JPS60107593A - Automatic stop device for nuclear reactor - Google Patents

Automatic stop device for nuclear reactor

Info

Publication number
JPS60107593A
JPS60107593A JP58215784A JP21578483A JPS60107593A JP S60107593 A JPS60107593 A JP S60107593A JP 58215784 A JP58215784 A JP 58215784A JP 21578483 A JP21578483 A JP 21578483A JP S60107593 A JPS60107593 A JP S60107593A
Authority
JP
Japan
Prior art keywords
control rod
reactor
fuel
automatic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58215784A
Other languages
Japanese (ja)
Other versions
JPH0422231B2 (en
Inventor
富士男 松本
山中 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58215784A priority Critical patent/JPS60107593A/en
Publication of JPS60107593A publication Critical patent/JPS60107593A/en
Publication of JPH0422231B2 publication Critical patent/JPH0422231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は高速増殖炉の事故時に、通常の炉停止系がスク
ラムしなかった場合に、冷却材の温度を検出し1自動的
にスクラムする原子炉自動停止装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an atom system that detects the coolant temperature and automatically scrams when the normal reactor shutdown system does not scram during an accident in a fast breeder reactor. Regarding automatic furnace shutdown equipment.

[発明の技術的前頭] 一般に原子炉は中性子吸収材を内蔵した制御棒を炉心内
に挿1]tJ Lで出力制御を行なうが、事故等の緊急
時には、この制御棒を炉心に全挿入して炉の出力を停止
さけるように構成されている。
[Technical Preface of the Invention] Generally, a nuclear reactor controls the output by inserting a control rod containing a neutron absorbing material into the reactor core, but in the event of an emergency such as an accident, the control rod must be fully inserted into the reactor core. The furnace is configured to avoid shutting down the furnace output.

しかして原子炉自動停止装置は緊急時に炉の運転を確実
に停止さUる必要があるため、構造が部子で確実に作動
し得るものであることが要求される。従って、この柾装
置は原子炉停止系に出力されるスクラム信号に基づいて
ロジック回路やリレー等の電気回路および制御棒駆動機
414等の外部機器を用いて作動する原子炉停止系と、
このような外部機器を用いることなく、独立かつ自動的
に動作する原子炉自動停止系とを並用しU2ffi、3
重の安全対策を4Rじることが望まれ−Cいる。
Since it is necessary for the automatic reactor shutdown system to reliably stop the operation of the reactor in an emergency, it is required that the structure is such that each part can operate reliably. Therefore, this device includes a reactor shutdown system that operates based on the scram signal output to the reactor shutdown system using electric circuits such as logic circuits and relays, and external equipment such as the control rod drive machine 414.
The U2ffi, 3
It is desirable to implement 4R heavy safety measures.

第1図は液体金属冷却形高速増殖炉の概略例を示す。同
図におい−C1原子炉容器1内には炉心2が収容されC
おり、この炉心2は炉心支持構造物3によって支持され
ている。原子炉容器1はその上端を遮蔽プラグ4によっ
て閉塞されCおり、原子炉容器1内には液体ナトリウム
等の冷却材が収容されでいる。
FIG. 1 shows a schematic example of a liquid metal cooled fast breeder reactor. In the same figure, the reactor core 2 is housed in the C1 reactor vessel 1.
This core 2 is supported by a core support structure 3. The upper end of the reactor vessel 1 is closed off by a shielding plug 4, and a coolant such as liquid sodium is contained within the reactor vessel 1.

低温の冷却材は冷却材入口管5から原子炉容器1内下部
に流入し、下方より炉心2を通過して加熱され、高温と
なった冷却材は冷却材出口管6より原子炉容器1外に流
出し、中間熱交換器(図示せず)に送られ二次冷却材と
熱交換される。二次冷却材との熱交換によって低温とな
った冷却材は冷却材出口管5を通ってふたlこび原子炉
容器1内下部に送られ、以下この径路を循環する。
The low-temperature coolant flows into the lower part of the reactor vessel 1 from the coolant inlet pipe 5, passes through the reactor core 2 from below and is heated, and the high-temperature coolant flows out of the reactor vessel 1 from the coolant outlet pipe 6. It flows out to the intermediate heat exchanger (not shown) and exchanges heat with the secondary coolant. The coolant, which has become low temperature through heat exchange with the secondary coolant, passes through the coolant outlet pipe 5 and is sent to the lower part of the reactor vessel 1, and thereafter circulates through this path.

