JPS6010899B2 - Continuous hose manufacturing equipment - Google Patents

Continuous hose manufacturing equipment

Info

Publication number
JPS6010899B2
JPS6010899B2 JP51055608A JP5560876A JPS6010899B2 JP S6010899 B2 JPS6010899 B2 JP S6010899B2 JP 51055608 A JP51055608 A JP 51055608A JP 5560876 A JP5560876 A JP 5560876A JP S6010899 B2 JPS6010899 B2 JP S6010899B2
Authority
JP
Japan
Prior art keywords
former
heating
hose
core metal
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51055608A
Other languages
Japanese (ja)
Other versions
JPS52138570A (en
Inventor
史朗 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP51055608A priority Critical patent/JPS6010899B2/en
Priority to DE2711236A priority patent/DE2711236C2/en
Priority to GB11474/77A priority patent/GB1557849A/en
Priority to FR7710084A priority patent/FR2350943A1/en
Priority to IT83378/77A priority patent/IT1071919B/en
Priority to CA277,639A priority patent/CA1089614A/en
Publication of JPS52138570A publication Critical patent/JPS52138570A/en
Priority to US06/219,275 priority patent/US4343672A/en
Publication of JPS6010899B2 publication Critical patent/JPS6010899B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【発明の詳細な説明】 本発明は、片持ち支持されたフオーマー上に、合成樹脂
や未加硫ゴムの帯状体、合成樹脂を芯村とする未加硫ゴ
ムの帯状体、金属線を芯材とする合成樹脂又は未加硫ゴ
ムの帯状体などを螺旋巻きして筒状体に成形しつつ、こ
の筒状体をフオーマーの自由端側に送り出すことによっ
て最尺のホースを連続的に製造するホース連続製造装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for attaching a belt-shaped body of synthetic resin or unvulcanized rubber, a belt-shaped body of unvulcanized rubber having a synthetic resin as a core, and a metal wire as a core to a cantilever-supported former. Continuously manufacture the longest hose by spirally winding a band of synthetic resin or unvulcanized rubber material, forming it into a cylindrical body, and feeding this cylindrical body to the free end of the former. This invention relates to continuous hose manufacturing equipment.

上記のように帯状体を螺旋巻きして連続的にホースを製
造する場合に、成形工程の途中で熱を与えれば、帯状体
どうしの溶着を、成形中に押さえローラによる外圧を加
える等の帯状体そのものの形に制約を受ける不都合なく
促進できる点、および、帯状体としてゴム材を用いる場
合には、そのゴムを加硫処理できる点で好ましいもので
あるが、そのような装置を構成しようとするには次の問
題点がある。
When a hose is manufactured continuously by spirally winding strips as described above, applying heat during the forming process can prevent welding of the strips together, such as applying external pressure with a pressure roller during forming. This is preferable because it can be promoted without being restricted by the shape of the body itself, and when rubber material is used as the band-shaped body, the rubber can be vulcanized. There are the following problems:

【ィ} つまり、ホースの連続成形を大前提とした場合
、ホースを成形するためのフオーマーは片持ち状となら
ざるを得ないもので、その片持ちが可能なフオーマーの
長さは力学的に制限がある。
[I] In other words, if we assume continuous molding of the hose, the former for forming the hose must be cantilevered, and the length of the former that can be cantilevered is determined mechanically. There is a limit.

‘。‘.

)帯状体としてゴムのように熱の不良導体を用いるとき
、ホース壁の肉厚が大なるもの、あるいは内外二層のホ
ースにおいて内側に熱の不良導体があるものでは、ホー
スの内側からも加熱しなければならない。し一 ホース
の内側から加熱する場合、フオーマーに邪魔されること
なく熱を与えようとすれば、一般には加熱気体や加熱蒸
気を供給することが考えられるのであるが、連続成形中
のホースの長さ方向での一部分にのみ集中的に加熱気体
や加熱蒸気を供給すること自体が困難であり、しかも、
加熱気体や加熱蒸気は、その熱伝導率がきわめて低いの
で、長時間にわたる加熱工程が必要となり、片持ち支持
のフオーマーの長さ範囲内で加熱処理を行うにはフオー
マーによるホース送り速度をきわめて低速にするという
非能率的作業によらなければ困難である。
) When using a poor conductor of heat such as rubber as a strip, if the hose wall is thick, or if there is a poor conductor of heat on the inside of a two-layered hose, heating may occur from the inside of the hose. Must. However, in order to heat the hose from the inside without being hindered by the former, it is generally possible to supply heated gas or heated steam, but the length of the hose during continuous forming is It is difficult in itself to supply heated gas or heated steam to only a part in the horizontal direction, and
Since the thermal conductivity of heated gas and heated steam is extremely low, a long heating process is required, and in order to perform heat treatment within the length range of the cantilevered former, the hose feed speed by the former must be extremely slow. This is difficult without the inefficient work of

