltage main winding 3 and the tap winding 4 is increases, and the outer diameter of the tap winding 4 increases accordingly, resulting in increased loss and poor transformer performance.
The 1272 size also increases, resulting in an increase in the external dimensions and weight of the transformer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は副切換器の接点間に発生する電位差をよ
り小さくシ、特殊な装置を取付けなくても、閃絡が発生
しないようにすると共(二負荷損の減少がはかれる負荷
時タップ切換変圧器を提供すること(二ある。
The purpose of the present invention is to reduce the potential difference generated between the contacts of the sub-switcher, to prevent flashovers from occurring without installing special equipment, and to provide tap switching during load that reduces double-load loss. Providing a transformer (there are two).

〔発明の概要〕[Summary of the invention]

副切換器の使用方法(=は前述の極性切換器としてのほ
かに転位切換器とする方法もあり、その巻線構成と接続
は第2図に示す通りである。
In addition to using the sub-switcher as a polarity switch as described above, there is also a method of using the sub-switcher as a shift switch, and its winding configuration and connections are as shown in FIG.

すなわちタップ巻線4の代わvロ粗タップ巻線8と密タ
ツプ巻線9を設ける。粗タツプ巻線8(二ついては常に
高圧主巻線30接続されているからその電位は運転電位
であり差は生じない。しかし密タツプ巻線9は転位切換
器lOの切換動作の際C:運転電位とは異なる電位(以
下の説明を簡単にするためC:この電位fixで表示す
る)をとることになる。
That is, instead of the tap winding 4, a coarse tap winding 8 and a fine tap winding 9 are provided. The coarse tap winding 8 (the two are always connected to the high voltage main winding 30, so their potential is the operating potential and no difference occurs.However, the fine tap winding 9 is connected to the high voltage main winding 30 at all times, so no difference occurs. It takes a potential different from the potential (to simplify the explanation below, it will be expressed as C: this potential fix).

本発明はこの転位切換器10を使用する方法で粗タツプ
巻線8と密タツプ巻線9會適切な、ある配置とすること
により電位Exを小さくするようにし、従来のように高
抵抗器や静電シールドを設けなくてもよしとすると共に
最低タップ時の負荷損金低減できるよう(ニしたもので
ある。
The present invention uses a method of using this transposition switch 10 to reduce the potential Ex by appropriately arranging the coarse tap winding 8 and the fine tap winding 9. This eliminates the need for an electrostatic shield and reduces load loss at the lowest tap.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を従来と同一部分(=は同一符号
で示す第3図(二より説明する。高圧主巻線3の外側に
巻装され、上下両端側にずれて配置された粗タツプ巻線
8’iA、Hのブロック8A、8Bに、密タツプ巻線9
もA、Hのブロック9A、 9Bに各々分割して高圧主
巻線3の中央接続点U端子を中心として上下対称(二各
ブロックを後述するような配置とし、上下各ブロックを
並列(二接続し負荷時タップ切換器(=接続できるよう
(=構成する。
An embodiment of the present invention will be explained below from FIG. Tap windings 8'iA, H block 8A, 8B, close tap winding 9
The upper and lower blocks are each divided into blocks 9A and 9B of A and H, and the upper and lower blocks are arranged vertically symmetrically around the center connection point U terminal of the high-voltage main winding 3. and on-load tap changer (=configured so that it can be connected).

これらの各ブロックは第3図(二示すよう(二上下対称
であり粗タツプ巻線の分割ブロック8A、8Bと密タツ
プ巻線の分割ブロック9A、9Bが上下方向で大組する
よう(二交互配置とし、分割ブロック8Aと8Bおよび
9Aと9Bi各々別々(:直列(二接続する。
Each of these blocks is vertically symmetrical as shown in FIG. The divided blocks 8A and 8B and 9A and 9Bi are arranged separately (: in series (two connected).