炉心2内には燃料集合体とともに制御棒集合体7が装置
されている。なお、この制御棒集合体7は実際には複数
体膜けられCいるが、図には1体のみ示ず。前記遮蔽プ
ラグ4には、これを貫通して炉心上部機4t?J8が設
番プられている。遮蔽プラグ4を貫通しC設けられる継
胴9内には多数本の計測フィン力10が収容されている
。これらのも1測フインガ10の先端は炉心2の上面に
対向しCおり、かつ先端部には温度検出器(図示せず)
等が設けられ、炉心2から流出する冷却材の温度を測定
するように構成されている。なお、計測フィンガ10は
保護管11、ペネトレーション12を通って原子炉容器
1外に導出されている。
A control rod assembly 7 is installed in the reactor core 2 together with a fuel assembly. Although the control rod assembly 7 actually includes a plurality of members, only one is shown in the figure. The shielding plug 4 is provided with a core upper machine 4t? The installation number is J8. A large number of measurement fins 10 are accommodated in a joint body 9 which is provided through the shielding plug 4. The tip of each of these measuring fingers 10 faces the upper surface of the reactor core 2, and a temperature detector (not shown) is installed at the tip.
etc., and are configured to measure the temperature of the coolant flowing out from the core 2. Note that the measurement finger 10 is led out of the reactor vessel 1 through a protection tube 11 and a penetration 12.

炉心上部機構8の上部には制御棒駆動機構13が設+フ
られている。これらの制御棒駆動機構13の下端からは
上部案内管14か9A設しており、これらの上部案内管
14は継胴9内を通っで、炉心2内に装荷された制御棒
集合体7の上端に対l〜している。
A control rod drive mechanism 13 is installed in the upper part of the upper core mechanism 8. Upper guide pipes 14 or 9A are installed from the lower ends of these control rod drive mechanisms 13, and these upper guide pipes 14 pass through the joint shell 9 to guide the control rod assembly 7 loaded in the reactor core 2. It is opposite to the upper end.

制御棒集合体7は第2図に示づ゛ように、下部案内管1
5と、この下部案内管15内に上下動自在に収容される
制御棒16とから構成されている。
The control rod assembly 7 is connected to the lower guide tube 1 as shown in FIG.
5, and a control rod 16 housed in the lower guide tube 15 so as to be vertically movable.

下部案内管15の下端に突設した1ントランスノズル1
7は炉心支持板18.19を貫通しにれらの間に形成さ
れる高圧ブレナム蛮20内に挿入されでおり、高圧プレ
ナム至2o内の冷却オΔの圧力により抜は止めがなされ
るハイドロリンクホールドタウン構造となっている。高
圧ルナム室20の冷却材の一部はエントランスノズル1
7から下部案内管1内に導入され、制御棒16内に収容
される中性子吸収材21を冷却した後、下部案内管14
へ流入りる。
A 1-inch transformer nozzle 1 protruding from the lower end of the lower guide pipe 15
7 penetrates the core support plates 18 and 19 and is inserted into the high pressure plenum 20 formed between them, and is prevented from being removed by the pressure of the cooling oil Δ in the high pressure plenum 2o. It has a link hold town structure. A portion of the coolant in the high pressure lunum chamber 20 is supplied to the entrance nozzle 1.
After cooling the neutron absorbing material 21 introduced into the lower guide tube 1 from 7 and housed in the control rod 16, the lower guide tube 14
flows into.

