JPS60109220A - Manufacture of amorphous silicon - Google Patents

Manufacture of amorphous silicon

Info

Publication number
JPS60109220A
JPS60109220A JP58216869A JP21686983A JPS60109220A JP S60109220 A JPS60109220 A JP S60109220A JP 58216869 A JP58216869 A JP 58216869A JP 21686983 A JP21686983 A JP 21686983A JP S60109220 A JPS60109220 A JP S60109220A
Authority
JP
Japan
Prior art keywords
substrate
laser
gas
laser beam
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58216869A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58216869A priority Critical patent/JPS60109220A/en
Publication of JPS60109220A publication Critical patent/JPS60109220A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase the utilizing efficiency of a reactive gas by projecting the reactive gas from a nozzle to the point where the optical axis of a laser beam projected on a movable substrate crosses with the substrate and by projecting the laser beam only when the optical axis comes in accordance with the necessary position on the substrate surface as moving the substrate so as to form a selective film on the substrate. CONSTITUTION:Reactive gas are blown off from gas blow-off outlets 6a and 6b into a vacuum container. The front end of this gas outlet is thin and the gas is blown off from that end. Meanwhile, an optical axis of laser goes along the arrow A and is reflected by a mirror 3 and goes along the arrow B to reach the surface of a substrate 8. As a manipulator 9 can move upward, down ward, right and left, it is moved only at a constant pace and is stopped and the laser beam is projected the position where the manipulater is stopped. As the reactive gas is blown off in the vicinity of the substrate which is irradiated with the laser beam, a thin film of a-Si is formed on the substrate which is exposed to the spot of laser by laser CVD. Accordingly, if movement and stop of the manipulator is synchronized with the intervals of irradiation of laser, it is possible to form the spots of a-Si film on the substrate at a constant pace.

Description

【発明の詳細な説明】 本発明はレーザCVDにおいてレーザ光の当る基板の近
傍にのみ反応ガスを噴射し、かつ基板上の必要な場所に
選択的にアモルファスシリコン(以下ではa−Biとか
く)ヲつけ、デバイスを作る上で反応ガスの利用効率を
高めたアモルファスシリコンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION In laser CVD, the present invention injects a reactive gas only in the vicinity of the substrate that is hit by the laser beam, and selectively deposits amorphous silicon (hereinafter referred to as a-Bi) in the necessary locations on the substrate. This invention relates to a method for producing amorphous silicon that improves the efficiency of using reactive gases in the production of devices.

齋近、α−siの技術が進歩し、表示パネルのスイッチ
ングTF’T、二次元の読取り光センサ、あるいはライ
ンセンサ等、広い面積の中に多数のα−8i素子を組込
んだデバイスが出現しつつある。
Saichika, α-si technology has progressed, and devices that incorporate a large number of α-8i elements in a large area have appeared, such as display panel switching TF'Ts, two-dimensional reading optical sensors, or line sensors. It is being done.

従来、このようなデバイスを作る場合には、プラズマO
VD、光○VD、あるいは熱CVDKよって基板上全面
にα−Biをつけたのち、必要な部分すなわち、センサ
部分たるいけTPTの部分を残し、他の部分をホトエッ
チで除去している。すなわち形成されたα−siのごく
一部が有効に使用されているにすぎない。
Conventionally, when making such devices, plasma O
After applying α-Bi to the entire surface of the substrate by VD, optical VD, or thermal CVD, the necessary portions, that is, the TPT portions serving as the sensor portions are left, and the other portions are removed by photoetching. That is, only a small portion of the formed α-si is effectively used.

また従来の装置では真空、容器内に導入されたガスが真
空容器全体に広がるために、α−gild基板上だけで
なく、真空容器の締環不必要なところに付着する。さら
に未反応のガスは排気系へと排出される。このように、
従来の方法では反応ガスの無駄が著しく大きい。
Furthermore, in the conventional apparatus, since the gas introduced into the vacuum container spreads throughout the vacuum container, it adheres not only to the α-gild substrate but also to unnecessary parts of the vacuum container. Furthermore, unreacted gas is discharged to the exhaust system. in this way,
In the conventional method, a large amount of reaction gas is wasted.

