JPS6010774A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6010774A
JPS6010774A JP11908083A JP11908083A JPS6010774A JP S6010774 A JPS6010774 A JP S6010774A JP 11908083 A JP11908083 A JP 11908083A JP 11908083 A JP11908083 A JP 11908083A JP S6010774 A JPS6010774 A JP S6010774A
Authority
JP
Japan
Prior art keywords
layer
base
type
inp
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11908083A
Other languages
Japanese (ja)
Inventor
Naoki Yokoyama
直樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11908083A priority Critical patent/JPS6010774A/en
Publication of JPS6010774A publication Critical patent/JPS6010774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To inject holes of high speed to a base, and to shorten the transient time of a small number of carriers by forming spiky barriers to a valence band in an emitter-base junction section and passing the barriers through holes, mobility thereof is originally low. CONSTITUTION:A first layer p type InGaAs layer 7 is formed on an InP p<+> substrate 6, and an n type InGaAs layer 8 is formed on the p type -InGaAs layer and a p type InP layer 9 further on the layer 8. AuGe/Au electrodes 11, 12 as base electrodes are formed on the second layer n-InGaAs layer 8 through etchings 9a, 9b up to the second layer n type InGaAs layer while leaving an emitter region in the third layer InP layer. Ohmic contacts are formed through alloyings to form bases, Au/Zn/Au electrodes 10, 13 are shaped to the third layer p type InP layer 9 and the back of a p<+> type InP 6, and emitter and collector electrodes are formed through the making of ohmics. Accordingly, a p-n-p hetero- junction bipolar transistor is formed.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置に係り、特に価電子帯にスパイク状
の障壁を設けたPNP型へテロ接合トランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to a PNP type heterojunction transistor in which a spike-like barrier is provided in the valence band.

(2)技術の背景 従来、バイポーラ型のトランジスタのスイッチング時間
の高速化を図るためには次式で表わされるスイッチング
時間(τS)が小さくなる様に工夫していた。
(2) Background of the Technology Conventionally, in order to speed up the switching time of bipolar transistors, efforts have been made to reduce the switching time (τS) expressed by the following equation.

ここでRし:ベース抵抗I CCコレクタ容量CL:負
荷容量IRL’負荷抵抗、τし :ベース中少数キャリ
ヤのトランジェントクイムで表わせる。
Here, R: base resistance I CC collector capacitance CL: load capacitance IRL' load resistance, τ: expressed by the transient quim of minority carriers in the base.

上式から高速のスイッチング時間τSを得るにはバイポ
ーラトランジスタベース抵抗R)を小さくシ、且つベー
ス中の少数キャリヤのトランジェントタイムτ−を短く
する必要があることが解る。
From the above equation, it can be seen that in order to obtain a high-speed switching time .tau.S, it is necessary to make the bipolar transistor base resistance R) small and to shorten the transient time .tau.- of minority carriers in the base.

(3)従来技術の問題点 上記したR1の値を小さくするためにはベース領域の面
積を小さくし微細加工技術によってトランジスタの寸法
を微細化すると共にトランジスタのベース領域の厚さを
小さくして電子がベースを通過する時間、即ちτSを短
くする努力が払われている。
(3) Problems with the conventional technology In order to reduce the above-mentioned value of R1, the area of the base region is reduced and the dimensions of the transistor are miniaturized using microfabrication technology, and the thickness of the base region of the transistor is also reduced. Efforts are being made to shorten the time it takes for τ to pass through the base, ie, τS.

ベースを微細化するためには従来のトランジスタ形成工
程に3枚のホトマスクを用いてホトエツチングによる3
回の加工を必要とするのでホトマスクの位置合せに一定
の誤差を持つ分だけ余裕を持った設計を行なう必要があ
りベースの縮小には限界があったがセルファライニング
(self −altgning)技術により1回のホ
トマスク即ちホトエツチングを用いた5uper 5e
lf aligned ProcessTechnoa
logy (SST )等が提案され従来のブレーナ型
トランジスタに比べてベース領域の大きさを1/3に縮
小し、伝搬遅延時間63ピコ秒/ゲートを得た報告がな
されているが微細化してベース領域を小さくするには現
在の技術では限界に達しているのが現状である。
In order to miniaturize the base, three photomasks are used in the conventional transistor forming process, and three
Since this process requires several times of processing, it is necessary to design with a margin for a certain error in the alignment of the photomask, and there is a limit to the reduction of the base. 5upper 5e using multiple photomasks or photoetching
lf aligned Process Technoa
Logic (SST) etc. have been proposed, and it has been reported that the size of the base region was reduced to 1/3 compared to the conventional Brainer type transistor, and a propagation delay time of 63 picoseconds/gate was obtained. Currently, the current technology has reached its limit in reducing the area.