また、制御棒16の下端にはダッシュラム22が突設さ
れており、制御棒16が下降した場合にはダッシュラム
22がダッシュボット23内に進入して緩衝をなすよう
構成されている。上部案内管14内には外側延長管24
がj中通され−Cおり、この外側延長管24は連結棒2
5を介して制御棒駆動機構(第1図の13)によって上
下に駆動されるように構成され−(いる。外側延長管2
4の下端には複数個のラッチフインガ26が設【プられ
ている。これらのラッチフインガ26は拡径、縮径自在
に構成され、拡径した場合には制御棒16のハンドリン
グヘッド27に係合して制御棒16を保持し、また縮径
した場合にはハンドリングヘッド27との係合が外れる
ように構成されている。
Further, a dash ram 22 is provided to protrude from the lower end of the control rod 16, and when the control rod 16 is lowered, the dash ram 22 enters into the dashbot 23 to provide a buffer. Inside the upper guide tube 14 is an outer extension tube 24.
The outer extension tube 24 is connected to the connecting rod 2.
The outer extension tube 2 is configured to be driven up and down by the control rod drive mechanism (13 in FIG. 1) via the outer extension tube 5.
A plurality of latch fingers 26 are provided at the lower end of 4. These latch fingers 26 are configured to be able to expand and contract in diameter, and when the diameter is expanded, they engage with the handling head 27 of the control rod 16 to hold the control rod 16, and when the diameter is contracted, they engage with the handling head 27. It is configured so that it can be disengaged from the

外側延長管24内には感熱膨張体28を介して内側延長
管29が設けられ、この内側延長管29は感熱膨張体2
8の伸縮に応じ′C上下動するように4i6成されてい
る。内側延長@29の下端にはラッチ操作部30が設け
られ、このラッチ操作部30がラッチフィンガ26内に
進入りると、これらのラッチフィンガは拡径されCハン
ドリングヘッド27ど係合し、またラッチ操作部3oが
ラッチフィンガ26内から抜は出ると、ラッチフィン力
26は自身の弾性力によっC縮径し、ハンドリングヘッ
ド27との係合か外れるように構成されている。
An inner extension tube 29 is provided inside the outer extension tube 24 via the heat-sensitive expansion body 28 , and this inner extension tube 29 is connected to the heat-sensitive expansion body 2 .
4i6 is constructed so that it moves up and down by 'C' according to the expansion and contraction of 8. A latch operating portion 30 is provided at the lower end of the inner extension @ 29, and when this latch operating portion 30 advances into the latch fingers 26, these latch fingers are expanded in diameter and engaged with the C handling head 27, and When the latch operating portion 3o is pulled out from within the latch finger 26, the latch fin force 26 is configured to contract in diameter C due to its own elastic force, and is configured to engage or disengage from the handling head 27.

なお、外側延長管24の側壁と上端には透孔24a、2
4bIJX設りられ、上部案内管14内を流れる冷却4
71の一部を感熱膨1地体28の表面に沿って流すよう
にしである。
Note that through holes 24a and 2 are provided in the side wall and upper end of the outer extension tube 24.
4b IJX installed and cooling 4 flowing inside the upper guide pipe 14
71 is made to flow along the surface of the heat-sensitive expansion body 28.

このような構成の従来の原子炉自動停止装置におい゛(
、通常運転時にはラッヂフインカ26がハンドリングヘ
ット27に係合した状態で、制御棒駆動機構(第1図の
13)により外側延長管24が上下に移動されることに
より制御棒16の炉心2内への挿入あるいは引抜きがな
され、原子炉の出力が制御される。
In the conventional automatic reactor shutdown system with this configuration,
During normal operation, the control rod 16 is moved into the core 2 by moving the outer extension tube 24 up and down by the control rod drive mechanism (13 in FIG. 1) with the lug inker 26 engaged with the handling head 27. It is inserted or withdrawn and the power of the reactor is controlled.

