JPS60110013A - Curved surface interpolation method - Google Patents

Curved surface interpolation method

Info

Publication number
JPS60110013A
JPS60110013A JP21899383A JP21899383A JPS60110013A JP S60110013 A JPS60110013 A JP S60110013A JP 21899383 A JP21899383 A JP 21899383A JP 21899383 A JP21899383 A JP 21899383A JP S60110013 A JPS60110013 A JP S60110013A
Authority
JP
Japan
Prior art keywords
curved surface
coordinate values
calculates
minute
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21899383A
Other languages
Japanese (ja)
Inventor
Kiyotaka Kato
加藤 清敬
Michitaka Oshima
大島 道隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21899383A priority Critical patent/JPS60110013A/en
Publication of JPS60110013A publication Critical patent/JPS60110013A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To attain the following to an optional curve given on an x-y plane through a simple constitution and in real time in case a curved surface shown by parameters (u) and (v) is cut. CONSTITUTION:An arithmetic part 1 which delivers partial differential coefficients of (u) and (v) directions of a curved surface V (u, v) feeding parameter (u) and (v) performs the analyzing differential calculation of the surface V if possible and otherwise calculates a differential coefficient in terms of numerical calculation when said differential calculation is possible. An arithmetic part 2 calculates approximately the minute variation degrees DELTAu and DELTAv of the parameters (u) and (v) of the surface V (u, v) corresponding to the minute shift amounts DELTAx and DELTAy of the X and Y directions. An addition part 3 adds the present parameter values (u) and (v) to the changes DELTAu and DELTAv of parameters to the variation degrees DELTAx and DELTAy. Then an output part 4 delivers the coordinate value V (u+DELTAu, v+DELTAv) on the corresponding curved surface when the variables (u) and (v) are supplied.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、媒介変数によって表現される曲面において
、その曲面を微小線分で近似する曲面補間方法に係り、
例えば定義された任意の曲線に沿ったx、y座標指令値
を出力する曲面補間方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a curved surface interpolation method for approximating a curved surface expressed by parametric variables with minute line segments,
For example, the present invention relates to a curved surface interpolation method that outputs x and y coordinate command values along a defined arbitrary curve.

〔従来技術〕[Prior art]

一般に、曲面を表わす方法としては、媒介変数衣示が便
利である。第1図に示すように、二次元平面uvにおい
て、0≦U≦1,0≦V≦1なる領域り内の任意の点P
(u、v)が、三次元空間への写像によって第2図に示
すように三次元空間中の点P (X r 3’ r z
)に対応させることができる。すなわち、第1図に示す
領域りは、第2図に示す曲回(S)に写像される。ここ
で、三次元空間中の曲面S上の点Pt−ベクトル表示で
つぎのように表わすことができる。
In general, parametric representation is convenient as a method for representing curved surfaces. As shown in FIG. 1, any point P within the area 0≦U≦1, 0≦V≦1 on the two-dimensional plane uv.
By mapping (u, v) to the three-dimensional space, the point P (X r 3' r z
). That is, the area shown in FIG. 1 is mapped to the turn (S) shown in FIG. Here, the point Pt on the curved surface S in the three-dimensional space can be expressed as follows.

V(u・v)= (x(u、v)、y(u、v)、z(
u、v))・・・・・・・・・(2)数値制御工作機械
を使用して実際に曲面(S)’に切削する場合は、工具
の先端が球形であることから、曲面S上の任意の点e)
で法1(N)’r立て、工具半径分だけ法線方向に離れ
た位置を工具中心とする。
V(u・v)=(x(u,v),y(u,v),z(
u, v))・・・・・・・・・(2) When actually cutting the curved surface (S)′ using a numerically controlled machine tool, since the tip of the tool is spherical, the curved surface S Any point above e)
Then, set the modulus 1(N)'r, and set the tool center at a position separated by the tool radius in the normal direction.

法線(財)は外積演算 から計算される。したがって、曲面S上の座標値が与え
られれば、工具軌跡は比較的容易に得られる。
The normal (good) is calculated from the cross product operation. Therefore, if the coordinate values on the curved surface S are given, the tool trajectory can be obtained relatively easily.

第3図は従来の曲面切削方法を説明するためのものであ
る。曲面(S)は三次元空間中に媒介変数U。
FIG. 3 is for explaining a conventional curved surface cutting method. The curved surface (S) has a parameter U in three-dimensional space.