(4)発明の目的 本発明は上記従来の欠点に鑑みなされたものでベース抵
抗Rbを下げるためにベース部に移動度の高いnタイプ
の半導体を用いるとともにエミッタ・ベース接合部の価
電子帯にスパイク状の障壁を設は該障壁を本来移動度の
低いホールを通過させる事により、高速のホールをベー
スに注入し、少数キャリヤのトランジェントタイムτし
 の減少を図った半導体装置を提供することを目的とす
るものである。
(4) Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks of the conventional technology.In order to lower the base resistance Rb, an n-type semiconductor with high mobility is used in the base part, and the valence band of the emitter-base junction is By providing a spike-shaped barrier and allowing holes with originally low mobility to pass through the barrier, high-speed holes are injected into the base, thereby providing a semiconductor device in which the transient time τ of minority carriers is reduced. This is the purpose.

(5)発明の構成 上記目的は本発明によればエミッタとベース間のヘテロ
接合面の価電子帯にスパイク状の障壁を形成し、該障壁
を乗り越えた初速のついた高速なホールを上記ベースへ
注入するようにしたことを特徴とするPNPへテロ接合
の半導体装置を提供することによって達成される。
(5) Structure of the Invention According to the present invention, the above object is to form a spike-shaped barrier in the valence band of the heterojunction surface between the emitter and the base, and to transfer high-speed holes with an initial velocity that have overcome the barrier to the base. This is achieved by providing a PNP heterojunction semiconductor device characterized by implantation into a PNP heterojunction.

(6)発明の実施例 以下本発明の一実施例を図面について詳記する。(6) Examples of the invention An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の動作時のエネルギーバンド図を示すも
ので具体的にはP−1nP / n−InGaAs/ 
P−InGaAsのへテロ構造を有する化合物半導体に
ついて説明する。
FIG. 1 shows an energy band diagram during operation of the present invention, specifically, P-1nP/n-InGaAs/
A compound semiconductor having a P-InGaAs heterostructure will be described.

上記のP型のInPで構成されたエミッタとn型のIn
GaAsで構成したベースが順方向にバイアスされると
通常ホールはベース中に注入されるが、第1図に示すよ
うにベース・エミッタ接合を急峻部4をなすようにする
と価電子帯にスパイク状の障壁2が生じるためにホール
1は上記障壁2を越えたものしかベース領域に注入され
ないためにホール1の持つポテンシャルエネルギーは運
動エネルギーに変換されてベース中を5 X 10りc
m / secの初速度を持って500人厚0ベース中
を0.1ピコ秒程度で通過する。又、ベース部分がn−
1nGaAsで構成されているので電子の移動度は太き
(なり、ベース抵抗Rhは小さくなる。更にベース中の
少数キャリヤのトランジェントタイムτし について考
察した場合、ホールは元来移動度が低いとされているが
障壁2を形成して初速度を持ったホールをベースへ注入
すればスイッチング時間τSの早いPNPへテロ接合バ
イポーラトランジスタを得ることが出来る。
The above emitter made of P-type InP and n-type InP
When a base made of GaAs is forward biased, holes are normally injected into the base, but if the base-emitter junction is made to form a steep part 4 as shown in Figure 1, a spike-shaped hole is injected into the valence band. Since the barrier 2 is generated, only the hole 1 that exceeds the barrier 2 is injected into the base region, so the potential energy of the hole 1 is converted into kinetic energy and flows through the base as 5 x 10
It has an initial velocity of m/sec and passes through a 500-person thick zero base in about 0.1 picosecond. Also, the base part is n-
Since it is composed of 1nGaAs, the mobility of electrons is high (and the base resistance Rh is small.Furthermore, when considering the transient time τ of minority carriers in the base, it is assumed that holes have originally low mobility. However, if a barrier 2 is formed and holes with an initial velocity are injected into the base, a PNP heterojunction bipolar transistor with a fast switching time τS can be obtained.