一般に、a−8iの製造に用いるシランガスは非常に高
価なガスである。六とえばモノシランガスは111当り
約100円(−; 100 Fし/l)である。このガ
スを従来の方法では100〜200 cc/mi?1.
流すために、1時間のプラズマCVDを行なうとガス代
だけで600〜1200円かかる。しかもα−S<がデ
バイスとして有効に使用されるのは、そのごく一部に過
ぎない。
Generally, the silane gas used in the production of a-8i is a very expensive gas. For example, monosilane gas costs about 100 yen per 111 (-; 100 F/l). The conventional method for this gas is 100 to 200 cc/mi? 1.
If plasma CVD is performed for one hour, the gas cost alone will cost 600 to 1,200 yen. Moreover, only a small portion of α-S< is effectively used as a device.

本発明はかかる欠点を除去したものでありで、その目的
とするところは、反応ガスの利用効率を高めることにあ
る。
The present invention eliminates these drawbacks, and its purpose is to improve the efficiency of reactant gas utilization.

第1図は本発明の製造に用いる装置の反応室を示してい
る。第1図の上半分は反応室の側面図、下半分は平面図
である。第1図において、IH真空容器、2けレーザ、
3Fiミラー、4は光導入口。
FIG. 1 shows the reaction chamber of the apparatus used in the production of the present invention. The upper half of FIG. 1 is a side view of the reaction chamber, and the lower half is a plan view. In Fig. 1, an IH vacuum container, a two-digit laser,
3Fi mirror, 4 is light introduction port.

5 a): 5 bd反応ガス導入管、6αと6buガ
ス吹き出し口で先端の穴径#−i3〜10snである。
5 a): 5 bd reaction gas inlet pipe, 6α and 6bu gas outlet, hole diameter at the tip #-i3 to 10sn.

また、76基板加熱ヒータ、8は基板、9マニユピレー
タで、基板加熱ヒータ7と基板8とを上下左右に移動さ
せうる。また、1oは排気口であって油拡散ポンプや油
回転ポンプから成る真空排気系へ連結されている、 製造方法について述べる。竿1図において、真空排気口
10から真空容器1の内部をIXjO−’TOrr: まで排気し六のち、基板加熱ヒータ71Cよって、基板
8の温度を200’Cに一ヒげっつ1反応ガス導入管へ
と外部のガス系から反応ガスを導入する。反応ガスは、
水素とシランの混合ガスに、必要に応じてジボランやホ
スヒンのドーピングガスヲ混入したものである。
Further, a substrate heater 76, a substrate 8, and a manipulator 9 can move the substrate heater 7 and the substrate 8 vertically and horizontally. In addition, 1o is an exhaust port connected to a vacuum exhaust system consisting of an oil diffusion pump and an oil rotary pump.The manufacturing method will be described. In Fig. 1, the inside of the vacuum container 1 is evacuated from the vacuum exhaust port 10 to IXjO-'TOrr: 6, and then one reaction gas is introduced one step at a time to bring the temperature of the substrate 8 to 200'C using the substrate heater 71C. A reactant gas is introduced into the tube from an external gas system. The reaction gas is
This is a mixture of hydrogen and silane mixed with doping gas such as diborane or phosphine, if necessary.

この反応ガスはガスの吹き出し口6αと6bから真空容
器内へと吹角出される。吹き出し口の先端は内径が3〜
10mに細くなっており、ガスはこの口から5〜10 
cc/mix、で吹き出す。
This reaction gas is blown out into the vacuum container from gas outlet ports 6α and 6b. The tip of the air outlet has an inner diameter of 3~
It is narrowed to 10 meters, and the gas is 5 to 10 meters from this mouth.
cc/mix, blows out.

一方、レーザの光軸は矢印Aを通り、ミラー3で反射さ
れ、矢印BK沿って進入基板8の表面に達する。
On the other hand, the optical axis of the laser passes through arrow A, is reflected by mirror 3, and reaches the surface of entering substrate 8 along arrow BK.

