JPS60110539A - Electricity feeding device of dc electric railway - Google Patents

Electricity feeding device of dc electric railway

Info

Publication number
JPS60110539A
JPS60110539A JP21979683A JP21979683A JPS60110539A JP S60110539 A JPS60110539 A JP S60110539A JP 21979683 A JP21979683 A JP 21979683A JP 21979683 A JP21979683 A JP 21979683A JP S60110539 A JPS60110539 A JP S60110539A
Authority
JP
Japan
Prior art keywords
power
thyristor
regenerative
power converter
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21979683A
Other languages
Japanese (ja)
Inventor
Hiroyasu Sato
佐藤 宏保
Makio Saito
斎藤 万亀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP21979683A priority Critical patent/JPS60110539A/en
Publication of JPS60110539A publication Critical patent/JPS60110539A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power

Abstract

PURPOSE:To smoothly switch the power running/regenerative running by inserting a regenerative thyristor breaker in a DC positive electrode bus line and inserting a breaker for cutting off a DC current flowing into the reverse power converter side. CONSTITUTION:During the power running of a car 11, the current feeding system of a DC electric railway feeds the power running powr through a forward power converter 1 power running thyristor breaker 43 a disconnecting switch 53 a current feeder 61 the car 11 a rail 71 a negative electrode bus line 10. During the degenerative running, the regenerative power from the car 11 flows to the commercial-power supply bus line side through the car 11 the current feeder 61 the disconnecting switch 53 a diode 82 a degenerative thyristor breaker 9 a reverse power converter 2. In this case, the regenerative thyristor breaker is inserted in a DC positive electrode bus line 3 connected with the anode sides of power running thyristor breakers 41-44, and a DC high-speed breaker 13 is inserted in the DC bus line side of the reverse power converter 2 respectively.

Description

【発明の詳細な説明】 本発明は半導体開閉装置を主体とした直流式電気鉄道の
給電装置に係シ、特に事故時の保護協調をとシ易く、か
つカ行運転よル回生運転への移行がスムーズに行なえる
給電装置を提供しようとするものである。
[Detailed Description of the Invention] The present invention relates to a power supply device for a DC electric railway mainly based on semiconductor switchgear, which facilitates protection coordination in the event of an accident, and facilitates the transition from continuous operation to regenerative operation. The aim is to provide a power supply device that can perform this smoothly.

直流饋電系に於ては、半導体開閉装置を用いたアークレ
ス方式の饋電システムが主流をなしつつある。かかる饋
電システムの代表的なものを示したのが第1図で、同図
でlidサイリスタを純ブリツジ接続して構成され交流
入力電力を直流電力にR換fるサイリスタ整流器%或い
8けダイオ−トラブリッジ接続したシリコン整流器等の
1@電力変換装置で、2け車両よシの回生電力を交流電
力に逆変換する逆電力変換装置で、3Fi直流正極母線
、41〜44は各直流電路に挿入したカ行用サイリスタ
遮断器で、これら遮断器は5図示を省略したが例えば主
サイリスタと、この主サイリスタに並列接続され転流コ
ンデンサー転流リアクトル−補助サイリスタよりなる強
制消弧回路と、転流コンデンサに所望の充電電荷を充電
する充電回路等で構成される。51〜54は断路器、6
1〜62は鎖車綜、71〜7!は軌条、81〜84は回
生電力を直流正極母線3側へ導び〈為の回生用ダイオー
ド、9け回生電力等を遮断する回生用サイリスク遮断器
、10は各軌条とJ@電力変換装置の負極側母線とを接
続する負極母線である。
In DC power supply systems, arcless power supply systems using semiconductor switchgears are becoming mainstream. A typical example of such a power supply system is shown in Figure 1, which shows a thyristor rectifier or 8-digit thyristor rectifier that is configured by connecting lid thyristors in a pure bridge and converts AC input power into DC power. This is an inverse power conversion device that reversely converts the regenerated power of a 2-car vehicle into AC power using a 1@power conversion device such as a silicon rectifier connected with a diode bridge. 3Fi DC positive electrode bus, 41 to 44 are each DC power line. These circuit breakers include a main thyristor, a forced arc-extinguishing circuit connected in parallel to the main thyristor, and consisting of a commutating capacitor, a commutating reactor, and an auxiliary thyristor. It consists of a charging circuit etc. that charges a commutating capacitor with a desired charge. 51 to 54 are disconnectors, 6
1-62 are chain wheels, 71-7! are rails, 81 to 84 are regenerative diodes for guiding regenerative power to the DC positive bus 3 side, 9 are regenerative circuit breakers for cutting off regenerative power, etc., and 10 are each rail and J@power converter. This is a negative electrode bus that connects to the negative electrode side bus.