このように粗タツプ巻線8と密タツプ巻線9を分割し接
続してもタップ切換(二よる電圧調整にはなんらの変更
がないが、前述の電位Exけ大幅に小さくなるので次に
それを説明する。
Even if the coarse tap winding 8 and the fine tap winding 9 are divided and connected in this way, there will be no change in the voltage adjustment due to tap switching (although there will be no change in the voltage adjustment due to the two, the potential Ex mentioned above will be significantly smaller, so Explain.

転位切換器IOの切換動作は中性点端子0がタップ接点
ToすなわちP、に接続されている状態であるから、こ
の際に密タツプ巻線9の軸方端子P。が、高圧主巻線3
と粗タツプ巻線8との接続点P2から、あるいは粗タツ
プ巻線8の軸方端子P1から電気的に切り離され、その
時密タツプ巻線9は運転電位とは異なる電位Bx fと
ることになる。
The switching operation of the transposition switch IO is such that the neutral point terminal 0 is connected to the tap contact To, that is, P, so at this time, the axial terminal P of the close tap winding 9 is connected. However, the high voltage main winding 3
and the coarse tap winding 8, or from the axial terminal P1 of the coarse tap winding 8, and at that time the fine tap winding 9 assumes a potential Bxf different from the operating potential. .

この場合中性点端子0の電位は零であるから、タップ接
点10丁なわち端子Plの電位も零である。
In this case, since the potential of the neutral point terminal 0 is zero, the potential of the ten tap contacts, that is, the terminal Pl, is also zero.

故に第2図(二示すよう(二相タップ巻線8の平均電位
E8は小さく、高圧主巻線3の密タッグ巻線9(=近接
する巻線部分の平均電位らは大きくなっていることがわ
かる。
Therefore, as shown in FIG. I understand.

次C二第3図でわかるようC二分割ブロック9Aは分割
ブロック8A、8B l二はさまれるので、分割ブロッ
ク9Aと分割ブロック8A、8Bとの間の静電容量は分
割ブロック9Aと高圧主巻線3の近接する巻線部分との
間の静電容量(1比べ大きな値となる。
As shown in Figure 3, the C2 divided block 9A is sandwiched between the divided blocks 8A and 8B, so the capacitance between the divided block 9A and the divided blocks 8A and 8B is the same as that of the divided block 9A and the high voltage main The capacitance between the winding wire 3 and the adjacent winding portion (the value is larger than 1).

分割ブロック9Bは分割ブロック8Bl二接して配置さ
れるのでその間の静電容量は分割ブロック9Bと高圧主
巻線3の近接する巻線部分との間の静電容量(−比べ大
きな値となる。
Since the divided block 9B is placed in contact with the divided block 8Bl, the capacitance therebetween is larger than the capacitance (-) between the divided block 9B and the adjacent winding portion of the high voltage main winding 3.

このような関係から電位Exの太きなはその値が小さい
電位E8の影響が大きくなり、その値が大きい電位E3
の影響は小さくなり結局電位Exは小さい値となる。ち
なみ(二従来の第1図ではその値の大きい電位E3のみ
(−関係するので、タッグ巻線4の電位は電位E3に近
い値であり大きくなっているから、本発明の第2図の方
がはるが(−小さい値であることがわかる。
From this relationship, the thicker the potential Ex, the greater the influence of the potential E8, which has a smaller value, and the greater the influence of the potential E3, which has a larger value.
The influence of this becomes small, and the potential Ex eventually becomes a small value. By the way, in the conventional figure 1, only the potential E3, which has a large value, is related (-), so the potential of the tag winding 4 is close to the potential E3 and is large, so the figure 2 of the present invention has a large value. It can be seen that the value is (−) small.

本発明は以上実施例(二よって説明したように、電位E
xが従来のもの(1比べはるかに小さい値となるため、
電位切換器10の作動の際、切り離されたり接近する接
点間(Poと21間あるいはPoとP。
As explained in the above embodiments (2), the present invention has a potential E
Since x is a much smaller value than the conventional one (1),
When the potential switch 10 is activated, the contacts that are disconnected or approached (between Po and 21 or between Po and P).