また、加熱気体や加熱蒸気に代えてヒーターを設け、鰭
射熱により部分的に加熱することも考えられなくはない
が、この場合には、加熱処理に適正な所定温度にまで素
材を昇温させるために、その所定温度に近い温度の発熱
体で加熱すれば比較的ムラなく全体を昇温できるものの
、これでは前述の非能率的作業を免れず、従って、前記
所定温度よりも遥かに高い温度の発熱体を用いなければ
ならないものであるが、これによると、発熱体の設置箇
所から遠い部分と近い部分とで素材の昇温にムラが生じ
易く、また、長時間連続して成形作業を続けているとき
と〜成形作業開始時点とでは、ホース内部の加熱空気の
温度に差が生じ、成形作業工程中における加硫の程度に
ムラが出る塵れがある。本発明が解決しようとする技術
的問題は、上記のように片持ち支持されたフオーマー上
に、合成樹脂や未加硫ゴムの帯状体、合成樹脂を芯材と
する未加硫ゴムの帯状体、金属線を芯材とする合成樹脂
又は未加硫ゴムの帯状体などを螺旋巻さして筒状体に成
形しつつ、この筒状体をフオーマーの自由端側に送り出
すことによって最尺の筒状体を連続的に製造する装置を
得るにあたり、ホースの成形工程中に帯状体に対する加
熱処理を行わせられるように、成形装置と加熱装置と冷
却装置とを合理的に組み合わせて、ホース連続成形作業
の作業能率を低下させることなく、かつ、加熱ムラの生
じる虜れ少なく、しかも、ホース製造作業全体での熱的
損失を少なくしてホースを製造できる装置を得ることで
ある。
It is also conceivable to install a heater instead of heated gas or heated steam to partially heat the material using fin radiation; Although it is possible to raise the temperature of the entire body relatively evenly by heating it with a heating element that has a temperature close to the predetermined temperature, this does not avoid the inefficient work mentioned above, and therefore the temperature is much higher than the predetermined temperature. This method requires the use of a temperature heating element, but this tends to cause uneven temperature rise of the material between parts far from and near the heating element installation point, and the molding process must be continued for a long time. There is a difference in the temperature of the heated air inside the hose between when the process continues and when the molding operation starts, and there is dust that causes unevenness in the degree of vulcanization during the molding process. The technical problem to be solved by the present invention is that a belt-like body of synthetic resin or unvulcanized rubber, a belt-like body of unvulcanized rubber having a core material of synthetic resin, etc. , by spirally winding a band of synthetic resin or unvulcanized rubber with metal wire as the core material and forming it into a cylindrical body, the cylindrical body is fed to the free end side of the former to form the longest cylindrical shape. In order to obtain an apparatus for continuously manufacturing a hose body, a forming apparatus, a heating apparatus, and a cooling apparatus are rationally combined so that the strip body can be subjected to heat treatment during the hose forming process. To provide an apparatus capable of manufacturing a hose without reducing work efficiency, with less occurrence of uneven heating, and with less heat loss during the entire hose manufacturing operation.

上記課題を解決するために講じた本発明の技術手段は、
固定枠に片持ち支持された熱伝導性大なる芯金の長手方
向適当間隔おきに配置した保持枠を介して、前記芯金の
まわりに、複数本の可操軸体からなる送りローラーを、
ピッチの大きい螺旋状にして配設すると共に、これら各
送りローフーが、定位暦において、該送りローラー自身
の軸線を中心に自転できるように装着してフオーマーを
構成し、このフオーマー上に帯状体を螺旋巻きして形成
される筒状体を前記フオーマーの自由端側に送り出すよ
うに前記送りローラーを回転駆動すべく構成し、さらに
、前記芯金のうちでその片持ち支持されている支持部側
寄りの部分にのみ加熱機構を付設するとともに、この加
熱機構を設けた部分よりも前記自由端側の芯金部分は芯
金に対する加熱手段を備えていない芯金部分に構成し、
前記付設した加熱機構の位置よりも前記自由端側寄りに
離れたフオーマ−上位層に冷却装置を配設したことであ
る。
The technical means of the present invention taken to solve the above problems are as follows:
A feed roller consisting of a plurality of movable shaft bodies is mounted around the core metal through holding frames arranged at appropriate intervals in the longitudinal direction of the core metal with high thermal conductivity, which is cantilever-supported by a fixed frame.
The feed rollers are arranged in a spiral shape with a large pitch, and each of these feed rollers is attached so as to be able to rotate about its own axis in the stereotaxic calendar to form a former, and the belt-like body is placed on this former. The feed roller is configured to be rotationally driven so as to send out the cylindrical body formed by spiral winding to the free end side of the former, and further, the support portion side of the core bar is supported on a cantilever side. A heating mechanism is attached only to the closer portion, and the core metal portion on the free end side of the portion provided with the heating mechanism is configured as a core metal portion that is not equipped with a heating means for the core metal,
The cooling device is disposed in the upper layer of the former, which is further away from the position of the attached heating mechanism toward the free end.

上記技術手段を講じたことによる作用効果は次の通りで
ある。
The effects of taking the above technical measures are as follows.

