JPS6010806A - Microstrip array antenna - Google Patents

Microstrip array antenna

Info

Publication number
JPS6010806A
JPS6010806A JP11707383A JP11707383A JPS6010806A JP S6010806 A JPS6010806 A JP S6010806A JP 11707383 A JP11707383 A JP 11707383A JP 11707383 A JP11707383 A JP 11707383A JP S6010806 A JPS6010806 A JP S6010806A
Authority
JP
Japan
Prior art keywords
panel
core
fiber reinforced
base plate
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11707383A
Other languages
Japanese (ja)
Other versions
JPH0123961B2 (en
Inventor
Nobuyoshi Imura
信義 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP11707383A priority Critical patent/JPS6010806A/en
Publication of JPS6010806A publication Critical patent/JPS6010806A/en
Publication of JPH0123961B2 publication Critical patent/JPH0123961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To reduce the thermal deformation in an outer space dividing a base plate and a dielectric core constituting the 1st sandwich panel of double sandwich structure into plural pieces. CONSTITUTION:A ground conductor 7 is formed at one side of a nylon fiber reinforced dielectric honey-comb core 6 by a carbon fiber reinforced plastic, a base plate 5 is formed on the other side and the 1st sandwich panel A is constituted by coating a metallic foil to the base plate 5 so as to form a radiation element 4. In order to improve the entire rigidity of the antenna panel 1, the double sandwich structure is constituted by combining a light weight aluminum honey-comb core 8 and the 2nd sandwich panel B consisting of a skin member 9 made of a carbon fiber reinforced plastic. The base plate 5 and the core 6 are cut off to divide the panel A into eight pieces, allowing to release a force causing out-of-plane deformation due to temperature difference, reduce thermal deformation and make the entire panel flat.

Description

【発明の詳細な説明】 この発明は、サンドイッチ構造体で作られるマイクロス
トリップアレーアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip array antenna made of a sandwich structure.

従来この種のアンテナにおける人工衛星搭載用展開型マ
イクロストリップアレーアンテナとして第1図〜第4図
に示すものがあった。
2. Description of the Related Art Conventionally, there have been antennas of this type shown in FIGS. 1 to 4 as deployable microstrip array antennas for mounting on artificial satellites.

第1図は人工衛星搭載用展開型マイクロストリップアレ
ーアンテナの概略図、第2図はアンテナパネルの断面図
、第6図は第2図の構成材料の実際例を示した図、第4
図は軌道上での展開後のアンテナの熱変形後の状態を示
した図である。
Figure 1 is a schematic diagram of a deployable microstrip array antenna for use on a satellite, Figure 2 is a cross-sectional view of the antenna panel, Figure 6 is a diagram showing an actual example of the constituent materials shown in Figure 2, and Figure 4 is a diagram showing an actual example of the constituent materials shown in Figure 2.
The figure shows the state of the antenna after it has been thermally deformed after being deployed in orbit.

第1図〜第4図において、1けアンテナパネル、2は展
開ヒンジ、3は衛星、4は放射、素子、5は基板、6は
誘電体コア、7は地導体、8はコア、9は表皮材であり
、上記放射素子4、基板5、誘電体コア6および地導体
7によシ第1のサンドイッチパネルを構成し、また地導
体7、コア8および表皮材9によシ第2のサンドイッチ
パネルを構成している。
In Figures 1 to 4, 1 antenna panel, 2 a deployment hinge, 3 a satellite, 4 a radiation element, 5 a substrate, 6 a dielectric core, 7 a ground conductor, 8 a core, and 9 a The radiating element 4, the substrate 5, the dielectric core 6, and the ground conductor 7 constitute a first sandwich panel, and the ground conductor 7, the core 8, and the skin material 9 constitute a second sandwich panel. It forms a sandwich panel.

次に動作について説明する。Next, the operation will be explained.

第1図は、衛星3に取付けられかつ展開ヒンジ2によっ
て互いに連結された複数のアンテナバネルIの展開後の
状態を示している。
FIG. 1 shows a plurality of antenna panels I attached to a satellite 3 and connected to each other by deployment hinges 2 in a deployed state.

第2図は、アンテナパネル1の断面図であシ、マイクロ
ストリップアレーアンテナの実際例を示している。
FIG. 2 is a sectional view of the antenna panel 1, showing an actual example of a microstrip array antenna.