間)には望ましくない閃絡は発生しないことになる。ゆ
えに閃絡防止用の高抵抗器6あるいは静電シールド7は
不要となり従来の欠点であった前述の諸事項は全て解消
されることになる。
(between), undesirable flashover will not occur. Therefore, the high resistor 6 or the electrostatic shield 7 for preventing flash-flash is unnecessary, and all of the above-mentioned drawbacks of the prior art are eliminated.

そして又、高圧巻線の電圧が最低の場合、すなわち損失
が最大となる最低タップ時の負荷損が従来(二較べはる
かに小さくなるので冷却装置がその分だけ小形化でき、
変圧器の能率の向上とも役立つことになる。最低タップ
時の負荷損については第1図の従来の極性切換器付きの
場合にはpoとP!。
Furthermore, when the voltage of the high-voltage winding is the lowest, that is, the load loss at the lowest tap where the loss is maximum is much smaller than in the conventional case (2), so the cooling device can be made smaller by that amount.
It will also help improve the efficiency of transformers. Regarding the load loss at the lowest tap, in the case of the conventional polarity switch shown in Figure 1, po and P! .

0とTIの各接点が各々接続され、負荷電流は高圧主巻
線3とタップ巻線4の大部分であるP2からT5までの
間に流れるので、電流の流れる巻線の巻回数の和が多く
なり、抵抗損が大きくなる。そしてそのタップ巻線4に
より発生する漏れ磁束(二より生ずる漂遊損も太きい。
The 0 and TI contacts are connected respectively, and the load current flows between the high voltage main winding 3 and the majority of the tap winding 4, from P2 to T5, so the sum of the number of turns of the windings through which the current flows is This increases the resistance loss. The leakage flux generated by the tap winding 4 (the stray loss caused by the leakage flux is also large).

転位切換器付きの場合(二はpoとP!、0とTsの各
接点が各々接続され、負荷電流が高圧主巻線3(=流れ
ることは極性切換器付の場合と同じであるが、粗タツプ
巻線8には電流が全熱流れないこと、密タツプ巻線9で
はPoとT@間のlタラプ分のみ(=電流が流れ、他の
部分子lからTsの間には流れないから、電流の流れる
巻線の巻回数の和が少なくてすみ抵抗損が小さくなる。
In the case with a transposition switch (2, po and P!, 0 and Ts contacts are connected respectively, and the load current flows through the high voltage main winding 3 (= the same as in the case with a polarity switch), Current does not flow in the coarse tap winding 8, and in the fine tap winding 9, only the l tap between Po and T@ flows (= current flows, but does not flow in the other parts between l and Ts. Therefore, the sum of the number of turns of the winding through which current flows is small, and resistance loss is reduced.

そして粗タツプ巻線8ルらは漏れ磁束は発生しないこと
、密タッグ巻線9により発生する漏れ磁束も少なくなる
ことがら漂遊損も小さくなる。
Since no leakage flux is generated by the coarse tap windings 8 and less leakage flux is generated by the close tap windings 9, stray loss is also reduced.

第3図においては粗、密タツプ巻線8,9を各々4分割
にした場合C二ついて示しているが、必要(一応じて6
分割以上の偶数個(二分割してもよい。
In Fig. 3, when the coarse and fine tap windings 8 and 9 are each divided into four parts, two Cs are shown.
Even number of parts (may be divided into two).

分割数を多くすればするほど粗タツプ巻線8と密タツプ
巻線9との間の静電容量が大きくなり、電圧Exは粗タ
ツプ巻線8の平均電位均の影響がより大きくなり、その
結果として電位Exはより小さい値となる。
As the number of divisions increases, the capacitance between the coarse tap winding 8 and the fine tap winding 9 increases, and the voltage Ex is influenced more by the average potential of the coarse tap winding 8. As a result, the potential Ex becomes a smaller value.

第2図と第3図では粗タツプ巻線8が1個である1段式
の転位切換方式であるが、タップ点数が多くとれる方式
である粗タツプ巻線8が2個以上からなる多段式の転位
切換方式にも採用できる。
Figures 2 and 3 show a single-stage transposition switching system with one coarse tap winding 8, but a multi-stage type with two or more coarse tap windings 8, which allows for a large number of tap points. It can also be used in the transposition switching method.