■ フオーマー構成部材の一部である芯金の片持部側に
加熱機構を付設し、この芯金の一部を発熱体とするもの
であると共に、芯金の外周面まわりの仮想円筒面上に並
ぶ送りローラーが芯金軸芯方向での定位層で自転してホ
ースとなる筒状体と接触しながらこれを送るものである
から、前記発熱体による加熱温度を、その発熱体からの
直後の鏡射熱のみによって筒状体を加熱する場合に比べ
て比較的低くして、ムラの少ない加熱を行えるものであ
りながら、能率良く連続成形作業を行えるものである。
■ A heating mechanism is attached to the cantilever side of the core metal, which is a part of the former component, and a part of the core metal is used as a heating element. Since the feed rollers lined up in the core rotate in a positioning layer in the axial direction of the core and contact the cylindrical body that becomes the hose, the heating temperature by the heating element can be adjusted to the temperature immediately after the heating element. Compared to the case where a cylindrical body is heated only by specular heat radiation, heating can be performed at a relatively low level and with less unevenness, and continuous molding work can be performed efficiently.

つまり、送りローラーは、ホースよりも芯金に近い位置
にあり、この芯金が発熱体であることにより、送りロー
ラーの芯金に近い側の外周面は筒状体よりも発熱体に近
に位置で効率良く韓射熱を伝達されながら、その熱を、
筒状体と直援接触する送りローラーの外周面から筒状体
に対して伝導熱として伝達するので、空気や蒸気に比べ
て遥かに熱伝動率の高い送りローラー表面によって、発
熱体の熱を早く、かつ、効率良く筒状体に伝達すること
が可能である。従って、発熱体の韓射熱のみによって直
接的に筒状体を加熱する場合に比べて、発熱体の温度が
加熱ムラを少なくする上で有効な比較的低いものであっ
ても能率的な成形作業を継続することのできるものであ
る。2 上記の如く熱伝達が効率良く行われることと、
成形のためにある程度の高い温度にまで昇温されていて
、しかも、いまだ冷却されていない時点で加熱を行うも
のであるから、この点で熱的損失が少ないことは勿論、
その上、成形用フオーマーとしては、送りローラーが定
位層で自転して筒状体を送るものであって、送りローラ
ーの位置がホース長さ方向で移動して加熱域から逃げ出
すようなことなく、送りローラーは芯金軸芯方向での一
定位置を保ちながら加熱を続けるものであるから、例え
ば、成形装置として巻き取りドラムの外周面にスチール
ベルトを巻回して、このスチールベルトを螺旋方向に移
動させながらホースとなる筒状体を加熱するものと比較
しても、そのスチールベルトが冷却装置によって冷やさ
れたり、加熱域外へ移動して冷やされる等の熱的損失も
なく、全体としてきわめて熱的損失の少ない状態でホー
スを製造することのできる装置を得られたものである。
In other words, the feed roller is located closer to the core metal than the hose, and since this core metal is a heat generating element, the outer peripheral surface of the feed roller on the side closer to the core metal is closer to the heat generating element than the cylindrical body. While the Korean radiation heat is efficiently transmitted at the position, the heat is
Heat is transferred to the cylindrical body from the outer peripheral surface of the feed roller, which is in direct contact with the cylindrical body, as conductive heat, so the heat of the heating element is transferred to the surface of the feed roller, which has a much higher thermal conductivity than air or steam. It is possible to transmit it to the cylindrical body quickly and efficiently. Therefore, compared to the case where the cylindrical body is directly heated only by the radiation heat of the heating element, efficient molding is possible even if the temperature of the heating element is relatively low, which is effective in reducing heating unevenness. It is possible to continue working. 2 Heat transfer is carried out efficiently as described above, and
Since heating is performed at a point where the temperature has been raised to a certain high temperature for molding and has not yet been cooled, it goes without saying that there is little thermal loss in this respect.
Moreover, as a former for forming, the feed roller rotates on its own axis in the positioning layer to feed the cylindrical body, and the position of the feed roller does not move in the length direction of the hose and escape from the heating area. Since the feed roller continues heating while maintaining a fixed position in the direction of the core metal axis, for example, a steel belt is wound around the outer circumferential surface of a winding drum as a forming device, and this steel belt is moved in a spiral direction. Compared to a system that heats a cylindrical body that becomes a hose while heating, there is no thermal loss such as the steel belt being cooled by a cooling device or being cooled by moving outside the heating area, and the overall thermal efficiency is extremely low. An apparatus capable of manufacturing hoses with little loss has been obtained.

■ さらにまた、前記ホースとなる筒状体は、フオーマ
ー上であって、然も、加熱機構が付設されていない部分
のフオーマー上で冷却されることにより硬化するもので
あるから、筒状体が固化するまでの間、その形が正しく
維持され、従って、筒状体の外側から転圧ローラー等に
よる外圧を加える必要のないことと相挨つて、正確に所
期形状のホースが連続製造されるのである。特に、ゴム
製の帯状体を用いて、その肉厚内部に熱可塑性樹脂の芯
村を埋入させたもので筒状体を構成する場合には、加硫
前のさくし、状態にある未加硫ゴムに、成形工程中に保
形性を高める加熱加硫処理を施こすことができ、加熱に
より軟化する樹脂芯材の変形を保持性の良いゴム材で阻
止したまま冷却工程に持ち込み、両素材が硬化して変形
し難しくなるまで全体の形状を所期通りに保って所期通
りにホースを製造し得る点で有用なものである。以上の
理由によって、長尺のホースを連続成形するに熱効率良
く、かつ、正確にホースを製造し得る製造装置を得られ
たものである。
Furthermore, since the cylindrical body that becomes the hose is hardened by being cooled on the former, which is a portion of the former that is not equipped with a heating mechanism, the cylindrical body is The shape is maintained correctly until it solidifies, so there is no need to apply external pressure from the outside of the cylindrical body using a compaction roller, etc., and hoses with the desired shape can be manufactured continuously. It is. In particular, when constructing a cylindrical body using a rubber strip with a thermoplastic resin core embedded inside its thickness, it is necessary to Sulfurized rubber can be subjected to heat vulcanization treatment to improve shape retention during the molding process, and the resin core material, which softens when heated, is prevented from deformation by a rubber material with good retention properties, and is brought into the cooling process. This is useful in that the hose can be manufactured as desired by keeping the overall shape as desired until the material hardens and becomes difficult to deform. For the reasons described above, a manufacturing apparatus capable of continuously molding long hoses with high thermal efficiency and accuracy can be obtained.