図中、アンテナパネルIは、誘電体から成る基板5の一
方の面に金、銀、銅などと同様に電気伝導度が高く、軽
量で剛性の高い地導体7を有し、その間を軽量で低誘電
率を有する材料から成る誘電体コア6で埋めて構成した
第1のサンドイッチパネルAと、アンテナパネルl全体
の剛性をあげるため、軽量なコア8と、軽量で剛性の高
い表皮材9とを組み合わせた第2のサンドイッチパネル
Bとにより、二重サンドインチ構造を構成している。
In the figure, the antenna panel I has a ground conductor 7 on one side of a substrate 5 made of a dielectric material, which has high electrical conductivity like gold, silver, copper, etc., and is lightweight and highly rigid. The first sandwich panel A is composed of a dielectric core 6 made of a material having a low dielectric constant, a lightweight core 8 and a lightweight and highly rigid skin material 9 to increase the rigidity of the entire antenna panel. and the second sandwich panel B in combination constitutes a double sandwich structure.

第3図に従来のマイクロストリップアレーアンテナの構
成材料の実際例を示す。
FIG. 3 shows an actual example of the constituent materials of a conventional microstrip array antenna.

第6図において、第2図の放射素子4に銅箔、基板5に
ガラス繊維強化プラスチツク材、誘電体コア6にナイロ
ン繊維強化ハニカムコア、地導体7にカーボン繊維強化
プラスチツク材、コア8にアルミハニカムコア、表皮材
9にカーボン繊維強化プラスチツク材をそれぞれ用いて
いる。
In FIG. 6, the radiating element 4 in FIG. 2 is made of copper foil, the substrate 5 is made of glass fiber reinforced plastic material, the dielectric core 6 is made of nylon fiber reinforced honeycomb core, the ground conductor 7 is made of carbon fiber reinforced plastic material, and the core 8 is made of aluminum. Carbon fiber reinforced plastic material is used for the honeycomb core and the skin material 9, respectively.

ところで、複合材は接合材断面の中立面から両側の平均
熱膨張係数が同じであれば、温度差が生じても面外の変
形は小さいが、面側の平均熱膨張係数の違いが太きけれ
ば大きいほどバイメタルと同様に面外の変形が大きくな
る。
By the way, in a composite material, if the average coefficient of thermal expansion on both sides from the neutral plane of the cross section of the bonded material is the same, the out-of-plane deformation will be small even if a temperature difference occurs, but the difference in the average coefficient of thermal expansion on the plane side will be large. The larger the difference, the greater the out-of-plane deformation, similar to bimetals.

ガラス繊維の熱膨張係数は、カーボン繊維の熱膨張係数
より大きいので従来のアンテナパネルは、温度差によシ
バイメタルと同様に面外の変形が大きく生じていた。
Since the coefficient of thermal expansion of glass fiber is larger than that of carbon fiber, conventional antenna panels suffer from large out-of-plane deformations due to temperature differences, similar to the case with semi-metal.

アンテナパネル全体は、電気性能の要求条件から平坦に
す不必要がある。
The entire antenna panel does not need to be flat due to electrical performance requirements.

しかし、従来のマイクロストリップアレーアンテナは、
以上のように構成されているので、各層の熱膨張係数が
違うため、人工衛星打上げ前の地上と・人工衛星打上げ
後0宇宙空間とに温度差力” ・1あシ、第4図に示す
ようにアンテナパネルの熱変形が生じた。
However, the conventional microstrip array antenna
With the above structure, each layer has a different coefficient of thermal expansion, so there is a temperature difference between the ground before the satellite is launched and the outer space after the satellite is launched. This caused thermal deformation of the antenna panel.

ところが、アンテナ電気性能上の要求から、熱変形を小
さく平坦にしなければならず、各層の熱膨張係数を同じ
くするだめの構成材料の検討及び変更するととが必要で
、また、補強ビーム材等による熱変形を小さくするため
剛性強化等の構造上の検討及び変更をする必要があり、
重量増加を寸ねくなどの欠点があった。
However, due to the requirements for antenna electrical performance, it is necessary to minimize thermal deformation and make it flat, and it is necessary to consider and change the constituent materials to make each layer have the same coefficient of thermal expansion. In order to reduce thermal deformation, it is necessary to consider and change the structure, such as strengthening the rigidity.
There were drawbacks such as a slight increase in weight.

この発明は、このような欠点を解消するためになされた
もので、精度が高く、かつ軽量な人工衛星搭載用展開型
マイクロストリップアレーアンテナを提供するものであ
る。
The present invention has been made to eliminate these drawbacks, and provides a highly accurate and lightweight deployable microstrip array antenna for use on an artificial satellite.