ここで、マニュピレータ9は上下左右に移動できるので
、一定のピッチだけ移動し、停止させ。
Here, since the manipulator 9 can move vertically and horizontally, it moves by a certain pitch and then stops.

停止しfc−所にレーザ光を照射する。レーザ光が照射
される基板の近傍には反応ガスが吹と出しているのでレ
ーザのスポットが当った基板上にはレーザQVDKよっ
てα−Biの薄膜が形成される。
Stop and irradiate the fc- location with laser light. Since a reactive gas is blown out near the substrate irradiated with the laser beam, a thin film of α-Bi is formed by the laser QVDK on the substrate hit by the laser spot.

従って、マニュピレータの移動および停止とレーザの照
射間隔とを同期させれば、基板上に一定のピヴチでα−
8i膜のスポットを形成させることができる。具体的に
は、マニュピレータの移動はモータドライブによって行
ない、レーザの照射とマニュピレータ移動の同期はコン
ピュータによって行なりfc、。
Therefore, by synchronizing the movement and stop of the manipulator with the laser irradiation interval, α-
8i film spots can be formed. Specifically, the manipulator is moved by a motor drive, and the laser irradiation and the manipulator movement are synchronized by a computer.

レーザに1−t 100 Wの炭酸ガスレーザを用い、
第1図には図示していないが、光学系を用いて、基板面
上で50〜60μ情φのスポットにした。このとき基板
上には60〜80μmφのα−si膜を形成することが
できた。レーザビームをさらに収束させれば20μmφ
のα−si膜の形成も可能である。
Using a 1-t 100 W carbon dioxide laser as the laser,
Although not shown in FIG. 1, an optical system was used to form a spot with a diameter of 50 to 60 μm on the substrate surface. At this time, an α-Si film with a diameter of 60 to 80 μm could be formed on the substrate. If the laser beam is further focused, the diameter will be 20μmφ.
It is also possible to form an α-si film.

以上の方法により従来から問題になってt/また反応ガ
スの声1用効率は非常に改善された。その効果について
、ラインセンサの例で説明する。A4版用のラインセン
サーは約210IImの長さがあり、光センサは約18
00個、センサーの太aさけ約0.1m角(又は直径約
01龍)である。またセンサの厚さけ約1μ常であるか
ら、従来の方法で、α−si膜を形成する場合VCは3
0分間200 cc/mi?1.のモノシランガスを流
し紋けなければならない。従ってモノシランの総量は6
tである。
By the above method, the efficiency of reactant gas, which has been a problem in the past, has been greatly improved. The effect will be explained using an example of a line sensor. The line sensor for A4 size is approximately 210 IIm long, and the optical sensor is approximately 18
The diameter of the sensor is approximately 0.1 m square (or approximately 0.1 m in diameter). In addition, since the sensor thickness is usually about 1μ, when forming an α-Si film using the conventional method, the VC is 3μ.
200 cc/mi for 0 minutes? 1. must be flushed with monosilane gas. Therefore, the total amount of monosilane is 6
It is t.

一方、本発明の場合、レーザOVDである六め゛成膜速
度は1〜3μtn/S である、仮に1μrn/S と
しても1800個の素子を形成するには約30分で成膜
時間は従来とはとんと同じである。ところが反応ガス(
主としてモノシラン)の流it u 5 cc/rrr
in。
On the other hand, in the case of the present invention, the film formation rate of laser OVD is 1 to 3 μtn/S. Even if it were 1 μrn/S, it would take about 30 minutes to form 1800 elements, which is the conventional film formation time. It's exactly the same. However, the reaction gas (
Mainly monosilane) flow it u 5 cc/rrr
in.

で十分である。したがって、総量は0.151であり従
来の40分の1であった。シランの価格は萌述のように
高価であるため、この差は非常に大きな価値を有するも
のである。
is sufficient. Therefore, the total amount was 0.151, which was 1/40 of the conventional amount. Since the price of silane is as high as Moe's price, this difference is of great value.