以下に、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

まず、樹脂製補強材を埋入したゴムホース製造する場合
を例としてその製造装置を説明する。第1図に示すAは
、加硫剤混入済みの未加硫ゴムーの肉厚内に、熱可塑性
樹脂である硬質塩化ビニール製の補強材2を埋入した帯
状体3を連続的に押出し成形して、片持ち支持されたフ
ァーマーB上に供給する押出し成形機である。
First, a manufacturing apparatus for manufacturing a rubber hose in which a resin reinforcing material is embedded will be described as an example. A shown in Fig. 1 is a continuous extrusion molding of a strip 3 in which a reinforcing material 2 made of hard vinyl chloride, which is a thermoplastic resin, is embedded within the thickness of unvulcanized rubber mixed with a vulcanizing agent. This is an extrusion molding machine that feeds it onto Farmer B, which is supported on a cantilever.

押出し成形機Aの内部では、禾加硫ゴムーは約60q0
以下に、補強材2は約130〜180qoに保たれ、ダ
イスaから大気中に押出された帯状体3は約100qo
に保たれるように設定されている。未加硫ゴム1は硬質
塩化ビニールとの相溶性がよい材質を選定してあり、帯
状体3に成形された時点では、押出し成形のため加熱に
より未加流ゴムーが常温下での物性よりも戦性の大きい
物性に変化するととも‘こ、未加硫ゴムーと補強材2と
は境界面において、溶融密着している。フオーマ−Bの
長手方向中間部外周には、加熱装置5Bを内装して、こ
れらの両加熱装置5A,5Bにより加硫装置6を構成し
てあり、前記ホース状体4は、フオーマ−Bによる送り
作用を受け、かつ、フオーマーBにより保形されつつ、
両加熱装置5A,5Bにより内外両側から約170〜2
20午0に加熱され、連続的に加硫される。
Inside extrusion molding machine A, the vulcanized rubber is approximately 60q0
Below, the reinforcing material 2 is kept at about 130-180 qo, and the strip 3 extruded from die a into the atmosphere is about 100 qo.
It is set to be kept at . The unvulcanized rubber 1 is made of a material that has good compatibility with hard vinyl chloride, and when it is formed into the strip 3, the unvulcanized rubber has properties that are better than those at room temperature due to heating due to extrusion molding. As the physical properties change to become more aggressive, the unvulcanized rubber and the reinforcing material 2 melt and adhere to each other at the interface. A heating device 5B is installed inside the outer periphery of the intermediate portion in the longitudinal direction of the former B, and a vulcanizing device 6 is constituted by these heating devices 5A and 5B. While being subjected to a feeding action and being kept in shape by former B,
Approximately 170 to 2
It is heated at 20:00 and is continuously vulcanized.

加硫装置6よりも突出したフオーマ−Bの自由端側には
、加熱装置5A,5Bは内装されておらず、その突出し
た部分のフオーマ−B上の外周部に配設した冷却装置と
しての冷却水噴出用ノズル7から噴射される冷却水によ
って、加硫後のホ−ス状体4は直ちに冷却され、次いで
、長尺水槽8上を浮遊して移動する間に常温にまで冷却
され、補強線材2が硬化して、第6図に示す如き補強入
りゴムホースとなる。因みに、下記の材料を用いて上述
の方法を実施したところ、ゴムlaと補強線材2との付
フオーマーBは、帯状体3をその側縁が互いに内外に
重なり合った状態に螺旋巻さして筒状体4に成形しつつ
、この筒状体4をフオーマ−Bの自由端側に送り出すよ
うに構成されている。
The heating devices 5A and 5B are not installed on the free end side of the former B that protrudes beyond the vulcanizing device 6, and the heating devices 5A and 5B are installed as a cooling device on the outer periphery of the former B in the protruding portion. The hose-like body 4 after vulcanization is immediately cooled by the cooling water jetted from the cooling water spouting nozzle 7, and then cooled to room temperature while floating on the long water tank 8. The reinforcing wire 2 is cured to form a reinforced rubber hose as shown in FIG. Incidentally, when the above-mentioned method was carried out using the following materials, the rubber la and the reinforcing wire 2 were attached. Former B was formed into a cylindrical body by spirally winding the band-shaped body 3 so that its side edges overlapped each other inside and out. 4, the cylindrical body 4 is sent out to the free end side of the former B.