以上のように構成される鎖車システムで車両11がカ行
運転時にある場合は、順電力変換装置1→直流正極母線
3→力行用サイリスタ遮断器43→断路器53→き電線
61→車両11→軌条71→負極母線10の経路で所望
のカ行パワーが供給される。これに対して車両11が回
生運転時にある場合は、逆電力変換装置2の素子群にゲ
ート信号を与えてオンし順電力変換装置lをゲートブロ
ックする。しかして、車両よシの回生パワーは車両11
→き電線61→断路器53→ダイオ一ド824回生用サ
イリスタ遮断器9→逆電力変換装置2の経路で流れ、商
用電源母線側へ回生されると共に、車両11→き電線6
1→断路器53→ダイオード82→サイ゛リスタ遮断器
9→直(Af、正極母線3→力行用サイリスク遮断器4
1 (又は44)→断路器51 (又は54 )→き電
線62の経路で、図示しないカ行車両にカ行パワーとし
て供給される。かかる回生時に図示の点で地絡事故が生
じ/ζような場合、車両11→き電線61→断路器53
→ダイオ一ド82→回生用サイリスク遮断器9→直流正
極母線3→力行用サイリスク遮断器44→断路器54→
き電線62→事故点■の経路で流れる事故電流は、回生
用サイリスタ遮断器9を強制消弧することによって遮断
し、又、順電力変換装置より流入する事故電流はカ行用
サイリスタ遮断器44で遮断する。これら事故電流が略
零になった時点で、断路器54を開極して事故回線のみ
を遮断する。
When the vehicle 11 is in power mode in the chain wheel system configured as described above, the sequence is forward power converter 1 → DC positive bus 3 → power running thyristor circuit breaker 43 → disconnector 53 → feeder line 61 → vehicle 11 A desired power is supplied through the path of →rail 71→negative bus bar 10. On the other hand, when the vehicle 11 is in regenerative operation, a gate signal is applied to the element group of the inverse power converter 2 to turn it on, thereby gate blocking the forward power converter 1. However, the regenerative power of the vehicle is 11
→ Feeder line 61 → Disconnector 53 → Diode 824 Regeneration thyristor circuit breaker 9 → Reverse power converter 2 The flow is routed to the commercial power bus, and the vehicle 11 → Feeder line 6
1 → Disconnector 53 → Diode 82 → Cyristor circuit breaker 9 → Straight (Af, positive electrode bus 3 → Cyristor circuit breaker for power running 4
1 (or 44)→disconnector 51 (or 54)→feeder line 62, the power is supplied to a vehicle (not shown) as power. If a ground fault occurs at the point shown in the figure during such regeneration, the vehicle 11→feeder line 61→disconnector 53
→ Diode 82 → Regeneration circuit breaker 9 → DC positive electrode bus 3 → Power running circuit breaker 44 → Disconnector 54 →
The fault current flowing in the path from the feeder line 62 to the fault point ■ is interrupted by forcibly extinguishing the regenerative thyristor circuit breaker 9, and the fault current flowing from the forward power converter is interrupted by the forwarding thyristor circuit breaker 44. Block it with. When these fault currents become approximately zero, the disconnector 54 is opened to cut off only the fault line.