Vにて前記(1)式あるいは(2)式のように定義され
ているものとする。切削工具(’r)は初期点(P8)
から移動して曲面を切削するが、点(P8)は曲面から
十分離れた位置にあり9点(Po)まで早送りで移動す
る。
It is assumed that the above equation (1) or (2) is defined in V. The cutting tool ('r) is the initial point (P8)
The point (P8) is sufficiently far away from the curved surface, and the point (P8) is moved in fast forward motion to point 9 (Po).

次に、点(Po)から点(P+)tで切削送シで曲面へ
と工具σ)は切込んで行く。この点(Pl)は(2)式
を用いてu=0.v冨v1の点V(0,vl)で表わせ
る。さらに工具(T)は曲面上を点P、から点P2へと
切削送りで切削移動するが、工具(T)への座標指令値
は、V(u、vl)で与えられ、媒介変数Vはvlとい
う一定値とし、媒介変数Uは0から1へと変化させる。
Next, the tool σ) cuts into the curved surface using a cutting feed from the point (Po) to the point (P+)t. This point (Pl) is calculated using equation (2) as u=0. It can be expressed as a point V(0, vl) of v-tension v1. Furthermore, the tool (T) moves on the curved surface from point P to point P2 by cutting feed, but the coordinate command value to the tool (T) is given by V (u, vl), and the parameter V is It is assumed that vl is a constant value, and the parameter U is changed from 0 to 1.

次に、点(P2)から点(P5)へと2軸座標値を変化
させ工具ケ)全曲面(S)から逃がし、媒介変数Vのみ
f vlからv2に設定し、曲面S上の点(P6)(v
(1,v2)と表わせる)の真上へと移動させる。次に
、点(P6)の真上のごく近い点(P5)へと工具を早
送ルで移動させた後、点(P6)へと切削送りで切込む
。次に媒介変数Vをv2一定として、”elからOまで
変化させ、工具(力を点(P6)から点(Pl)へと移
動させる。
Next, change the two-axis coordinate values from point (P2) to point (P5), remove the tool from the entire curved surface (S), set only the parameter V from f vl to v2, and set the point ( P6) (v
(1,v2)). Next, the tool is moved by rapid traverse to a very close point (P5) directly above point (P6), and then cut to point (P6) by cutting feed. Next, the parametric variable V is kept constant v2, and is varied from ``el'' to 0, and the tool (force) is moved from the point (P6) to the point (Pl).

同様にして点(P8)から点(P2O)までのように工
具(1)が移動し曲面Sをジグザグ〔切削する。このよ
うに従来の切削方法は媒介変数の一方を固定し他方を変
化させて曲面上での工具軌跡を得るものであったが、第
4図に示すように、曲iff (S)のXY千面への射
影(5xy)中で工具の切削軌跡(pT) ’e任意の
形状にすることは不可能である。ところで、曲面全効率
よく切削するため、あるいは領域全指定してその領域範
囲のみを切削するためには、XY千面で定義された任意
の曲線に追従すべく曲面を切削する必璧があシ、このよ
うな切削の可能な曲面補間方法が望まれていた。そして
、それを実現するために、既知たるx、y座標値X。l
 Yoと前記(1)式を連立させ、くり返し計算によっ
て媒介変数u r ve計算し、曲面上の点をめる方法
があるO しかし、このような方法では、複雑な曲面では収束解が
得にくく、また解が得られたとしても計算時間が長く、
実時間での曲面の補間は不可能であったO 〔発明の概要〕 本発明は従来方式の欠点を解消し、媒介変数U。
Similarly, the tool (1) moves from point (P8) to point (P2O) and cuts the curved surface S in a zigzag pattern. In this way, the conventional cutting method fixed one of the parametric variables and varied the other to obtain a tool trajectory on a curved surface. It is impossible to make the cutting locus (pT) of the tool into an arbitrary shape in the projection onto the surface (5xy). By the way, in order to efficiently cut the entire curved surface, or to specify the entire region and cut only that region, it is necessary to cut the curved surface to follow an arbitrary curve defined in XY 1,000 planes. , there has been a desire for a curved surface interpolation method that allows such cutting. In order to achieve this, the known x and y coordinate values X are used. l
There is a method of combining Yo and equation (1) above, calculating the parametric variables ur ve through repeated calculations, and finding points on the curved surface. However, with this method, it is difficult to obtain a convergent solution for complex curved surfaces. , and even if a solution is obtained, the calculation time is long;
It has been impossible to interpolate a curved surface in real time. [Summary of the Invention] The present invention solves the drawbacks of the conventional method and reduces the parameter value U.