フオーマ−Bには、加熱機構に,が内装され、かつ、フ
オーマーBの長手方向中間部外周には、赤外線ランプ利
用の加熱機構C2を内装した加熱室5が形成され、フオ
ーマーBによって保形されつつ送られる筒状体4を、両
加熱機構C,,C2により、内外両側から170〜22
000に加熱して連続的に加硫処理すべ〈構成されてい
る。加熱室5よりも突出したフオーマーBの自由端側に
は前記加熱機構C,は内装されておらず、その外周部近
くに冷却装置としての冷却水噴出用ノズル6が配設され
ている。7は長尺の水槽である。
Former B is equipped with a heating mechanism, and a heating chamber 5 is formed on the outer periphery of the intermediate portion in the longitudinal direction of Former B, which is equipped with a heating mechanism C2 that uses an infrared lamp. The cylindrical body 4 that is being fed while being
000 and undergo continuous vulcanization treatment. The heating mechanism C is not installed on the free end side of the former B that protrudes beyond the heating chamber 5, and a cooling water jet nozzle 6 as a cooling device is disposed near the outer periphery thereof. 7 is a long aquarium.

従って加熱加硫後の筒状体4は、ノズル6からの冷却水
によって冷却され、さらに、長尺水槽7上を浮遊移動す
る間に常温にまで冷却され、補強材2が硬化して、第6
図に例示する如き、螺旋状の補強材2がゴム層laの肉
厚内に埋入された補強ゴムホースに製造される。
Therefore, the cylindrical body 4 after heating and vulcanization is cooled by the cooling water from the nozzle 6, and further cooled to room temperature while floating on the long water tank 7, and the reinforcing material 2 is hardened. 6
As illustrated in the figure, a helical reinforcing material 2 is manufactured into a reinforced rubber hose embedded within the thickness of the rubber layer la.

尚、補強材2や禾加硫ゴム1の断面形状は、ダイスa形
状の設定により適宜設定し得るものである。
Note that the cross-sectional shapes of the reinforcing material 2 and the vulcanized rubber 1 can be appropriately set by setting the shape of the die a.

また、筒状体4の先端閉口は、フオーマ−Bの自由端を
外れた時点で、適当なキャップにより閉塞し、長尺水槽
7上を浮遊移動する際に、内部に水が侵入しないように
構成しておくものとする。前記フオーマーBの具体構造
は次の通りである。
In addition, the end of the cylindrical body 4 is closed with a suitable cap at the time it comes off the free end of the former B to prevent water from entering inside when floating on the long water tank 7. shall be configured. The specific structure of Former B is as follows.

即ち、第2図乃至第4図に示すように、熱伝導性大なる
芯金8の一端を、フレーム9に螺着したスリーブ1川こ
挿入して片持ち状態に固定支持させ、芯金8の外周面に
は、熱伝導性のある可操軸体で形成された複数本の送り
ローラー11・・(該送りローラーが可操性でかつ金属
素材で形成され、熱伝導性を有することは従来周知の事
実である。
That is, as shown in FIGS. 2 to 4, one end of the core metal 8 having high thermal conductivity is fixedly supported in a cantilevered state by inserting a sleeve screwed into the frame 9 into the frame 9. A plurality of feed rollers 11 formed of a thermally conductive movable shaft body are disposed on the outer circumferential surface of the This is a well-known fact.

)と、この送りローラー11川の長手方向に沿って適当
間隔置きに配した複数個の伝導性のある保持枠12・・
(この保持枠が金属性であって、熱伝導性を有すること
は従来周知の事実である。)を介して、筒状体4の軸芯
を中心とする仮想円筒面(製造されるべき筒状体4の内
周面)に内接するピッチの大きい螺旋状に配設し、各ロ
ーラ−11・・が、定位層において、その局部軸芯周り
に回転できるように構成されている。前記保持枠12・
・は第5図イ,口に示す如く、多角形状をなし、周部の
複数箇所には、前記各ローラー11を回転自在に鉄め込
む凹部13・・を有し、かつ、ボルト14,14の締め
付けにより、芯金8上に固定されるもので、芯金8の片
持ち側端部から自由端にかけて、各保持枠12・・の位
相を一定角度8づつずらせて固定することにより、送り
ローラー1 1・・の螺旋ピッチを自在に設定できる。
), and a plurality of conductive holding frames 12 arranged at appropriate intervals along the longitudinal direction of the feed roller 11.
(It is a well-known fact that this holding frame is made of metal and has thermal conductivity.) The rollers 11, . The holding frame 12・
・ has a polygonal shape as shown in FIG. It is fixed on the core bar 8 by tightening the core bar 8, and by shifting the phase of each holding frame 12 by a fixed angle 8 from the cantilever side end of the core bar 8 to the free end and fixing it, the feed can be adjusted. The helical pitch of the rollers 1 1... can be freely set.