−h、手放等により燃料出口温度が異常に高くなった場
合には、第2図中に矢印ぐ示すように流れる冷却材によ
って感熱膨張体28の温度が上昇しC彫版し、ラッチフ
ィンガ26とラッチ操作部30との間に相対変位を生じ
ラッチ操作部30が下降してラッチフィンガ26内から
脱は出しC1ラツヂフインガ26とハンドリングヘッド
27どの係合が解放される。これにより制御棒16は重
力により炉心2内へ落下し、原子炉をスクラムさせる。
If the fuel outlet temperature becomes abnormally high due to fuel release, etc., the temperature of the heat-sensitive expansion body 28 will rise due to the coolant flowing as shown by the arrow in FIG. 26 and the latch operating section 30, the latch operating section 30 descends and comes out of the latch finger 26, and the engagement between the C1 latch finger 26 and the handling head 27 is released. As a result, the control rods 16 fall into the reactor core 2 due to gravity, causing the reactor to scram.

第3図および第4図はそれぞれ別の従来技術例を示す。FIGS. 3 and 4 each show another example of the prior art.

これらの例は、制御棒16をキューり焦電磁石31で直
接連結棒25に吊下げるようにしたもので、このキュー
り点゛電磁石31が周囲温度の異常1胃によってキュー
り点を越えると、磁力を失い、制御棒16が落下する原
理を利用している。
In these examples, the control rod 16 is directly suspended from the connecting rod 25 by a pyromagnet 31, and when the curvature point of the electromagnet 31 is exceeded due to an abnormality in the ambient temperature, It utilizes the principle that the control rod 16 falls when it loses its magnetic force.

すなわち第3図の例ぐは燃料用[1温度の異常1胃によ
りキューり焦電磁石31を鋤がせるため、数本の燃料3
2の出口上部から、冷却材導入用の配管33を電磁石3
1近傍まで引きまわしCいる。
In other words, in the example of FIG.
From the upper part of the outlet of 2, connect the pipe 33 for introducing the coolant to the electromagnet 3.
It is pulled around to the 1st neighborhood.

また、第4図の例ひは、制御棒全引抜状態ぐもキューり
魚雷1石31が制御棒16の上端近傍に位置づるよう配
置し、燃料32から流出づる冷却材が電磁石31に当た
りやJいようにしている。
In addition, in the example shown in FIG. 4, the control rod is fully withdrawn and the torpedo 31 is positioned near the upper end of the control rod 16, so that the coolant flowing out from the fuel 32 will not hit the electromagnet 31. That's what I do.

[背景技術の問題点] しかしながら、上述のJ:うに偶成した従来装置には次
のような欠点がある。すなわち第2図および第4図の例
にJ、+いCは、上部案内管14の内径が第5図中のハ
ツチングで示すように、周囲燃料の出口部に比べ最大で
も約25%しか包含されCJjらず、冷却材の流れ込み
流量が少ない。また、制御棒7から流出ηる冷たい冷却
材が中心部をTRしてゆくので、感熱彫版体28やキュ
ーり焦電磁石31が燃料32の出口冷却材の温度上昇を
感知しにくい欠点がある。
[Problems with Background Art] However, the above-mentioned conventional device having the combination J: sea urchin has the following drawbacks. That is, in the examples of FIGS. 2 and 4, the inner diameter of the upper guide pipe 14 covers only about 25% of the surrounding fuel outlet, as shown by the hatching in FIG. CJj is low, and the flow rate of coolant is low. In addition, since the cold coolant flowing out from the control rod 7 TRs the central part, there is a drawback that it is difficult for the thermal engraving body 28 and the pyromagnet 31 to detect the temperature rise of the coolant at the outlet of the fuel 32. .

さらに第3図の例においCは、適当な数本の燃料32の
上部に配管33を引廻すが、第1図でs2明した様にこ
の配管部は炉心上部機構の計装機器等が種々装荷されて
いる部分に設置されるので、配管33の引廻しが困難で
ある。また、この部分は制御棒やブランケット燃料ある
いは炉心燃料間のザーマルストライビングに直結されて
いるだけでなく原子炉トリング等の厳しい熱過渡的条件
下にざらされるのひ、配管用層しによっC構造が複雑化
J−ると、それだ(プ構造的信頼性が低下する。
Furthermore, in the example of FIG. 3, C routes a pipe 33 above a suitable number of fuels 32, but as shown in s2 in FIG. Since it is installed in a loaded area, it is difficult to route the piping 33. In addition, this part is not only directly connected to thermal striping between control rods, blanket fuel, or core fuel, but is also exposed to harsh thermal transient conditions such as reactor trings, and is used as a piping layer. Therefore, as the structure becomes more complex, its structural reliability decreases.