なお、エミッタにP−1nPをベースにN −In G
aAsを選択すると上記したスパイク状の障壁2は0.
48eV、伝導帯のエネルギー差4は0.11eVとな
る。
In addition, N-In G based on P-1nP is used as the emitter.
When aAs is selected, the spike-shaped barrier 2 described above becomes 0.
48 eV, and the conduction band energy difference 4 is 0.11 eV.

尚、第1図で3は電子を5はフェルミレベルを示す。In FIG. 1, 3 indicates an electron and 5 indicates a Fermi level.

上記したバイポーラ型のPNPへテロ接合トランジスタ
の構造の一実施例を第2図に示す。
An example of the structure of the above bipolar type PNP heterojunction transistor is shown in FIG.

第2図に於て6はInPのP十 基板であり気相成長法
により上記基板6上に第1層目のP型のInGaAs層
7を形成し、更に該P型−In GaAs層上にn型5
− OTnGaAs層8を更にその上にP型のInP層9を
形成し、第3層目のInP層のエミッタ領域を残して第
2層目のn型InGa’AsN迄エツチング9a、9b
を施してベース電極と成るAuGe/Auの電極11.
12を第2N目のnlnGaAs層8上に形成しアロう
イングしオーミックコンタクトを取ってベースと成し、
第3N目のP型1nP層9並びにp中型InP 6の裏
面にAu/ Zn/ Auの電極10.13を形成して
オーミックをとってエミッタ及びコレクタ電極とするこ
とでPNPへテロ接合バイポーラトランジスタが構成で
きる。
In FIG. 2, reference numeral 6 denotes an InP substrate, and a first P-type InGaAs layer 7 is formed on the substrate 6 by vapor phase growth, and then a first P-type InGaAs layer 7 is formed on the P-InGaAs layer. n-type 5
- A p-type InP layer 9 is further formed on the OTnGaAs layer 8, and etched to the second n-type InGa'AsN layer 9a, 9b, leaving the emitter region of the third InP layer.
An AuGe/Au electrode 11. is applied to form a base electrode.
12 is formed on the 2N-th nlnGaAs layer 8 and arrowed to form an ohmic contact to form a base,
A PNP heterojunction bipolar transistor is formed by forming Au/Zn/Au electrodes 10.13 on the back surface of the 3N-th P-type 1nP layer 9 and the p-medium InP 6 and using them as emitter and collector electrodes with ohmic properties. Can be configured.

上記構成で第2層目のn−In GaAs層8と第3層
のP−1nP層9とのPN接合を気相成長装置によって
急峻に形成するための一実施例を第3図及び第4図につ
いて説明する。
An example of steeply forming a PN junction between the second n-In GaAs layer 8 and the third P-1nP layer 9 using a vapor phase growth apparatus in the above configuration is shown in FIGS. 3 and 4. The diagram will be explained.

第3図及び第4図は上記気相成長装置を示す側断面図で
ある。
FIGS. 3 and 4 are side sectional views showing the vapor phase growth apparatus.

上記気相成長装置は第1の領域14と第2の領域15を
有し、第1の領域14には1n16が設けられ、管17
からはLとPCII 3のガスが導入6− される。
The vapor phase growth apparatus has a first region 14 and a second region 15, the first region 14 is provided with 1n16, and the tube 17 is provided with 1n16.
L and PCII 3 gases are introduced from 6-.

一方第2の領域15にはGa18が設けられており管6
からはH2とAsC123ガスが導入される。
On the other hand, Ga 18 is provided in the second region 15 and the tube 6
H2 and AsC123 gas are introduced.

領域14と領域15間には区切り板20が設けられてお
り更には基板21としては第2図に示す基板6上に第1
層目のP−InGaAs層7が形成されたものが配置さ
れているとする。上記基板21を配置した基板ホルダー
22は気相成長装置内で前後に移動可能に設けられてい
る。第3図では基板21はガス流の下流方向に引いてい
るため基板21には領域14.15を流れる反応ガスが
接触して基板21上にInGaAsの気相成長が行われ
ている。次に第4図に示すように基板ホルダー22をガ
ス流の上流に移動させ区切り板20に対接させると領域
14の反応ガスのみ基板2(に接触しInPが成長する
A partition plate 20 is provided between the area 14 and the area 15, and furthermore, a partition plate 20 is provided as a substrate 21 on a substrate 6 shown in FIG.
It is assumed that a P-InGaAs layer 7 is formed thereon. A substrate holder 22 on which the substrate 21 is placed is provided so as to be movable back and forth within the vapor phase growth apparatus. In FIG. 3, since the substrate 21 is drawn in the downstream direction of the gas flow, the reactive gas flowing in the region 14.15 comes into contact with the substrate 21, and InGaAs is vapor-phase grown on the substrate 21. Next, as shown in FIG. 4, when the substrate holder 22 is moved upstream of the gas flow and brought into contact with the partition plate 20, only the reaction gas in the region 14 comes into contact with the substrate 2, and InP grows.