各送りローラー11・・の基端は、フレーム9に回転自
在に挿通支持させた受動軸15・・の一端に、カップリ
ング16・・を介して連動連結され、受動軸15・・の
池端には原動軸17に固着したギャ18と咳合するピニ
オンギャ19・・が固着され、以て、プーリー20から
の入力によって原動軸17が一方向に回転することによ
り、各送りローラー11・・が、その螺旋方向とは逆方
向に回転すべ〈構成されている。
The base end of each feed roller 11... is interlocked and connected to one end of a passive shaft 15... which is rotatably inserted and supported by the frame 9 via a coupling 16, and is connected to the end of the passive shaft 15... A pinion gear 19 is fixed to the gear 18 fixed to the drive shaft 17, and the drive shaft 17 rotates in one direction by the input from the pulley 20, so that each feed roller 11... It is configured to rotate in the opposite direction to the spiral direction.

前記フオーマ−Bの加熱機構C,は、第4図、第5図イ
,口に示すように、芯金8に複数本の孔を等間隔に穿設
し、各孔内に電気絶縁材料によって被覆されたニクロム
線ヒータ−21を挿設して構成されている。
As shown in FIGS. 4 and 5, the heating mechanism C of the former B has a plurality of holes drilled at equal intervals in the core metal 8, and each hole is filled with an electrically insulating material. It is constructed by inserting a coated nichrome wire heater 21.

上記構成によれば、フオーマーB上にある筒状体4が両
加熱機構に,,C2によって内外両側から同時に加熱さ
れるため、筒状体4の形状が不測に崩れないように保形
されつつ、筒状体4の全体が均一に、かつ、効率良く加
熱加硫される。
According to the above configuration, the cylindrical body 4 on the former B is simultaneously heated from both the inside and outside sides by both heating mechanisms and C2, so that the shape of the cylindrical body 4 is maintained so that it does not collapse unexpectedly. , the entire cylindrical body 4 is uniformly and efficiently heated and vulcanized.

殊に、内部の加熱機構C,は、熱伝導性のよい芯金8内
に挿設されており、かつ、筒状体4の内周面に送りロー
ラー11・・を介して接触しているため、加熱効率が非
常に高く、このため、加硫処理を極めて効率よく行える
のである。
In particular, the internal heating mechanism C is inserted into the core metal 8 having good thermal conductivity, and is in contact with the inner circumferential surface of the cylindrical body 4 via the feed rollers 11. Therefore, the heating efficiency is extremely high, and therefore the vulcanization process can be performed extremely efficiently.

また、上記の製造装置によって作製された補強ゴムホー
スは、耐油性、耐熱性に優れているばかりでなく、補強
材2とゴム層laとが補強材2の全周にわたって均一に
、かつ、強固に結合しているため、屈曲変形の反復によ
って、両者2,laが容易に剥離することがなく、補強
材2による補強効果が長期にわたって確実に発挿される
ものである。
In addition, the reinforced rubber hose manufactured by the above-mentioned manufacturing apparatus not only has excellent oil resistance and heat resistance, but also has the reinforcing material 2 and the rubber layer la uniformly and strongly over the entire circumference of the reinforcing material 2. Since they are bonded together, both 2 and la will not easily separate due to repeated bending deformation, and the reinforcing effect of the reinforcing material 2 will be reliably exerted over a long period of time.

加熱機構C,は、上記実施例に記載の構造の他、芯金8
の外周面にニクロム線ヒーター21を取付けた構造、芯
金8内に油路を穿設し、フオーマーB外部で加熱された
高温オイルを、この油路を介して循環供給するようにし
た構造や、その他、種々の具体構造を採用できるもので
あり、図示の構造に限定されるものではない。
In addition to the structure described in the above embodiment, the heating mechanism C has a core bar 8.
A structure in which a nichrome wire heater 21 is attached to the outer peripheral surface of the former B, and a structure in which an oil passage is bored in the core metal 8 and high temperature oil heated outside the former B is circulated and supplied through this oil passage. , and various other specific structures can be adopted, and the structure is not limited to the illustrated structure.

また、いずれの形式の加熱機構C,を採用する場合にお
いても、製造するホースの構造、材質等によっては、外
部の加熱機構C2は不要である。
Furthermore, no matter which type of heating mechanism C is employed, the external heating mechanism C2 may not be necessary depending on the structure, material, etc. of the hose to be manufactured.

例えば、第7図イに示す如く、内面にのみゴム層laを
有し、外側に欧質塩化ビニール等の軟質樹脂層22を有
する可操性ホースの場合、押し出し成形機Aにより、軟
質樹脂の下面に全幅にわたって未加硫ゴムを溶融密着さ
せた帯状体を連続的に押し出し成形し、この帯状体をフ
オーマーB上に螺旋巻さして筒状体に成形しつつ、フオ
ーマ−B内の加熱機構に,で、この筒状体に内側から熱
を与えて連続加流するように構成することができる。こ
れによれば、軟質樹脂層22への熱による悪影響を極力
抑制しつつ、ゴム層laを効率よく加硫処理できる。第
7図口に示すホースは、軟質樹脂層22内部に、硬質塩
化ビニール(金属線でもよい)の補強材2を埋入してあ
る点で相違する他は、第7図イの場合と同一であり、フ
オーマーB内の加熱機構C,によって、ゴム層laを内
側から加硫処理したものである。
For example, as shown in FIG. 7A, in the case of a flexible hose that has a rubber layer la only on the inner surface and a soft resin layer 22 such as European vinyl chloride on the outside, an extrusion molding machine A is used to make the soft resin. A belt-shaped body with unvulcanized rubber melted and adhered to the entire width of the lower surface is continuously extruded, and this belt-shaped body is spirally wound onto former B to form a cylindrical body. , so that heat can be applied to this cylindrical body from the inside and continuously heated. According to this, the rubber layer la can be efficiently vulcanized while suppressing the adverse effects of heat on the soft resin layer 22 as much as possible. The hose shown in Figure 7 is the same as the one in Figure 7 A, except that a reinforcing material 2 made of hard vinyl chloride (metal wire may also be used) is embedded inside the soft resin layer 22. The rubber layer la is vulcanized from the inside by a heating mechanism C in the former B.