このように第1図の従来装置では、定常時及びき電線側
の地絡事故時に於て何ら問題はないが、例えば回生時に
逆電力変換装置2が電源側電圧の変動等で転流失敗した
場合、事故インノく一夕には順電力変換装R1→直流正
極母線3、及び順電力変換装置l→直流正極母線3→各
カ行用サイリスク巡断器41〜44→各回生用ダイオー
ド81〜84→回生用サイリスタ遮断器−9の経路を通
して電源側よりの事故電流が、さらには車両よりの回生
電力と隣接する変電所よシの廻シ込み電力とがそれぞれ
流入する。これら事故電流で回生用サイリスク遮断器9
を通して流入する事故電流は遮断器9で遮断できるが、
順電力変換装置1よシ直接流入する事故電流は、順電力
変換装置1をゲートシフト又はゲートブロックして限流
し、電源側インダクタンスの蓄積エネルギーを遮断する
までの期間流れ続けることになる。この事故電流は立上
シが非常に急峻で大勢力であるので順−逆電力変換装置
の素子群が永久破壊するという重大事故て発展する場合
がある。さらに問題となるのは、カ行運転ニジ回生運転
に移行する場合、逆電力変換装置2が動作する回生設定
電圧値を順電力変換装R1の無負荷直流電圧値よシ若干
高くして設定しであるので、逆電力変換装置の開始動作
が遅れると鎖車線電圧は異常に上昇し、変電所の機器お
よび車両側の機器に脅威となる。従って、逆電力変換装
置の動作遅れに起因する鎖車線電圧の異常上昇に際して
は、車両側で回生制動より空気ttflJ ijI、又
は発電制動に切換えて対処しなければカら々いが、この
制動法切換えは、回生失効を意味し省エネルギーの鎖車
システムという時流に逆行ツーるもので望ましいもので
はない。
In this way, with the conventional device shown in Figure 1, there is no problem in steady state or in the event of a ground fault on the feeder line side, but for example, during regeneration, the reverse power converter 2 may fail in commutation due to fluctuations in the voltage on the power supply side. In the event of an accident, the forward power converter R1 → DC positive bus 3, and the forward power converter l → DC positive bus 3 → each line circuit circulator 41 to 44 → each regeneration diode 81 to The fault current from the power supply side, furthermore, the regenerative power from the vehicle and the incoming power from the adjacent substation flow through the path of 84→regenerative thyristor circuit breaker-9. These fault currents will cause regeneration of the circuit breaker 9.
The fault current flowing through can be interrupted by circuit breaker 9,
The fault current flowing directly through the forward power converter 1 continues to flow until the forward power converter 1 is gate shifted or gate blocked to limit the flow and cut off the energy stored in the power source inductance. Since this fault current has a very steep rise and a large force, it may develop into a serious accident that permanently destroys the elements of the forward-reverse power converter. A further problem is that when shifting to regenerative operation, the regeneration setting voltage value at which the reverse power converter 2 operates must be set slightly higher than the no-load DC voltage value of the forward power converter R1. Therefore, if the start operation of the inverse power converter is delayed, the closed-lane voltage will rise abnormally, posing a threat to equipment at the substation and equipment on the vehicle side. Therefore, in the event of an abnormal increase in the voltage of closed lanes caused by a delay in the operation of the inverse power converter, it would be difficult if the vehicle side had to switch from regenerative braking to air ttflJ ijI or dynamic braking to deal with it, but this braking method Switching means deactivation of regeneration and goes against the trend of energy-saving chain wheel systems, which is not desirable.

本発明はこの点に鑑みて発明されたもので、直流正極母
線と逆電力変換装置+MJにJ流部速度遮断器又は半導
体遮断器を挿入し、この遮断器と各カ行用サイリスタ遮
断器のアノード側共通接続点とを接続する直流正極母線
に回生用サイリスタ遮断器を挿入して、事故時の保護協
調をとるようにしたもので以下第2図に示す実力m例に
基づき詳述する。
The present invention was invented in view of this point, and a J flow speed circuit breaker or a semiconductor circuit breaker is inserted into the DC positive electrode bus and the reverse power converter + MJ, and this circuit breaker and each row thyristor circuit breaker are connected to each other. A regenerative thyristor circuit breaker is inserted into the DC positive bus that connects the anode side common connection point to provide protection coordination in the event of an accident, and will be described in detail below based on an actual example shown in FIG.