本発明の製造方法は、上述のラインセンサの他に、二次
元表示体のスイッチングTPT、あるいけ二次元の導入
とり光センサ等、応用範囲はきわめて広いものである。
The manufacturing method of the present invention has an extremely wide range of applications, including not only the above-mentioned line sensor but also a switching TPT for a two-dimensional display, a two-dimensional introduction optical sensor, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社)、の)は本発明の製・造に用いる装置の反名
案である。 1・・・・・・真空容器 2・・・・・・レーザ 3・・・・・・ミラー 4・・・・・・光導入口 5α〜5b・・・・・・反応ガス導入管6a〜6b・・
・・・・ガス吹き出しロア・・・・・・基板加熱ヒータ 8・・・・・・基板 9・・・・・・マニュピレータ 10・・・・・・排気口 以 上 出願人 株式会社 諏訪精工舎 代理人 弁理士 最上 務 第1図
Figure 1) is a synonym for the apparatus used in the production of the present invention. 1... Vacuum vessel 2... Laser 3... Mirror 4... Light introduction port 5α~5b... Reaction gas introduction tube 6a~ 6b...
・・・・Gas blowing lower ・・・・・Substrate heater 8 ・・Substrate 9 ・・Manipulator 10 ・・・・・Exhaust port and above Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Figure 1

Claims (1)

【特許請求の範囲】 レーザCVIIICよるアモルファスシリコンの製造方
法において、移動可能な基板上にレーザ光の光軸を当て
該光軸と基板とが変わる点に向って。 反応ガスをノズルから噴射し、基板を移動させ基板面上
の必要な位置と光軸とが一致したときのみレーザ光線を
照射して、基板上に選択的な膜の形成を特徴とするアモ
ルファスシリコンの製造方法。
[Claims] In a method of manufacturing amorphous silicon using a laser CVIIIC, the optical axis of a laser beam is directed onto a movable substrate and the optical axis changes toward the point where the optical axis and the substrate change. Amorphous silicon that selectively forms a film on a substrate by injecting a reactive gas from a nozzle, moving the substrate, and irradiating a laser beam only when the optical axis matches the required position on the substrate surface. manufacturing method.
JP58216869A 1983-11-17 1983-11-17 Manufacture of amorphous silicon Pending JPS60109220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216869A JPS60109220A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216869A JPS60109220A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Publications (1)

Publication Number Publication Date
JPS60109220A true JPS60109220A (en) 1985-06-14

Family

ID=16695183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216869A Pending JPS60109220A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Country Status (1)

Country Link
JP (1) JPS60109220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217098A (en) * 1989-02-17 1990-08-29 Fujitsu Ltd Power unit turning-on circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217098A (en) * 1989-02-17 1990-08-29 Fujitsu Ltd Power unit turning-on circuit

Similar Documents

Publication Publication Date Title
JP2833797B2 (en) Coating method
US20020048860A1 (en) Method of producing thin films using current of process gas and inert gas colliding with each other and apparatus for producing thin films for practicing the same method
EP0154561A2 (en) Improved apparatus and method for laser-induced chemical vapor deposition
US20240270624A1 (en) Enhanced particle deposition system and method
US4203553A (en) Ribbon burner
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JPS60109220A (en) Manufacture of amorphous silicon
JPH09102463A (en) Film formation apparatus
JP2004332093A (en) Continuous chemical vapor deposition production apparatus
JPS59140368A (en) Method and device for producing thin film
JPS6135846A (en) Production of aerosol stream
US20020028415A1 (en) Co-flow diffusion flame burner device used for fabricating an optical waveguide
JPH07211643A (en) Reaction gas mixer for cvd system
JPS60107824A (en) Manufacture of amorphous silicon
JPH07144928A (en) Production of optical fiber preform and device therefor
JPS60116127A (en) Manufacture of amorphous silicon
JPS637619A (en) Gas flow method of cvd apparatus
JPH07150361A (en) Production of soi device using ysz thin film
JPS613885A (en) Manufacture of thin film by atomization
JPS54142317A (en) Production of optical fibers
JPS62183111A (en) Laser cvd device
JP3689363B2 (en) Fabrication method of silicon carbide single crystal surface oxide film using ultra high temperature steam
JPH04209730A (en) Production of preform of optical fiber
JPS59140369A (en) Method and device for producing thin film
JPS62207734A (en) Method for depositing fine glass particle