第8図は、ゴム層laより成形される筒状体外周部を、
螺旋状の硬質樹脂製補強材2によって補強したホースで
ある。
Figure 8 shows the outer circumference of the cylindrical body formed from the rubber layer la.
This hose is reinforced with a spiral hard resin reinforcing material 2.

このホースは、押し出し成形機Aにより未加硫ゴムの上
面中央部に補強材2を溶触密着させた帯状体を連続的に
押し出し成形し、この帯状体を未加硫ゴムの側縁どうし
が内外に重なり合う状態にフオーマーB上に螺旋巻さし
て筒状体に成形しつつ、フオーマーB内の加熱機構C,
により、内側から加熱加硫することにによって製造され
る。第9図は、内外二層の樹脂層23,24間に、補強
材2を埋入させてある発泡樹脂層25を形成した断熱性
ホースであり、各層23,24,25を形成する帯状体
をフオーマーB上に螺旋巻さして筒状体に形成しつつ、
フオーマーB内の加熱機構C,により内側から加熱して
発泡処理したものである。
This hose is made by continuously extruding a band-shaped body in which reinforcing material 2 is melt-touched to the center of the upper surface of unvulcanized rubber using extrusion molding machine A. The heating mechanism C in the former B is wound spirally onto the former B so as to be overlapped with each other to form a cylindrical body.
It is manufactured by heating and vulcanizing from the inside. FIG. 9 shows a heat insulating hose in which a foamed resin layer 25 in which a reinforcing material 2 is embedded is formed between two resin layers 23 and 24, an inner and outer layer, and a band-shaped body forming each layer 23, 24, 25. While spirally winding on former B to form a cylindrical body,
The foaming process is performed by heating from the inside using the heating mechanism C in the foamer B.

尚、補強材2を埋入せずに実施してもよい。Note that this may be carried out without embedding the reinforcing material 2.