第2図の実施例で第1図と同一のものは同一符号を角し
ておジ、12は各カ行用サイリスタ連断器41〜42の
アノード側が共通に接続される直流正極母線3に、図示
極性で挿入した回生用サイリスタ遮断器で、この遮断器
は第3図に示す如く主サイリスタ14と補助サイリスタ
15−転流リアクドル16−転流コンデンサ17の直列
回路と、主サイリスタ14に逆バイアス電圧を印加する
為の転(jlcダイオード”18と、図示充亀砥性と逆
極性の反転電荷を反転させる為の反転用サイリスタ19
と、図示けしなVhが転流コンデンサ17に図で示す極
性で電荷を充電する為の交R電源−整流回路−軍流抑制
用抵抗よ〃なる充電回路とで構成される。この回生用サ
イリスタ速1析器は定常時に導通状態にあって、事故時
に流入する接散電流(回生電力又はM多込み電力)を退
所する為に強制消弧される。13は逆電力変換装置2の
直流母線側に挿入した直流式高速度遮断器で、逆電力変
換装置の転流失敗時に流入する事故電流を遮断するもの
であって、直流式高速度遮断器の代わりにサイリスタ遮
断器を用いれば給電装置の完全なアークレスが図れる。
In the embodiment of FIG. 2, the same parts as in FIG. , a regenerative thyristor circuit breaker inserted with the polarity shown in the figure.This circuit breaker is connected to a series circuit of the main thyristor 14, the auxiliary thyristor 15, the commutating reactor 16, and the commutating capacitor 17, as shown in FIG. A thyristor (JLC diode) 18 for applying a bias voltage and an inverting thyristor 19 for inverting a reverse charge with a polarity opposite to that shown in the figure.
The Vh (not shown) is composed of an AC R power supply for charging the commutating capacitor 17 with the polarity shown in the figure, a rectifier circuit, and a charging circuit such as a current suppressing resistor. This regenerative thyristor speed 1 analyzer is in a conductive state during normal operation, and is forcibly extinguished in order to discharge the scattering current (regenerative power or M-containing power) that flows in at the time of an accident. Reference numeral 13 denotes a DC high-speed circuit breaker inserted into the DC bus side of the reverse power converter 2, which interrupts the fault current flowing in when the reverse power converter fails to commutate. If a thyristor circuit breaker is used instead, the power supply device can be completely arc-free.

。 以上のように構成される本発明の動作を述べるに、回生
時に逆′辺カ変換装R2を動作させる場合、第1図の従
来装置にあっては、逆電力変換装置2の動作開始電圧を
無負荷直流電圧より若干高めに設定していたが1本願で
は回生用サイリスタ遮断器12に図示するように直流正
極母線3に請1人したので、順寛カ変換装置lと逆電力
変換装置2との並列運転時に装置lより装置21!lI
へ流れ込むパワーは、12の回生用サイリスタ遮断器で
阻止するので、逆電力変換装e2のインバータ設定電圧
を無負荷直流電圧よシ低く設定でき、これによって逆電
力変換装置の動作開始が多少遅れた場合でも、き電線電
圧が無負荷直流電圧と同値又はそれ以下で動作を開始す
ることができ、回生失効となることは全くない。
. To describe the operation of the present invention configured as described above, when operating the reverse power converter R2 during regeneration, in the conventional device shown in FIG. Although it was set to be slightly higher than the no-load DC voltage, in this application, one person was connected to the DC positive bus 3 as shown in the regenerative thyristor circuit breaker 12, so the forward power converter l and the reverse power converter 2 During parallel operation, device 21! lI
Since the power flowing into the inverter is blocked by the regenerative thyristor circuit breaker 12, the inverter setting voltage of the reverse power converter e2 can be set lower than the no-load DC voltage, which causes a slight delay in the start of operation of the reverse power converter. Even in such cases, operation can be started when the feeder voltage is equal to or lower than the no-load DC voltage, and regeneration will never fail.

次に事故時の動作を述べるに、N生#に際して逆電力変
換装置2と願電力変換装置lとが並列運転時VC、商用
電源電圧波形が大きく歪んだ要因等によって逆電力変換
装置2が転流失敗した場合。
Next, to describe the operation at the time of an accident, when the reverse power converter 2 and the power converter l are operated in parallel, the reverse power converter 2 is switched due to factors such as VC and large distortion of the commercial power supply voltage waveform. If the flow fails.