このように気相成長させるとP−InP層とn−InG
aAs層間のへテロ接合面を急峻にすることが可能とな
る。即ち従来ではN型のInGaAs層成長後に次のガ
ス吹き込みまでInGaAs層の形成された基板21を
待機させる待機法を取っているためにその間に基板上に
成長したInGaAs層が劣化していたが本発明でガス
の切換えを機械的なシャッタ構造で行なうためにヘテロ
接合面を急峻にすることが出来る。
By vapor phase growth in this way, a P-InP layer and an n-InG layer are formed.
It becomes possible to make the heterojunction surface between the aAs layers steep. In other words, in the past, after the growth of the N-type InGaAs layer, the substrate 21 on which the InGaAs layer was formed was kept on standby until the next gas injection, which caused the InGaAs layer grown on the substrate to deteriorate during that time. In the invention, the heterojunction surface can be made steep in order to perform gas switching using a mechanical shutter structure.

(7)発明の効果 本発明は叙上の如く構成し動作させたのでベース部分の
n型半導体によってベース抵抗R)を小さくすることが
出来ると共にエミッタ、ベース間の接合を急峻にし、こ
れら接合部の価電子帯にスパイク状の障壁を形成したの
で初速の与えられたホールをエミッタ、ベース間に通過
させることが出来るのでスイッチング特性が0.1ピコ
秒程度のバイポーラ型PNP )ランジスタを得ること
が出来る結果を有する。
(7) Effects of the Invention Since the present invention is configured and operated as described above, it is possible to reduce the base resistance (R) by using the n-type semiconductor in the base portion, and also to make the junction between the emitter and the base steep. Since a spike-shaped barrier is formed in the valence band of the transistor, holes with a given initial velocity can pass between the emitter and the base, making it possible to obtain a bipolar PNP transistor with switching characteristics of about 0.1 picoseconds. have possible results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の動作時のエネルギーバン
ド図、第2図は本発明の半導体装置の一実施例を示す側
断面図、第3図及び第4図は本発明の半導体装置を気相
成長法で得る場合の気相成長装置の動作を説明する側断
面図である。 1・・・ホール 2・・・スパイク状障壁 。 3・・・電子 4・・・急峻部 6・・・基板 7 ・・・P−InGaAs層 8・・
・n−InGaAs層 9・・・P−102層10・・
・エミッタ電極 11.12・・・ベース電極 13・
・・コレクタ電極 14.15・・・第1及び第2領域 16・・・InP 18・・・Ga 21・・・基板 9− 第2図
FIG. 1 is an energy band diagram during operation of the semiconductor device of the present invention, FIG. 2 is a side sectional view showing an embodiment of the semiconductor device of the present invention, and FIGS. 3 and 4 are diagrams showing the semiconductor device of the present invention. FIG. 3 is a side sectional view illustrating the operation of a vapor phase growth apparatus when obtaining by a vapor phase growth method. 1...Hole 2...Spike-like barrier. 3...Electron 4...Steep part 6...Substrate 7...P-InGaAs layer 8...
・n-InGaAs layer 9...P-102 layer 10...
・Emitter electrode 11.12...Base electrode 13・
...Collector electrode 14.15...First and second region 16...InP 18...Ga 21...Substrate 9- FIG.

Claims (1)

【特許請求の範囲】[Claims] エミッタとベース間のへテロ接合面の価電子帯にスパイ
ク状の障壁を形成し、該障壁を乗り越えた初速のついた
高速なホールを該ベースに注入するようにしたことを特
徴とするPNPへテロ接合の半導体装置。
A PNP characterized in that a spike-shaped barrier is formed in the valence band of the heterojunction surface between the emitter and the base, and high-speed holes with an initial velocity that overcome the barrier are injected into the base. Terojunction semiconductor device.
JP11908083A 1983-06-30 1983-06-30 Semiconductor device Pending JPS6010774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11908083A JPS6010774A (en) 1983-06-30 1983-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11908083A JPS6010774A (en) 1983-06-30 1983-06-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6010774A true JPS6010774A (en) 1985-01-19