以下、この発明の一実施例について説明する。An embodiment of the present invention will be described below.

第5図において、基本的な構成及び構造は、第6図と同
様であるが、この発明の実施例では第1のサンドインチ
パネルを構成しているガラス繊維強化プラスチツク材の
基板5と、ナイロン繊維強化ハニカムコアで形成された
誘電体コア6の断面を切断し、第6図に示すように放射
素子4を設けた基板5と誘電体コア6の第1のサンドイ
ンチパネルAを8分割にしている。
In FIG. 5, the basic configuration and structure are the same as those in FIG. The cross section of the dielectric core 6 formed of a fiber-reinforced honeycomb core was cut, and the first sandwich panel A of the dielectric core 6 and the substrate 5 provided with the radiating element 4 was divided into eight parts as shown in FIG. ing.

以上のように、この発明によれば、第1のサンドインチ
パネルAを構成するガラス繊維強化プラスチツク材の基
板5と、ナイロン繊維強化・・ニカムコアで形成した誘
電体コア6の断面を切断し、温度差によシバイメタルと
同様に面外変形しようとする蒔、上記第1のサンドイン
チパネルAの切断部で面外変形をおこさせる力を開放し
、面外変形量を、J・さくした二重サンドインチ構造で
あるから、宇宙空間での熱変形を減少させパネル全体を
平坦にできる利点がある。
As described above, according to the present invention, the cross section of the substrate 5 made of glass fiber reinforced plastic material constituting the first sandwich panel A and the dielectric core 6 formed of nylon fiber reinforced Nicum core is cut, The force that causes out-of-plane deformation at the cut portion of the first sandwich panel A was released, and the amount of out-of-plane deformation was reduced by J. The double sandwich structure has the advantage of reducing thermal deformation in space and making the entire panel flat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、従来における人工衛星搭載用展開型
ストリップアレーアンテナを説明するための図、第5図
及び第6図は、この発明のマイクロストリップアレーア
ンテナの特徴を説明するだめの図である。 図中、1はアンテナパネル、2は展開ヒンジ、3は衛星
、4は放射素子、5は基板、6は誘電体コア、7は地導
体、8はコア、9は表皮材をそれぞれ示す。 J
1 to 4 are diagrams for explaining a conventional deployable strip array antenna for use onboard an artificial satellite, and FIGS. 5 and 6 are diagrams for explaining the features of the microstrip array antenna of the present invention. It is a diagram. In the figure, 1 is an antenna panel, 2 is a deployment hinge, 3 is a satellite, 4 is a radiating element, 5 is a substrate, 6 is a dielectric core, 7 is a ground conductor, 8 is a core, and 9 is a skin material. J

Claims (1)

【特許請求の範囲】[Claims] 誘電体コアの一方の面側に地導体を形成するカーボン繊
維強化プラスチックを有し、かつ上記誘電体コアの他方
の面側に放射素子を形成する金属箔を被着した基板を有
する第1のサンドインチパネルと、上記カーボン繊維強
化プラスチックよシなる地導体に接合され、カーボン繊
維強化プラスチツク表皮およびコアからなる第2のサン
ドイッチパネルとを備えて、二重サンドインチ構造とな
されたマイクロストリップアレーアンテナにおいて、上
記第1のサンドイッチパネルを構成する上記基板および
上記誘電コアが複数個に分割されていることを特徴とす
るマイクロストリップアレーアンテナ。
A first substrate having a carbon fiber reinforced plastic forming a ground conductor on one side of a dielectric core, and a substrate covered with a metal foil forming a radiating element on the other side of the dielectric core. A microstrip array antenna having a double sandwich structure, comprising a sandwich panel and a second sandwich panel made of a carbon fiber reinforced plastic skin and core, which is bonded to a ground conductor such as the carbon fiber reinforced plastic. A microstrip array antenna, wherein the substrate and the dielectric core constituting the first sandwich panel are divided into a plurality of pieces.
JP11707383A 1983-06-30 1983-06-30 Microstrip array antenna Granted JPS6010806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11707383A JPS6010806A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11707383A JPS6010806A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Publications (2)

Publication Number Publication Date
JPS6010806A true JPS6010806A (en) 1985-01-21
JPH0123961B2 JPH0123961B2 (en) 1989-05-09

Family

ID=14702736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11707383A Granted JPS6010806A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Country Status (1)