更にはパイプ構造のため、流路圧損が大きくなり冷却材
流量が減り十分な温度上シフが得られないだけでなくキ
ューり焦電磁石31までの到達時間が遅れることになる
Furthermore, due to the pipe structure, the flow path pressure loss increases, the flow rate of the coolant decreases, and not only is it not possible to obtain a sufficient temperature shift, but also the time required for the coolant to reach the pyromagnet 31 is delayed.

次に、これを100100O級原子炉ぐの例を上げて、
定量的に説明りる。
Next, let's take this as an example of a 100100O class nuclear reactor.
Explain quantitatively.

炉心燃料の通常運転時1体あたりの冷却材流量は約30
kg/sであり、異常時に抑えlcい燃料出口温度は6
50℃、一方制御棒は10kg/5T420℃程度であ
る。これを上記25%包含ケース(これは実験炉ベース
であり、大型炉ではほぼ0%)につきMt nりる。冷
却材が面積に比例して流入すると仮定り′ると、燃料出
口温度は、(30眩/’s Xo、25X6本X650
℃+420℃X10kg/s>÷(30kg / S 
X O、25X6本+10kg/s )=608℃ となる。ところで原子炉は通常運転時でも過出力状態で
あり、その場合の温度は600℃〜620℃程度である
。従っC1燃料出口冷却林が感温部に直接あたる場合も
あるのぐ、本ケースぐは通常運転過出力状態にも感温検
知器が働きスクラムしCしまう恐れがある。
The coolant flow rate per core fuel during normal operation is approximately 30
kg/s, and the fuel outlet temperature that can be suppressed in the event of an abnormality is 6
50℃, while the control rod is about 10kg/5T420℃. This is calculated as Mtn for the above 25% inclusive case (this is based on an experimental reactor, and is approximately 0% in a large reactor). Assuming that the coolant flows in proportion to the area, the fuel outlet temperature is (30 dazzles/'s Xo, 25 x 6 x 650
℃+420℃×10kg/s>÷(30kg/S
X O, 25 x 6 pieces + 10 kg/s) = 608°C. Incidentally, the nuclear reactor is in an overpower state even during normal operation, and the temperature in that case is about 600°C to 620°C. Therefore, since the C1 fuel outlet cooling section may come into direct contact with the temperature-sensing section, there is a risk that the temperature-sensing sensor will work and cause a scram in this case even in the over-output state of normal operation.

[発明の目的] 本発明は背景技術における上述の如き欠点を除去し、信
頼性の高い原子炉自動停止装置を得ることを目的とする
[Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks in the background art and to obtain a highly reliable nuclear reactor automatic shutdown device.

[発明の概要] すなわち本発明の原子炉自動停止装置は、燃料出口温度
の異常を直接検知し制御棒を炉心内に自動的に落下さけ
る原子炉自動停止装置にa3いて、制御捧駆、動機構の
上部案内管の下端部近傍内径が、前記制御棒に隣接する
燃料棒の出口面積の半分以上を含有Jる内径とされ−C
いることを特徴としている。
[Summary of the Invention] That is, the automatic reactor shutdown system of the present invention directly detects an abnormality in the fuel outlet temperature and automatically prevents control rods from falling into the reactor core. The inner diameter near the lower end of the upper guide tube of the mechanism is an inner diameter that includes more than half of the outlet area of the fuel rod adjacent to the control rod.
It is characterized by the presence of

[発明の実施例コ 以下、第6図ないし第12図を参照して本発明の詳細な
説明Jる。なお、これらの図では第1図ないし第5図に
J3りると同一部材には同一の符号が付され−Cいる。
[Embodiments of the Invention] Hereinafter, the present invention will be described in detail with reference to FIGS. 6 to 12. In these figures, the same members as J3 and -C in FIGS. 1 to 5 are given the same reference numerals.