Vで表わした曲面を切削する際に、簡単な構成で実時間
で17平面上に与えられた任意の曲線に追従制御可能な
曲面補間方式を提供することを目的としている。
The object of the present invention is to provide a curved surface interpolation method that can perform follow-up control in real time to arbitrary curves given on 17 planes with a simple configuration when cutting a curved surface represented by V.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明による曲面補間方法の一実施例を示す簡
略構成図であり、同図において、1は媒介変数u * 
vk大入力るど、曲面V(u、v)のUおθvav よびY方向の偏微分係数五(U 、V )および−a、
(U、V)を出力する演算部である。この演算部1は、
例えば曲面V(u、v)が解析的に微分算出可能ならば
その計算全行なめ、そうでなければ、ティラー展開など
の数値計算的に微係数を算出するものである。
FIG. 5 is a simplified configuration diagram showing an embodiment of the curved surface interpolation method according to the present invention, in which 1 is the parameter u*
vk large input, U and θvav of the curved surface V(u,v) and partial differential coefficients in the Y direction 5(U,V) and -a,
This is an arithmetic unit that outputs (U, V). This calculation unit 1 is
For example, if the surface V (u, v) can be differentially calculated analytically, all the calculations are performed; otherwise, the differential coefficient is calculated numerically, such as Tiller expansion.

2は現在の座標点からX、Y方向の微小移動量ΔX、Δ
y’c入力すると、演算部1の出力である曲面の微分係
数を使用し、微小変化址ΔX、Δyに対するu、vの変
化址ΔU、ΔVを出力する演算部である。媒介変数u、
vで与えた曲面V(u、v) におav av いて、その偏微分係数−(u、v) 、−y;(u、v
) は、θU 前記(1)式から次のように表わせる。
2 is the minute movement amount ΔX, Δ in the X and Y directions from the current coordinate point
When y'c is input, the calculation section uses the differential coefficient of the curved surface which is the output of the calculation section 1, and outputs the changes ΔU and ΔV of u and v with respect to the minute changes ΔX and Δy. Parametric variable u,
av av on the curved surface V(u, v) given by v, its partial differential coefficients −(u, v), −y; (u, v
) can be expressed as follows from equation (1) above.

したがって、ΔX、Δyと、ΔU、ΔVとの間には、(
5)式のような関係が成立する。
Therefore, between ΔX, Δy and ΔU, ΔV, (
5) The relationship shown in the equation holds true.

(5)式をΔU、ΔvKついて解くと、つぎの(6)式
が得られる。
When equation (5) is solved for ΔU and ΔvK, the following equation (6) is obtained.

但し、d=1/((含 ・(3−会 ・(々)演算部2
は(6)式を用いて、X、Y方向の微小移動量ΔX、Δ
yに対応する曲面V(u、りの媒介変数U。
However, d = 1/((including
is the minute movement amount ΔX, Δ in the X and Y directions using equation (6).
Parameter variable U of curved surface V(u, ri) corresponding to y.

マの微小変化゛址ΔU、Δvf近似的に算出する機能を
有する。3は現在の媒介変数値u、yと、ΔX。
It has a function to approximately calculate the minute changes in mass ΔU and Δvf. 3 are the current parameter values u, y, and ΔX.

Δyなる変化量に対するノクラメータの微小変化ΔU。Minute change ΔU of the noclameter with respect to the amount of change Δy.

Δマを加算する加算部である。This is an addition unit that adds Δma.

なお、第5:図に示す構盛には媒介変数u、vがら対応
する曲面の座標値を計算する図示しなめ演算部が含まれ
る。
Incidentally, 5th: The structure shown in the figure includes an illustrated slant calculation unit that calculates the coordinate values of the corresponding curved surface from the parameter variables u and v.

4は媒介変数u、Vを入力すると、対応する曲面上の座
標値を中力する出力部である。
Reference numeral 4 denotes an output unit which inputs the corresponding coordinate values on the curved surface when the parametric variables u and V are input.

以上のような構成の本発明の曲面補間方法の動作を第6
図を用いて以下説明する。
The operation of the curved surface interpolation method of the present invention configured as described above is explained in the sixth section.
This will be explained below using figures.

現在の座標点を媒介変数u、vの値をもつ、曲面(S)
上の点(Pl)とする。点(Pi )の座標値はV(u
、す=Cx(u、マ)+y(u+v:Lz(usv):
1である。点(Pi )をXY平面上に射影した点を(
Ql)とすると、点(Ql)は[x(u、v)、y(u
、v)、0〕の座標値となる。xy平面上で、点(Ql
)の次の点を点(Q2)とし、そのx、y方向の微小変
化址がΔX。
A curved surface (S) whose current coordinate point has values of parametric variables u and v
Let it be the upper point (Pl). The coordinate value of point (Pi) is V(u
, S=Cx(u,ma)+y(u+v:Lz(usv):
It is 1. The point (Pi) projected onto the XY plane is (
Ql), then the point (Ql) is [x(u, v), y(u
, v), 0]. On the xy plane, point (Ql
) is the point (Q2), and its slight change in the x and y directions is ΔX.