Country Link
JP (1) JPS6010806A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987425A (en) * 1987-11-13 1991-01-22 Dornier System Gmbh Antenna support structure
FR2672438A1 (en) * 1991-02-01 1992-08-07 Alcatel Espace NETWORK ANTENNA, IN PARTICULAR FOR SPATIAL APPLICATION.
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
US5325103A (en) * 1992-11-05 1994-06-28 Raytheon Company Lightweight patch radiator antenna
US5434580A (en) * 1988-12-08 1995-07-18 Alcatel Espace Multifrequency array with composite radiators
EP0905816A2 (en) * 1997-09-30 1999-03-31 Mitsubishi Denki Kabushiki Kaisha Light-weight flat antenna device tolerant of temperature variation
WO2005117202A1 (en) * 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels
US8164527B2 (en) 2011-03-03 2012-04-24 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US8854275B2 (en) 2011-03-03 2014-10-07 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
WO2015160397A3 (en) * 2014-04-17 2015-12-03 The Boeing Company Modular antenna assembly
US10262775B2 (en) 2011-07-11 2019-04-16 Tangitek, Llc Energy efficient noise dampening cables
CN110757909A (en) * 2019-09-26 2020-02-07 南京航空航天大学 Novel carbon-fibre composite telescope antenna panel structure
US11426950B2 (en) 2015-07-21 2022-08-30 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987425A (en) * 1987-11-13 1991-01-22 Dornier System Gmbh Antenna support structure
US5434580A (en) * 1988-12-08 1995-07-18 Alcatel Espace Multifrequency array with composite radiators
FR2672438A1 (en) * 1991-02-01 1992-08-07 Alcatel Espace NETWORK ANTENNA, IN PARTICULAR FOR SPATIAL APPLICATION.
US5325103A (en) * 1992-11-05 1994-06-28 Raytheon Company Lightweight patch radiator antenna
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
EP0905816A2 (en) * 1997-09-30 1999-03-31 Mitsubishi Denki Kabushiki Kaisha Light-weight flat antenna device tolerant of temperature variation
EP0905816A3 (en) * 1997-09-30 2000-01-05 Mitsubishi Denki Kabushiki Kaisha Light-weight flat antenna device tolerant of temperature variation
WO2005117209A1 (en) * 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) An antenna arrangement
WO2005117202A1 (en) * 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels
US8164527B2 (en) 2011-03-03 2012-04-24 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US8854275B2 (en) 2011-03-03 2014-10-07 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9782948B2 (en) 2011-03-03 2017-10-10 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US10262775B2 (en) 2011-07-11 2019-04-16 Tangitek, Llc Energy efficient noise dampening cables
WO2015160397A3 (en) * 2014-04-17 2015-12-03 The Boeing Company Modular antenna assembly
US10658758B2 (en) 2014-04-17 2020-05-19 The Boeing Company Modular antenna assembly
US11426950B2 (en) 2015-07-21 2022-08-30 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials
CN110757909A (en) * 2019-09-26 2020-02-07 南京航空航天大学 Novel carbon-fibre composite telescope antenna panel structure

Also Published As

Publication number Publication date
JPH0123961B2 (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPS6010806A (en) Microstrip array antenna
US6064352A (en) Composite isogrid structures for parabolic surfaces
US3381371A (en) Method of constructing lightweight antenna
US4635071A (en) Electromagnetic radiation reflector structure
US7109942B2 (en) Structurally integrated phased array antenna aperture design and fabrication method
US5273815A (en) Thermal control and electrostatic discharge laminate
US20090184881A1 (en) Structural feed aperture for space based phased array antennas
US3150030A (en) Laminated plastic structure
JPS61116405A (en) Structure for dichroic antenna
US6421022B1 (en) Dual band hybrid solid/dichroic antenna reflector
EP2232626B1 (en) Methods and apparatus for multilayer millimeter-wave window
US5486399A (en) Self-supporting convex cover for spacecraft
US5405107A (en) Radar transmitting structures
US2641561A (en) Sandwich-type radome panel
US5278574A (en) Mounting structure for multi-element phased array antenna
US20040113863A1 (en) Microwave frequency antenna reflector
JPS58184805A (en) Microstrip array antenna
US6008448A (en) Solar panel array with stepped taper
JPH0138968Y2 (en)
US5198828A (en) Microwave radar antenna and method of manufacture
JPH0220005B2 (en)
US4700195A (en) Waveguide fed composite horn antenna
Alt et al. Overview of the DoD's rf multifunction structural aperture (MUSTRAP) program
CN108649347B (en) Light cable membrane microstrip phased array antenna structure
JPH0145761B2 (en)