第3図では粗タツプ巻線8と密タツプ巻線9の上千分と
下半分とを各々並列(二接続し1台の負荷時タップ切挾
器を使うことにしているが、上・下別々の回路(−し1
回路(二1台の計2台の負荷時タップ切換器を使うよう
にすれば大電流変圧器(二も適用できる。
In Figure 3, the upper half and lower half of the coarse tap winding 8 and the fine tap winding 9 are connected in parallel (two connections are made and one load tap cutter is used, but the upper and lower halves are connected in parallel). Separate circuits (-1
If a total of two on-load tap changers (21) are used, a large current transformer (2) can also be applied.

また低圧巻線2を上下(:分割し別々の回路C二接続し
使用されるスプリット巻線変圧器にも適用でき、低圧巻
線2と高圧主巻線3との間に中圧巻線を配置する三巻線
変圧器にも適用できる。
It can also be applied to a split-winding transformer in which the low-voltage winding 2 is divided into upper and lower parts (: divided into two separate circuits C) and used, and a medium-voltage winding is placed between the low-voltage winding 2 and the high-voltage main winding 3. It can also be applied to three-winding transformers.

そして、適用例の多い段絶縁の星形結線変圧器で記述し
てきたが、段絶縁でない星形結線あるいは三角形結線の
変圧器にも同様に適用できる。
Although the description has been made for a stage-insulated star-connected transformer, which has many applications, it can also be applied to star-connected or triangularly connected transformers that are not stage-insulated.

〔発明の効果〕〔Effect of the invention〕

以上記述したよう;二本発明の構造(=すれば、高価で
その取付スペース會必要とする高抵抗器あるいは静電シ
ールド全不要とする簡単な構造どなるので信頼性が高く
なり小形軽量化および価格低減化が可能となり、さらに
最低タップ時1:おける負荷損が減少でき省エネルギー
の観点からも優れた負荷時タップ切換変圧器を提供する
ことができる。
As described above, the structure of the present invention (i.e., a simple structure that eliminates the need for an expensive high-resistance device that requires mounting space or an electrostatic shield at all) is highly reliable, compact, lightweight, and inexpensive. Furthermore, it is possible to provide an on-load tap changeover transformer that can reduce the load loss at the lowest tap time 1: and is also excellent from the viewpoint of energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の負荷時タップ切換変圧器の巻線配置とそ
の接続を示す結線図、第2図は転位切換方式の負荷時タ
ップ切換変圧器におけるタップ巻線の接続と電位差を示
す結線図、第3図は本発明の負荷時タップ切換変圧器の
一実施例である巻線配置とその接続を示す結線図である
。 ■・・・鉄心脚 2・・・低圧巻線 3・・・高圧主巻線 4・・・タップ巻線5・・・極性
切換器 6・・・高抵抗器7・・・静電シールド 8・
・・粗タツプ巻線8A、8B・・・粗タツプ巻線の分割
A、Bブロック9・・・密タツプ巻線 9A、9B・・・臂タップ巻線の分割A、Bブロック1
0・・・転位切換器 E、、、E、、・・・電位差 代理人 弁理士 則 近 憲 佑 (ほか1名)) 0 ・ ・ ・ 医 N 法
Figure 1 is a wiring diagram showing the winding arrangement and connections of a conventional on-load tap-changing transformer, and Figure 2 is a wiring diagram showing tap winding connections and potential differences in a transposition switching type on-load tap-changing transformer. , FIG. 3 is a wiring diagram showing the winding arrangement and connections thereof in one embodiment of the on-load tap-changing transformer of the present invention. ■... Iron core leg 2... Low voltage winding 3... High voltage main winding 4... Tap winding 5... Polarity switch 6... High resistor 7... Electrostatic shield 8・
...Coarse tap windings 8A, 8B... Division A, B blocks of coarse tap windings 9... Fine tap windings 9A, 9B... Division A, B blocks 1 of arm tap windings.
0 ... Transposition switch E, ... E, ... Potential difference agent Patent attorney Noriyuki Chika (and 1 other person)) 0 ・ ・ ・ Medical N Law