Family

ID=14752379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11908083A Pending JPS6010774A (en) 1983-06-30 1983-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6010774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229878A (en) * 1986-03-04 1987-10-08 Fujitsu Ltd High speed semiconductor device
US5206524A (en) * 1988-09-28 1993-04-27 At&T Bell Laboratories Heterostructure bipolar transistor
US5283448A (en) * 1989-11-29 1994-02-01 Texas Instruments Incorporated MESFET with indium gallium arsenide etch stop
US5925783A (en) * 1994-11-17 1999-07-20 Bayer Aktiengesellschaft Process for the preparation of isocyanates
US6188137B1 (en) * 1995-05-25 2001-02-13 Sharp Kabushiki Kaisha Ohmic electrode structure, semiconductor device including such ohmic electrode structure, and method for producing such semiconductor device
US7851648B2 (en) 2002-12-19 2010-12-14 Basf Aktiengesellschaft Method for the continuous production of isocyanates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943583A (en) * 1972-08-30 1974-04-24
JPS4998970A (en) * 1973-01-24 1974-09-19
JPS5185677A (en) * 1975-01-27 1976-07-27 Hitachi Ltd WAIDOGYATSU PUEMITSUTATORAN JISUTA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943583A (en) * 1972-08-30 1974-04-24
JPS4998970A (en) * 1973-01-24 1974-09-19
JPS5185677A (en) * 1975-01-27 1976-07-27 Hitachi Ltd WAIDOGYATSU PUEMITSUTATORAN JISUTA

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229878A (en) * 1986-03-04 1987-10-08 Fujitsu Ltd High speed semiconductor device
US5206524A (en) * 1988-09-28 1993-04-27 At&T Bell Laboratories Heterostructure bipolar transistor
US5283448A (en) * 1989-11-29 1994-02-01 Texas Instruments Incorporated MESFET with indium gallium arsenide etch stop
US6057567A (en) * 1989-11-29 2000-05-02 Texas Instruments Incorporated Integrated circuit and method
US5925783A (en) * 1994-11-17 1999-07-20 Bayer Aktiengesellschaft Process for the preparation of isocyanates
US6188137B1 (en) * 1995-05-25 2001-02-13 Sharp Kabushiki Kaisha Ohmic electrode structure, semiconductor device including such ohmic electrode structure, and method for producing such semiconductor device
US7851648B2 (en) 2002-12-19 2010-12-14 Basf Aktiengesellschaft Method for the continuous production of isocyanates

Similar Documents

Publication Publication Date Title
US5124270A (en) Bipolar transistor having external base region
JPH06326120A (en) Heterojunction bipolar transistor and its integrated light-receiving circuit
Shimawaki et al. High-f/sub max/AlGaAs/InGaAs and AlGaAs/GaAs HBT's with p/sup+//p regrown base contacts
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH06163567A (en) P-n junction diffusion barrier body
JPH08250509A (en) Heterojunction bipolar transistor
JPS6010774A (en) Semiconductor device
JPH06104273A (en) Semiconductor device
EP0036501A1 (en) Semiconductor inversion layer transistor
EP0335720A2 (en) Bipolar transistor device and method of manufacturing the same
JP2004088107A (en) Heterojunction bipolar transistor(hbt) having improved emitter/base grading structure
US4772932A (en) Bipolar transistor and including gas layers between the emitter and base and the base and collector
EP0384113A2 (en) Multilayer base heterojunction biopolar transistor
EP0472262B1 (en) Heterojunction bipolar transistor
JPS59181060A (en) Semiconductor device
EP0387010A2 (en) Hetero-junction bipolar transistor
Scott et al. A 183 GHz f T and 165 GHz f max regrown-emitter DHBT with abrupt InP emitter
JPS6247157A (en) Semiconductor device
Kızıloğlu et al. Investigation of process related reliability for InP-based heterojunction bipolar transistors (HBTs)
KR100352375B1 (en) Method Manufacturing the Heterojunction Bipolar Transistor
JP2558937B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPH11121462A (en) Semiconductor device and its manufacture
JP2830515B2 (en) Semiconductor device and method of manufacturing the same
Gao et al. Fundamentals, Performance and Reliability of Iii-V Compound Semiconductor Heterojunction Bipolar Transistors
JPH02189931A (en) Bipolar transistor