Δyとして与えられたとする。このとき、第5図に示す
構成の曲面補間方法によれば、媒介変数U。
Suppose that it is given as Δy. At this time, according to the curved surface interpolation method having the configuration shown in FIG. 5, the parameter U.

Vの微小変化社が得られ、その結果点(Pl)の次の点
(P2)の座標値が得られる。厳密には、点(P2)の
XY平面への射影は、点(Q2)とはならないが、変化
量ΔXとΔyが微小であるため、点(P2)のπ平面へ
の射影が点(Q2)と考えてもよい。そして、XY平面
上に点列が次々と与えられていれば、同様の動作のく夛
返しで前記点列に対応する点列が得られることは明らか
である。その説明を第7図を用いて行なう。切削加工す
べき曲面(S)が三次元空間中で定義されておシ、領域
SxYは曲面0)のXY平面への射影である。今、XY
平面上に線分P。Pnが定義されておジ、前記線分を分
割する点列P、〜Pn−1も定義されている。始点(P
o)における媒介変数値u 、V がわか・っていると
、PoP、なる変化0 0 量を与えることによフ、媒介変数u、vの微小変化(Δ
u o HΔu o )が計算され、(U十Δuo、v
+ΔU)なる媒介変数に対応する曲面(S)上の点(p
s、)が得られる。
A minute change in V is obtained, and as a result, the coordinate values of the next point (P2) of the point (Pl) are obtained. Strictly speaking, the projection of point (P2) onto the ). It is clear that if a sequence of points is given one after another on the XY plane, a sequence of points corresponding to the sequence of points can be obtained by repeating the same operation. This will be explained using FIG. The curved surface (S) to be cut is defined in a three-dimensional space, and the region SxY is a projection of the curved surface 0) onto the XY plane. Now, XY
Line segment P on the plane. Pn is defined, and a sequence of points P, .about.Pn-1 that divides the line segment is also defined. Starting point (P
If the parameter values u and V in o) are known, PoP, by giving the amount of change 0 0, we can calculate the minute change (Δ
u o HΔu o ) is calculated, and (U + Δuo, v
+ΔU), a point (p
s,) is obtained.

工具σ)は点(ps 0)から点(ps、)へ移動し、
曲面を切削する。このとき、点(ps、)のXY平面上
へのあり、点P、と点Q、はほぼ一致すると考え、変化
量P1P2を与えて媒介変数u、Vの変化量Δu1.Δ
V。
The tool σ) moves from the point (ps 0) to the point (ps, ),
Cutting curved surfaces. At this time, considering that the point (ps,) on the XY plane, point P, and point Q are almost the same, and giving the amount of change P1P2, the amount of change Δu1 of the parametric variables u and V. Δ
V.

がまる。そこで、点(P2)に対応する曲面上の点(P
、2)が、(u0+Δ10+Δu1 g V0+Δv0
+Δv1)タル媒介変数を有する曲面上の点として得ら
れる。以上の動作を続けることにより、点列P。r Q
l + Q2・・・Qnおよび前記点列に対応する曲面
(S)上の近似曲線(L8)が得られ5゜ また、第8図のように任意の曲線が与えられたとき、曲
線t−Po−Pnのように点列として近似した場合でも
前述の方法でXY平面上で、P0→Q。
Gamaru. Therefore, the point (P2) on the curved surface corresponding to the point (P2)
, 2) is (u0+Δ10+Δu1 g V0+Δv0
+Δv1) is obtained as a point on a curved surface with a tal parameter. By continuing the above operations, the point sequence P is created. rQ
An approximate curve (L8) on the curved surface (S) corresponding to l + Q2...Qn and the above point sequence is obtained.5° Also, when an arbitrary curve is given as shown in Figure 8, the curve t- Even when approximated as a point sequence like Po-Pn, P0→Q on the XY plane using the method described above.

→・・・Qi−4−Q、+、・・・→Qn々る点列を有
する曲面上の工具軌跡を得ることができる。
→...Qi-4-Q, +,...→Q It is possible to obtain a tool trajectory on a curved surface having a series of points.