本実施例によれば事故機へ直接流入しようとするJ@電
力変換装置lよシの事故電流は回生用サイリスタ遮断器
12で阻止され、又、車両11が回生運転時にあれば、
この回生車両よシ事故様に流入しようとする回生電力、
或いは図示変電所に隣接する変電所より事故機に流入し
ようとするM、!7込み電力はそれぞれ13の遮断器で
遮断する。このように、本実施例によれば逆電力変換装
置2が転流失敗した場合でも、事故機に流入しようとす
る想定され得る事故電流は全てMi断もしくU阻止され
、インバータ事故時であっても願電力変換装置lの動作
f:継続することができ、事故時の影響を最小限に抑え
られるという効ji¥:がある。さらに車両11が回生
時にき電線62側の図示0点で地絡事故を生じたよう々
場合、本実施例に於ては各直流電路に挿入した図示しな
い過電流継電器群で事故き電線に連なる直I&電路に挿
入した過電流継電器のみが動作して、この継電器の出力
信号を以って事故電路のカ行用サイリスタ遮断器44で
順電力変換装置1より流入する事故電流を遮断する。
According to this embodiment, the fault current from the J@power converter l that attempts to flow directly into the accident aircraft is blocked by the regenerative thyristor circuit breaker 12, and if the vehicle 11 is in regenerative operation,
The regenerative power that is about to flow into this regenerative vehicle and the accident,
Or M, which is trying to flow into the accident aircraft from a substation adjacent to the illustrated substation! Each of the 7 included power is cut off by 13 circuit breakers. In this way, according to this embodiment, even if the reverse power converter 2 fails to commutate, all the fault currents that could be expected to flow into the faulty aircraft are cut off by Mi or blocked by U, thereby preventing the inverter from failing in the event of a fault. This has the advantage that the operation of the power converter can be continued even when the power converter is in use, and the effects of an accident can be minimized. Furthermore, in the event that a ground fault occurs in the vehicle 11 at the zero point shown on the feeder line 62 side during regeneration, in this embodiment, a group of overcurrent relays (not shown) inserted into each DC line are connected to the faulty feeder line. Only the overcurrent relay inserted in the direct I/C line operates, and the output signal of this relay is used to interrupt the fault current flowing from the forward power converter 1 at the fault line thyristor breaker 44 of the fault line.

この動作と並行して前記過電流継電器の出力信号を以っ
て回生用サイリスタ遮断器12の第3図に示す補助サイ
リスタエ5を点弧する。しかしてり13図の転MCコ/
デノ?17Vc図示極性で充電しである充電電荷が、転
流コ/デン+17→主サイリスタ14→補助サイリスタ
15→転流リアクトル16の経路を通してデスチャージ
され、自由振動となった放電電流の値が主サイリスタ1
4を通して流れる事故電流(回生電力と廻ル込み電力と
全加え合せた値)を上刃った時点で、主サイリスタ14
は強制消弧さ九、その後、放r5電流は転流ダイオード
18→補助サイリスタ15→転IW、リアクトル16の
経路で流れると共に、流入する事故電流は補助サイリス
タ15→転流リアクトル16→転流コンデンサ17の経
路を通して流れ、転流コンデンサ17の逆充電は一層進
んで行く。転流コンデンサ17の逆充電電圧値(反転電
圧)が始定レベルに達した時点で補助サイリスタ15が
自然消弧して、回生電力等の事故電流が完全に遮断され
ることになる。なお反転した電荷は、転流コンデンサ1
7に並列接続した反転用サイリスタ19を点弧して再び
図示極性で反転させる。かかる回生電力等の遮断時に失
われた充電エネルギーは、図示しない充電回路で補充し
て初期状態へと復帰させる。
In parallel with this operation, the auxiliary thyristor 5 shown in FIG. 3 of the regenerative thyristor circuit breaker 12 is ignited using the output signal of the overcurrent relay. However, Teri 13 figure's transformation MC/
Deno? The charge that is charged with the polarity shown in the 17Vc diagram is discharged through the path of commutating CO/DEN+17 → main thyristor 14 → auxiliary thyristor 15 → commutating reactor 16, and the value of the discharge current that becomes free oscillation is the value of the discharge current in the main thyristor. 1
When the fault current (the total sum of the regenerated power and the included power) flowing through the main thyristor 14 is reached, the main thyristor 14
is forcibly extinguished, and then the released r5 current flows through the path of commutating diode 18 → auxiliary thyristor 15 → commutating IW and reactor 16, and the inflow fault current flows through auxiliary thyristor 15 → commutating reactor 16 → commutating capacitor. 17, and the reverse charging of the commutating capacitor 17 progresses further. When the reverse charging voltage value (inversion voltage) of the commutating capacitor 17 reaches the starting level, the auxiliary thyristor 15 is naturally extinguished, and fault current such as regenerative power is completely cut off. Note that the reversed charge is transferred to commutation capacitor 1.
The inverting thyristor 19 connected in parallel to 7 is fired to invert the illustrated polarity again. The charging energy lost when such regenerative power is cut off is replenished by a charging circuit (not shown) to restore the initial state.