その他、図示しないがフオーマーB内の片持ち支持箇所
により近い成形工程部分にも加熱機構を設けて、フオー
マーB上に成形されつつある筒状体を内側から加熱処理
すれば、複数本の帯状体を螺旋巻きした多層構造のホー
スを製造する場合に、フオーマー上で再加熱して各層相
互の溶融密着を助長させることができる。
In addition, although not shown in the drawings, if a heating mechanism is also provided in the forming process part near the cantilever support point in the former B, and the cylindrical body being formed on the former B is heat-treated from the inside, multiple strips can be formed. When manufacturing a multilayered hose made of spirally wound materials, it is possible to promote melting and adhesion between the layers by reheating on the former.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るホース連続製造装置の実施例を示し
、第1図は補強ゴムホースの製造工程を示す概略正面図
、第2図は平面図、第3図は正面図、第4図は要部の縦
断正面図、第5図イ,口は姿部の縦断側面図、第6図は
補強ゴムホースの−部切欠正面図、第7図イ,口、第8
図、第9図は各々別の製品ホースを示す要部の縦断正面
図である。 3……帯状体、4・・・・・・筒状体、6…・・・冷却
装置、8・・・・・・芯金、11・・・・・・送りロー
フー、12・・・…保持枠、B・・・・・・フオーマー
、C,…・・・加熱機構。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
The drawings show an embodiment of the continuous hose manufacturing apparatus according to the present invention, in which FIG. 1 is a schematic front view showing the manufacturing process of a reinforced rubber hose, FIG. 2 is a plan view, FIG. 3 is a front view, and FIG. 4 is a main view. Fig. 5A is a longitudinal sectional front view of the section, Fig. 6 is a cutaway front view of the - section of the reinforced rubber hose, Fig. 7A is the opening, Fig. 8
9 are vertical sectional front views of main parts showing different product hoses. 3... Band-shaped body, 4... Cylindrical body, 6... Cooling device, 8... Core bar, 11... Feed low-fu, 12... Holding frame, B...Former, C,...Heating mechanism. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 固定枠に片持ち支持された熱伝導性大なる芯金8の
長手方向適当間隔おきに配置した保持枠12‥を介して
、前記芯金8のまわりに、複数本の可撓軸体からなる送
りローラー11‥を、ピツチの大きい螺旋状にして配設
すると共に、これら各送りローラー11‥が、定位置に
おいて、該送りローラー11‥自身の軸線を中心に自転
できるように装着してフオーマーBを構成し、このフオ
ーマーB上に帯状体3を螺旋巻きして形成される筒状体
4を前記フオーマーBの自由端側に送り出すように前記
送りローラー11‥を回転駆動すべく構成し、さらに、
前記芯金8のうちでその片持ち支持されている支持部側
寄りの部分にのみ加熱機構C_1を付設するとともに、
この加熱機構C_1を設けた部分よりも前記自由端側の
芯金8部分は芯金8に対する加熱手段を備えていない芯
金部分に構成し、前記付設した加熱機構C_1の位置よ
りも前記自由端側寄りに離れたフオーマーB上位置に冷
却装置6を配設してあるホース連続製造装置。
1. A plurality of flexible shaft bodies are attached around the core metal 8 through holding frames 12 arranged at appropriate intervals in the longitudinal direction of the core metal 8 with high thermal conductivity, which is cantilever-supported on a fixed frame. The feed rollers 11... are disposed in a spiral shape with a large pitch, and each of the feed rollers 11... is mounted so that it can rotate about its own axis in a fixed position. B, and is configured to rotationally drive the feed roller 11 so as to send out the cylindrical body 4 formed by spirally winding the band 3 onto the former B to the free end side of the former B, moreover,
A heating mechanism C_1 is attached only to a portion of the core bar 8 that is cantilevered and closer to the support portion, and
A portion of the core metal 8 closer to the free end than the portion where the heating mechanism C_1 is provided is configured as a core metal portion that is not provided with heating means for the core metal 8, and the free end is closer to the position of the attached heating mechanism C_1. This is a continuous hose manufacturing device in which a cooling device 6 is disposed above a former B that is separated from the side.
JP51055608A 1976-05-14 1976-05-14 Continuous hose manufacturing equipment Expired JPS6010899B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP51055608A JPS6010899B2 (en) 1976-05-14 1976-05-14 Continuous hose manufacturing equipment
DE2711236A DE2711236C2 (en) 1976-05-14 1977-03-15 Method and device for the continuous production of a pipe
GB11474/77A GB1557849A (en) 1976-05-14 1977-03-17 Method and apparatus for producing tube
FR7710084A FR2350943A1 (en) 1976-05-14 1977-04-04 METHOD AND APPARATUS FOR MANUFACTURING PLASTIC OR RUBBER PIPES
IT83378/77A IT1071919B (en) 1976-05-14 1977-04-28 METHOD AND PLANT FOR THE PRODUCTION OF TUBES
CA277,639A CA1089614A (en) 1976-05-14 1977-05-04 Method and apparatus for producing tube
US06/219,275 US4343672A (en) 1976-05-14 1980-12-22 Method and apparatus for producing tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51055608A JPS6010899B2 (en) 1976-05-14 1976-05-14 Continuous hose manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS52138570A JPS52138570A (en) 1977-11-18
JPS6010899B2 true JPS6010899B2 (en) 1985-03-20

Family

ID=13003472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51055608A Expired JPS6010899B2 (en) 1976-05-14 1976-05-14 Continuous hose manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS6010899B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54180490U (en) * 1978-06-09 1979-12-20
ATE518644T1 (en) * 2008-11-26 2011-08-15 Covidien Ag DEVICE FOR PRODUCING EXTRUDED SPIRAL TUBES FOR MEDICAL PURPOSES
JP7038391B2 (en) * 2017-04-06 2022-03-18 エバック株式会社 Flexible synthetic resin pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491940A (en) * 1972-04-26 1974-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491940A (en) * 1972-04-26 1974-01-09

Also Published As

Publication number Publication date
JPS52138570A (en) 1977-11-18

Similar Documents

Publication Publication Date Title
US4343672A (en) Method and apparatus for producing tube
US3126306A (en) Attoxj
US20070181562A1 (en) Pipe heater
US3938929A (en) Flexible plastics hose making apparatus
GB2080915A (en) Making reinforced hose
JPH0470985B2 (en)
US4385018A (en) Method and apparatus for making insulated, reinforced flexible hose
US3776794A (en) Reinforced flexible hose and method of manufacturing same
US3846202A (en) Method for making reinforced flexible tubing
JPS6010899B2 (en) Continuous hose manufacturing equipment
KR100916680B1 (en) Manufacturing apparatus for pre-insulated pipe and method thereof
JP2001179822A (en) Method for manufacturing flexible hose and manufacturing device
CA2462733A1 (en) Method and apparatus for producing a reinforced socket on an extruded plastic tube made of thermoplastic material
SU1369681A3 (en) Method of manufacturing reinforced tubular article
JPS6010898B2 (en) Hose manufacturing method
KR0177163B1 (en) Method for producing hose having low permeability
KR100762451B1 (en) The composite type seamless pipe manufacturing device for the synthetic resin and the composite type seamless pipe for the synthetic resin
JPS5929421B2 (en) Method and apparatus for continuously producing elastomeric hoses with reinforcing structures
JPH02134484A (en) Corrugated pipe, pressing member, and core die
JPS61160231A (en) Manufacture of pressure resisting hose and manufacturing device thereof
JPH05169557A (en) Manufacture of formed hose and apparatus therefor
JPH0141493B2 (en)
KR200364327Y1 (en) Double wall drain pipe from made synthetic resin and apparatus thereof
JP3019757B2 (en) Method for producing rubber extrudate provided with decorative film layer
JPS6220903B2 (en)