以上のように、本発明の曲面補間方法は、XY平面上で
与えた任意の曲線を与えると、前記曲線の有限個の点を
取って、前記曲線を折線近似する手段を設けることによ
シ、媒介変数表示の曲面S上の工具の軌跡のX、Y座標
値が、前記曲線に沿い追従したものとなる。
As described above, the curved surface interpolation method of the present invention, given an arbitrary curve on the , the X and Y coordinate values of the trajectory of the tool on the curved surface S represented by the parametric variables follow the curve.

第9図(a) 、 (>>は本発明による曲面補間方法
の他の実施例を説明する図である。前記実施例のように
XY平面上の任意の曲線に沿うように曲面上の点列が得
られるが、曲面によっては、第9図(a)に示すように
、X、Y軸方向の微小変化” PiPi+1(1=0〜
6)のように与えたとき請求まった曲面上の点列のX+
y座標値が、pol at l *++ Q7 のよう
に本来のP。・・・P7と比較し誤差の集積により掛は
離れたものとなること9がある。これは、例えば、P、
に対してQ、で近似されたとき、次のP2に対する請求
める際に変化計をP1P2と与えているためである。第
9図(b)はこのような欠点を解消する方法ヶ説明する
ためのものである。点P0から点P、の近似を得る場合
に、変化量P。Plを与えて点Q、が得られたとする。
FIG. 9(a), (>> is a diagram illustrating another embodiment of the curved surface interpolation method according to the present invention. As in the embodiment described above, points on the curved surface are However, depending on the curved surface, as shown in FIG.
6) X+ of the sequence of points on the curved surface claimed when given as
The y coordinate value is the original P, such as pol at l *++ Q7. . . . Compared to P7, the hanging may be far apart due to the accumulation of errors9. This means, for example, P,
This is because when approximated by Q, the change meter is given as P1P2 when requesting the next P2. FIG. 9(b) is for explaining a method for eliminating such a drawback. When obtaining an approximation from point P0 to point P, the amount of change P. Suppose that a point Q is obtained by giving Pl.

この時の誤差はP、Q、である。点P2に対する点Q2
ヲ求める際に、前記の方法ではP、P2を変化量として
与えるが、誤差P、Q。
The errors at this time are P and Q. Point Q2 for point P2
When calculating , the method described above gives P and P2 as the amount of change, but the errors P and Q.

を考属して、QIP2e与える。このように、前回の誤
差を次の変化しに加味補正させることによシ、第9図(
b)に示すように、与えられた点列に追従させ制御でき
る。
and give QIP2e. In this way, by correcting the previous error by taking into account the next change, the results shown in Figure 9 (
As shown in b), it can be controlled to follow a given point sequence.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明による曲面補間方法は、媒介変
数B、vによって表現された曲面の切削において、前記
媒介変数U、マから対応する曲面の座標値を計算する第
1演算部と、前記媒介変数U。
As described above, the curved surface interpolation method according to the present invention includes, in cutting a curved surface expressed by the parametric variables B and v, a first calculation unit that calculates the coordinate values of the corresponding curved surface from the parametric variables U and M; Parameter variable U.

Vから対応するU方り、v方向の偏微分値を割算する第
2演算部と、X@、Y軸方向の微小変化ΔX、Δyに対
応する前記媒介客数u、Vの微小変化ΔU、ΔVを前記
偏微分値から算出する第3演算部から構成され、現在座
標値V(u、v)からのX。
a second calculation unit that divides partial differential values in the U direction and v direction from V; and a minute change ΔU in the number of intermediate customers u and V corresponding to minute changes ΔX and Δy in the X @ and Y axis directions; X from the current coordinate value V(u,v).

Y軸方向の微小変化指令値ΔX、Δyに対して、次の座
標値を前記第1ないし第3演算部の演算結果を使って、
v(u+Δu、V+ΔV)と設定することによって、簡
単々構成で高速に曲面の補間を可能にしたものである。
For the small change command values ΔX and Δy in the Y-axis direction, the following coordinate values are calculated using the calculation results of the first to third calculation units,
By setting v(u+Δu, V+ΔV), it is possible to interpolate a curved surface at high speed with a simple configuration.

また、X、Y平面上に定義した任意の曲線を与えると、
前記曲線の有限値の点を取って、前記曲線を折線近似す
る手段を付加することによ91本 −発明の曲面補間方
法は前記任意の曲線に沿ったX。
Also, given an arbitrary curve defined on the X, Y plane,
By adding means for taking finite value points of the curve and approximating the curve to a polygonal line, the curved surface interpolation method of the present invention is capable of interpolating X along the arbitrary curve.