Claims (1)

【特許請求の範囲】[Claims] 鉄心脚に内側から低圧巻線、高圧主巻線、および粗タツ
プ巻線と密タツプ巻線から成る高圧タップ巻線とを巻装
し、前記高圧主巻線は上、下振分けで巻回し、その中央
接続点を線路端子に接続し、その上、下端部全前記粗タ
ップ巻線に直列に接続し、前記密タツプ巻線は転位切換
器を介して粗タツプ巻線もしくは高圧主巻線に直列に接
続した負荷時タップ切換変圧器において、粗タツプ巻線
と密タツプ巻線とを各々偶数個のブロック;:分割し、
粗タツプ巻線ブロックと密タツプ巻線ブロックとが上、
下方向に交互配置となるようにしたことをlf!jgL
とする負荷時タップ切換変圧器。
A low voltage winding, a high voltage main winding, and a high voltage tap winding consisting of a coarse tap winding and a fine tap winding are wound around the iron core leg from the inside, and the high voltage main winding is wound in upper and lower distribution, Its central connection point is connected to the line terminal, and its lower end is connected in series to the coarse tap winding, and the fine tap winding is connected to the coarse tap winding or the high voltage main winding via a shift switch. In an on-load tap-changing transformer connected in series, the coarse tap winding and the fine tap winding are each divided into an even number of blocks;
The coarse tap winding block and the fine tap winding block are on the top,
lf! I made it so that it was arranged alternately downward! jgL
on-load tap-changing transformer.
JP21860283A 1983-11-22 1983-11-22 On-load tap changing transformer Pending JPS60111406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21860283A JPS60111406A (en) 1983-11-22 1983-11-22 On-load tap changing transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21860283A JPS60111406A (en) 1983-11-22 1983-11-22 On-load tap changing transformer

Publications (1)

Publication Number Publication Date
JPS60111406A true JPS60111406A (en) 1985-06-17

Family

ID=16722525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21860283A Pending JPS60111406A (en) 1983-11-22 1983-11-22 On-load tap changing transformer

Country Status (1)

Country Link
JP (1) JPS60111406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158353A (en) * 2016-08-25 2016-11-23 宁波奥克斯高科技有限公司 A kind of winding method of high-tension coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648116A (en) * 1979-09-27 1981-05-01 Toshiba Corp On-load tap changer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648116A (en) * 1979-09-27 1981-05-01 Toshiba Corp On-load tap changer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158353A (en) * 2016-08-25 2016-11-23 宁波奥克斯高科技有限公司 A kind of winding method of high-tension coil

Similar Documents

Publication Publication Date Title
KR20130100905A (en) On-load tap changer
US4247841A (en) Three winding transformer
JPS60111406A (en) On-load tap changing transformer
US3792395A (en) Electrical inductive apparatus having sheet and strap wound windings
EP0114648B1 (en) Onload tap-changing transformer
US4471334A (en) On-load tap-changing transformer
JP3348478B2 (en) Stationary induction device with tap changer
US3271659A (en) Tap changing autotransformer
US1804614A (en) Tap changing system
JPS5846047B2 (en) On-load tap switching autotransformer
JPS586290B2 (en) On-load tap-changing transformer
JP3663249B2 (en) Neutral point grounding reactor device
JP3556817B2 (en) Tap-switching autotransformer under load
JPS6228736Y2 (en)
JPS6037706A (en) Transformer with no-voltage tap changer
JP2019192843A (en) Furnace transformer
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
JPS6159651B2 (en)
JPH0452602B2 (en)
JPS63168012A (en) Method for changing number of turns of shunt reactor
JPS60170912A (en) Transformer with non-voltage tap changer
JPH01122110A (en) Single-phase single layer winding autotransformer
JPS5924529B2 (en) autotransformer
JPS5976407A (en) Voltage regulating transformer
JPS6259529B2 (en)