以上のように、本発明に於ては直流正極母線に回生用サ
イリスタ遮断器を挿入すると共に、逆電力変換装置側に
流入する直#、電流を遮断する為の遮断器を挿入したも
のであるから、以下に示すように種々の効果を奏すもの
である。
As described above, in the present invention, a regenerative thyristor breaker is inserted into the DC positive bus, and a breaker is inserted to interrupt the direct current flowing into the reverse power converter side. Therefore, various effects can be achieved as shown below.

(1)逆電力変換装置の設定電圧を無負荷直流電圧よシ
低く設定できるので、カ行運転よシ回生運転さらには回
生運転よシカ行運転への移行がスムーズで、逆電力変換
装置が多少遅れたにせよ従来装置にみられるよう攻饋電
線電圧の上昇による回生失効というような問題は未然に
防止できる。
(1) Since the set voltage of the reverse power converter can be set lower than the no-load DC voltage, it is possible to smoothly transition from power driving to regenerative operation, and even from regenerative driving to deer driving, and the reverse power converter can Even if it is delayed, problems such as failure of regeneration due to increase in feeder line voltage, which is seen in conventional devices, can be prevented.

(2)逆電力変換装置が転流失敗した場合でも、順電力
変換装置よシ直接流入する事故電流は回生用サイリスタ
遮断器で阻止でき、事故の拡大を未然に防止できるばか
シでなく保護協調が非常にとり易くなる。
(2) Even if the reverse power converter fails to commutate, the fault current flowing directly into the forward power converter can be blocked by the regenerative thyristor circuit breaker, allowing protection coordination to prevent the spread of the fault. becomes very easy to take.

(3) 部品点数を増加することなく単に回生用サイリ
スタ遮断器の挿入箇所を入れ換えるのみで、前記(1)
および(2)項にみられるような効果を奏すものである
から、給電装置の設備費を非常に軽減できる。
(3) By simply replacing the insertion point of the regenerative thyristor circuit breaker without increasing the number of parts, the above (1) can be achieved.
Since the effects shown in (2) and (2) are achieved, the equipment cost of the power supply device can be greatly reduced.

(4)回生失効というようη問題は全くなくなるので、
回生用エネルギーを効果的に活用でき省エネルギーの給
電装置を実現できる。
(4) Since the η problem such as regeneration failure is completely eliminated,
It is possible to effectively utilize regenerative energy and realize an energy-saving power supply device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の給電装置を示す具体的な回路構成図、第
2図は本発明による一実施例を示す給?l、:装置の具
体的な回路構成図、第3図はその給電装置に適用する回
生用サイリスタ遮断器の具体的な回路構成図。 lはJ@電力変換装置、2は逆電力変換装置、3は直流
正極母線441〜44はカ行用サイリスタ遮断器、51
〜54は断路器、8!〜8<l’i回生用ダイオード、
lOは負極母a、12は回生用サイリスタ遮断器、13
は直流遮断器。
FIG. 1 is a specific circuit configuration diagram showing a conventional power supply device, and FIG. 2 is a power supply device showing an embodiment according to the present invention. 1: A specific circuit configuration diagram of the device; FIG. 3 is a specific circuit configuration diagram of a regenerative thyristor breaker applied to the power supply device. 1 is a J@power converter, 2 is a reverse power converter, 3 is a DC positive bus 441 to 44 is a thyristor circuit breaker for rows 51
~54 is a disconnector, 8! ~8<l'i regeneration diode,
1O is a negative electrode motherboard a, 12 is a regenerative thyristor breaker, 13
is a DC breaker.