Y座標指令値を出力する曲面補間が可能となる。Curved surface interpolation that outputs the Y coordinate command value becomes possible.

さらに、前回座標値Vs(J 171)と、X−Y軸方
向の微小変化ΔXIHΔy、とによシ、現在座標値vl
+1(”i+11vl+1)がまった時のX−Y軸の誤
差、”i+1(”1−H1vi+1) ”i(”i”1
)=x#Fi+1(”i+11vi+1)”−Fl(”
1lvi)−Δyを次回座標値をめる際のX−Y軸方向
の微小変化Δ”1+11ΔFi+1に加味補正すること
によシ、曲面補間精度を簡単に向上させることが可能と
なる。
Furthermore, the previous coordinate value Vs (J 171) and the minute change ΔXIHΔy in the X-Y axis direction, and the current coordinate value vl
The error on the X-Y axis when +1 ("i+11vl+1)" is "i+1 ("1-H1vi+1) "i ("i"1
)=x#Fi+1("i+11vi+1)"-Fl("
By correcting 1lvi)-Δy by taking into account the minute change Δ''1+11ΔFi+1 in the X-Y axis direction when calculating the next coordinate value, it is possible to easily improve the surface interpolation accuracy.

なお、本発明の曲面補間方法は数値制御工作機械での曲
面切削以外に曲面表示装置へも適用でき、高速表示可能
なグラフィック・ディスプレイが実現できる。
The curved surface interpolation method of the present invention can be applied not only to curved surface cutting using a numerically controlled machine tool but also to a curved surface display device, and a graphic display capable of high-speed display can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は媒介変数表示の曲面についての説明図
、第3図は従来の曲面切削方法についての説明図、第4
図は従来の曲面切削方法で不可能な切削方法についての
説明図、第5図は本発明による曲面補間方法の一実施例
を説明するための構成図、第6図は本発明による曲面補
間方法の動作についての説明図、第711ffia3.
(b+、第8図は本発明による曲面補間方法の動作につ
いての説明図、第9図(す1b)は本発明による曲面補
間方法の他の実施例についての説明図でちる。 1.2・・・演算部、3・・・加算部、4用出力部。 代理1人 大岩増雄(tジ12名)
Figures 1 and 2 are explanatory diagrams for curved surfaces with parametric variable representation, Figure 3 is an explanatory diagram for conventional curved surface cutting methods, and Figure 4 is an explanatory diagram for the conventional curved surface cutting method.
The figure is an explanatory diagram of a cutting method that is impossible with conventional curved surface cutting methods, FIG. 5 is a block diagram for explaining an embodiment of the curved surface interpolation method according to the present invention, and FIG. 6 is a curved surface interpolation method according to the present invention. An explanatory diagram of the operation of the 711ffia3.
(b+, FIG. 8 is an explanatory diagram of the operation of the curved surface interpolation method according to the present invention, and FIG. 9 (1b) is an explanatory diagram of another embodiment of the curved surface interpolation method according to the present invention. 1.2. ...Arithmetic section, 3...addition section, output section for 4. 1 substitute: Masuo Oiwa (12 members)

Claims (1)

【特許請求の範囲】 (リ 媒介変数u + 1によってx+y+z3軸の座
標値がベクトルV(u 、 v )= (x(u 、 
v) 、y(u、v)4(u、v))と表現された曲面
において、前記座標値V(u、v)を計算する第1演算
部と、前記座標値のu、Vにa よる偏微分a 、 V (u一つと、、 V(u、v)
 を計算する第2演算部と、X軸、Y軸方向の微小変化
ΔX、Δyに対応する前記媒介変数u、vの微小変化Δ
U、ΔVを、上記第2演算部の演算結果にもとづき、次
式%式% 算出する第3演算部を有し、−現在座標値Vo (uo
 l vo) = 11”o CubITo ) +3
’o(uo * To) r Zo(uo+Vo):)
からのx、y軸方向の微少変化ΔX、Δyが与えられた
とき、次の座標値を、 V(u+Δu、v+ΔV) =〔x(uo十Δu、vo+Δv)+y(uo÷Δu、
Vo+Δ→、z(uo+Δu、VQ+Δv)〕と設定す
ることを特徴とする曲面補間方法。 (2)媒介変数u、vによってX、Y、Z3軸の座標値
がベクトルV(u、v)=(x(u、v)・y(u、v
)、z(u、v))と表現された曲面において、前記座
標値V(u、v)を計算する第1演算部と、前記座標値
のu、Vにa よる偏微分−、V(u、v)とB、 V (u 1りを
計算する第U 2演算部□と、X軸、Y軸方向の微少変化ΔX、Δyに
対応する前記媒介変数u、Vの微少変化ΔU、ΔVを、
上記第2演算部の演算結果にもとづき、次式%式% 算出する第3演算部を有し、現在座標値vo(uoIv
o)=〔Xo(uo、vo)、yo(uo、vo)、z
o(uo、vo)〕からのX、Y軸Xoの微小変化ΔX
、Δyが与えられたとき、次の座標値を、 V(u十Δu、v+ΔV) = Cx(u、+Δu+V6+Δv)、y(uo+Δu
、vo+Δv:Lz(uo+ΔB、uol4))と設定
するとともに、X、Y平面上に定義された任意の曲勝を
与えると、前記曲線の有限個の点を取って、前記曲線全
折線近似する手段を有し、前記折?fMを構成する有限
個の線分の各々を、X、Y軸方向の前記微小変化ΔX、
Δyとして設定することを特徴とする曲面補間方法。 (3)媒介変数u、vによってX、Y、Z3軸の座標値
がベクトルV(u、す=(X (u r V ) *y
(u r V) r Z (u r V )と表現され
た曲面において、前記座標値V(u、v)を計算する第
1演算部と、前記座標値のu、vにa θ よる偏微分a 、 V(u 、v )とa、 V(u、
v)を計算する第2演算部と、Y軸、Y軸方向の微小変
化ΔX、Δyに対応する前記媒介変数u、vの微小変化
ΔU、ΔVを、上記第2演算部の演算結果にもとづき、
次式%式% 算出する第3演算部を有し、現在座標値Vo(uol 
vo ) = (xo(u61 vo )+yo(uo
l vo)+ Zo(”o l vo))からのX、Y
軸方向の微小変化ΔX、Δyが与えられたとき、次の座
標値を、 V(u+Δu、v+ΔV) ”(x(uo+Δu、vo+Δv)、y(uo+Δtl
+’Vo+Δv)、z(uo+Δu、Vo+ΔV))と
設定するとともに、X、Y平面上に定義された任意の曲
想ヲ与えると、前記曲線の有限個の点を取りて前記曲線
を折線近似し、この折線を構成する有限個の線分の各々
の変化量’i、X、Y軸方向の前記微少変化ΔX、Δy
として設定する手段を備え、当該手段は、この微少変化
ΔX、Δyを決定するにあたシ、前回座標J[Vi(u
l、vl)とx、y軸方向の微少変化ΔXi 、Δyi
とにより、現在座標値Vl+1(u+++、 vt+1
)がまった時のX、Y軸の誤差XI+1(t11+++
vi++) −xl(ul、vl)−Δx。 yt+1(ui++、vt+t)−yt(ui、vi)
−Δyを次回座標値をめる際のX、Y軸方向の微小変化
ΔXl+11Δyi+1に加味補正したことを特徴とす
る曲面補正方法。
[Claims] (Re) The coordinate values of the three axes x+y+z are expressed as
v), y (u, v) 4 (u, v)), a first calculation unit that calculates the coordinate values V (u, v), and a Partial differential a, V (with one u, , V(u, v)
a second calculation unit that calculates minute changes Δ in the parametric variables u and v corresponding to minute changes ΔX and Δy in the X-axis and Y-axis directions;
It has a third calculation unit that calculates U and ΔV based on the calculation results of the second calculation unit using the following formula %, and -current coordinate value Vo (uo
l vo) = 11”o CubITo) +3
'o(uo * To) r Zo(uo+Vo):)
When small changes ΔX and Δy in the x and y axis directions from
A curved surface interpolation method characterized by setting Vo+Δ→, z(uo+Δu, VQ+Δv)]. (2) Depending on the parametric variables u and v, the coordinate values of the three axes X, Y, and Z are vector V (u, v) = (x (u, v)
), z(u, v)), a first calculation unit calculates the coordinate values V(u, v), and a partial differential of the coordinate values u, V by a −, V( u, v) and B, V (u 1) and the U2 calculation unit □ which calculates the minute changes ΔU, ΔV of the parametric variables u, V corresponding to the minute changes ΔX, Δy in the X-axis and Y-axis directions. of,
Based on the calculation result of the second calculation part, the third calculation part calculates the following formula % formula %, and the current coordinate value vo(uoIv
o) = [Xo (uo, vo), yo (uo, vo), z
o (uo, vo)] minute change ΔX in the X and Y axes Xo
, Δy are given, the following coordinate values are expressed as V(u + Δu, v+ΔV) = Cx(u, +Δu+V6+Δv), y(uo+Δu
, vo+Δv:Lz(uo+ΔB, uol4)), and given an arbitrary curve defined on the X, Y plane, means for approximating the curved line by taking a finite number of points on the curved line. , and the said occasion? Each of the finite line segments constituting fM is defined by the minute change ΔX in the X and Y axis directions,
A curved surface interpolation method characterized by setting as Δy. (3) The coordinate values of the three axes of X, Y, and Z are expressed as vector V(u, s=(X (u r V ) *y
(u r V) r Z (u r V ) In the curved surface expressed as (u r V ), a first calculation unit that calculates the coordinate values V (u, v), and a partial differential of the coordinate values u and v by a θ a, V (u, v) and a, V (u,
v), and minute changes ΔU and ΔV of the parametric variables u and v corresponding to the minute changes ΔX and Δy in the Y-axis and Y-axis directions, based on the calculation results of the second computing unit. ,
The current coordinate value Vo(uol
vo ) = (xo(u61 vo )+yo(uo
X, Y from l vo) + Zo ("o l vo))
When small changes ΔX and Δy in the axial direction are given, the following coordinate values are expressed as
+'Vo+Δv), z(uo+Δu, Vo+ΔV)), and given an arbitrary curve defined on the X, Y plane, a finite number of points of the curve are taken to approximate the curve as a broken line, The amount of change 'i of each of the finite line segments constituting this broken line, the minute changes ΔX, Δy in the X and Y axis directions
The means sets the previous coordinate J[Vi(u
l, vl) and minute changes in the x and y axis directions ΔXi, Δyi
Accordingly, the current coordinate value Vl+1(u+++, vt+1
) error on the X and Y axes XI+1(t11+++
vi++) −xl(ul, vl)−Δx. yt+1(ui++, vt+t)-yt(ui, vi)
A curved surface correction method characterized in that −Δy is corrected by taking into account a minute change in the X and Y axis directions ΔXl+11Δyi+1 when calculating the next coordinate value.
JP21899383A 1983-11-21 1983-11-21 Curved surface interpolation method Pending JPS60110013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21899383A JPS60110013A (en) 1983-11-21 1983-11-21 Curved surface interpolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21899383A JPS60110013A (en) 1983-11-21 1983-11-21 Curved surface interpolation method