Claims (1)

【特許請求の範囲】[Claims] 交流入力電力を直流電力に変換する順変換装置と、この
装置の直流出力側に設けられる直流正極母線と、この母
線下に接続されカ行用サイリスタ遮断器と断路器とを直
列接続してなる複数組の直流電路と、前記各カ行用サイ
リスタ遮断器のカソードに7ノードが各別に接続され、
かつ各カソードを共通に登続した接続点と前記直流正極
母線とを接続する複数の回生用ダイオードと、前記直流
正極母線側に設けられ回生用ダイオードよシ導びかれる
直流電力を交流電力に逆変換する逆電力変換装置と、こ
の装置と前記直流正極母線との間に設けられる直流遮断
器と、前記回生用ダイオードと直流正極母線とを接続す
る接続点にアノードが接続され、かつ順電力変換装置と
逆電力変換装置との並列運転時に、順電力変換装置よシ
逆電力変換装置に流入する電流を阻止する回生用サイリ
スタ遮断器とで構成したことを特徴とする直流式電気鉄
道の給電装置。
A forward conversion device that converts AC input power into DC power, a DC positive busbar provided on the DC output side of this device, and a power line thyristor breaker and disconnector connected under this busbar are connected in series. Seven nodes are separately connected to the plurality of sets of DC circuits and the cathode of the thyristor circuit breaker for each row,
and a plurality of regeneration diodes connecting the DC positive bus to a connection point where each cathode is connected in common, and a plurality of regeneration diodes provided on the DC positive bus to convert the DC power led by the regeneration diodes into AC power. A reverse power conversion device to be converted, a DC breaker provided between this device and the DC positive bus, an anode connected to a connection point connecting the regeneration diode and the DC positive bus, and forward power conversion A power supply device for a DC electric railway, comprising a regenerative thyristor circuit breaker that blocks current flowing into the forward power converter and the reverse power converter when the device and the reverse power converter are operated in parallel. .
JP21979683A 1983-11-22 1983-11-22 Electricity feeding device of dc electric railway Pending JPS60110539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21979683A JPS60110539A (en) 1983-11-22 1983-11-22 Electricity feeding device of dc electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21979683A JPS60110539A (en) 1983-11-22 1983-11-22 Electricity feeding device of dc electric railway

Publications (1)

Publication Number Publication Date
JPS60110539A true JPS60110539A (en) 1985-06-17

Family

ID=16741161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21979683A Pending JPS60110539A (en) 1983-11-22 1983-11-22 Electricity feeding device of dc electric railway

Country Status (1)

Country Link
JP (1) JPS60110539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077214A1 (en) * 2007-12-14 2009-06-25 Siemens Aktiengesellschaft Drive system and associated control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077214A1 (en) * 2007-12-14 2009-06-25 Siemens Aktiengesellschaft Drive system and associated control method

Similar Documents

Publication Publication Date Title
KR101968459B1 (en) DC current interrupter and its control method
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
JPH11297170A (en) Dc arc-extinguishing method and device
CN108599120A (en) A kind of direct current current-limiting circuit breaker
JPH0917294A (en) Two-way dc circuit breaker
JPS60110539A (en) Electricity feeding device of dc electric railway
JPH11355905A (en) Interruption system for power converter
JPS5846896Y2 (en) DC electric railway power supply device
JPS5814333B2 (en) DC power supply circuit
JPS5846897Y2 (en) DC electric railway power supply device
JP7165317B1 (en) DC switchgear
JP2002110006A (en) Direct current breaker
Xu et al. A Series-Type Hybrid Circuit Breaker with Flying Capacitor Multilevel Voltage Injector for Ultrafast DC Fault Protection
ZA200105218B (en) Method and device for protecting converters.
JPS6034493Y2 (en) DC circuit cutting device
JPS5833135B2 (en) DC electric railway power supply device
JPH0614402A (en) Controller for inverter of electric motor vehicle
JPS6039288Y2 (en) DC electric railway power supply device
JPS6220735A (en) Dc power feeding device
JPH02193727A (en) Direct current feeding system
JPS5846895Y2 (en) DC electric railway power supply device
JPS5832052B2 (en) DC electric railway power supply device
JPS629459B2 (en)
JPS6220729A (en) Dc power feeding device
JPS5832054B2 (en) DC electric railway power supply device