Publications (1)

Publication Number Publication Date
JPS60110013A true JPS60110013A (en) 1985-06-15

Family

ID=16728584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21899383A Pending JPS60110013A (en) 1983-11-21 1983-11-21 Curved surface interpolation method

Country Status (1)

Country Link
JP (1) JPS60110013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239205A (en) * 1986-04-10 1987-10-20 Mitsubishi Electric Corp Free curved surface machining system
JPS63239509A (en) * 1987-03-27 1988-10-05 Okuma Mach Works Ltd Method for interpolating three-dimensional free curve in nc device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239205A (en) * 1986-04-10 1987-10-20 Mitsubishi Electric Corp Free curved surface machining system
JPS63239509A (en) * 1987-03-27 1988-10-05 Okuma Mach Works Ltd Method for interpolating three-dimensional free curve in nc device

Similar Documents

Publication Publication Date Title
US4698777A (en) Industrial robot circular arc control method for controlling the angle of a tool
JP2800861B2 (en) 3D machining method
JPS62159286A (en) Three-dimensional cursor control system
JPS6336524B2 (en)
JPH08305430A (en) Freely curved line interpolating system
US4814998A (en) Digitizing method
JP6012560B2 (en) Numerical controller
JPS6020209A (en) Method for interpolating control of robot
JPH03281083A (en) Attitude control system for cnc laser beam machine
Wang et al. Computer aided contouring operation for traveling wire electric discharge machining (EDM)
Obukhov et al. Developing of the look ahead algorithm for linear and nonlinear laws of control of feedrate in CNC
JPS60110013A (en) Curved surface interpolation method
EP0102516A2 (en) Method and apparatus for interpolation positioning
US4521721A (en) Numerical control method
JP2790643B2 (en) Numerical control unit
JPH0570162B2 (en)
JP2793804B2 (en) Pulse distribution method
Yang et al. On-line Cartesian trajectory control of mechanisms along complex curves
WO1988006312A1 (en) Method of generating curved surfaces
US4922431A (en) Method and apparatus of tool control in arbitrary plane operations
JPS6211728B2 (en)
JPH06170763A (en) Polishing method using control of force
WO1989009954A1 (en) Method and apparatus for generating spatial curve
KR0161010B1 (en) Modification method of moving path in accordance with diameteral change of work
JP2995812B2 (en) Tool path generation method by numerical controller