第6図にa3いC1制御棒16の上端に設【プだノンド
リングヘッドは、感温検知部であるキューリ焦電磁石3
1に吸容されて連結棒25に吊り下りられ−しいる。制
御棒集合体7および燃料32の上端に開l」する上部案
内管140) ”F端近傍は大径部14aとされている
。この大径部14aの内径d1は、第7図中にハッヂン
グC示Jように隅接りる燃料32の出口部面積の50%
以上を含有ブーる寸法とされ−Cいる。
In Fig. 6, a non-driving head is installed at the upper end of the A3 C1 control rod 16.
1 and suspended from the connecting rod 25. The upper guide tube 140, which opens at the upper ends of the control rod assembly 7 and the fuel 32, has a large diameter section 14a near the F end. C 50% of the area of the outlet of the fuel 32 that touches the corner as shown in J
The dimensions include -C.

この場合、感温検知部(キューり焦電磁石31)に到達
づる冷kj材の平均温度は、前述とIFi1様のΔI算
により (30kg / S X 0 、5 X 6本X 65
0 ’C+10 kg/5X420℃)÷(30kr、
/s xo、5x6本+10驕/S>−627℃ となる。従って、感温検知部の動作点を627℃にセッ
トし′Ca”iけば、通富の運転過出力状態の淘瓜62
0℃を越えでいるので、誤スクラムのおそれは全くない
し、異花時に抑えたい650℃以下Cもあるのぐ確実に
スクラムざUることがぐきる。
In this case, the average temperature of the cold kj material reaching the temperature sensing part (cured pyromagnet 31) is calculated from the above and IFi1's ΔI calculation (30 kg/S x 0, 5 x 6 pieces x 65
0'C+10 kg/5X420℃)÷(30kr,
/s xo, 5x6 + 10 yen/S>-627°C. Therefore, by setting the operating point of the temperature sensing section to 627°C, 'Ca'i, the operation point of Tongfu's over-output state can be reduced.
Since the temperature is over 0℃, there is no risk of an accidental scram, and even if the temperature is below 650℃, which we want to keep in case of an abnormality, we can definitely avoid a scram.

第8図J5よび第9図に示す実施例では、上部案内管1
4の大径rjB 14 a内にキューり点78磁イ」3
1や制ηO棒1Gが大径部14a内面に接触するのを防
止する板状のカイト34が複数枚適当な間隔をおいてス
ベー1)35を介しC取イ」【ブられCいる。
In the embodiments shown in FIG. 8 J5 and FIG. 9, the upper guide tube 1
4 large diameter rjB 14 There are 78 cue points in a 3
A plurality of plate-shaped kites 34 for preventing the control rod 1G and the control rod 1G from coming into contact with the inner surface of the large diameter portion 14a are installed at appropriate intervals through the base 1) 35.

これらのガイド34と大径部14aの間には耐測フィン
カ10 JJ′Y貝通されている。
A measurement-resistant finker 10 JJ'Y shell is inserted between these guides 34 and the large diameter portion 14a.

カイト34の(幾能は次の通りぐある。Kite 34 (Ikuno is as follows.

づなわち第1図につぎ説明したように、炉心上部(幾横
8内には多数本の泪測フィンカ10が配置され、それら
の下端は燃料の項部に接続されCいるが、この実施例で
は十〇11案内答14の下端近傍を拡径しC大径部14
aとしCるのひ、この大径部14aと訓ff1l+フィ
ンガ10が干渉するJ5それがある。そこでこの実施例
ぐは大径部14a内にiI測フィン刀10を員挿させて
大径部外面との干渉問題を解消させている。この場合カ
イト34は細く(弱い4測フィンガ10が第9図中の鎖
線C示りようにキューり魚雷磁′ci31が偏心しても
、これに接触して損傷を受(プることかないように保護
する機能を果たす。またガイド34は大径部14aを補
強し、耐震性向上に利用することもできる。
In other words, as explained in FIG. In the example, the diameter of the 1011 guide answer 14 is expanded near the lower end, and the C large diameter portion 14 is expanded.
A and C, there is an interference between this large diameter portion 14a and the finger 10. Therefore, in this embodiment, the iI measuring fin 10 is inserted into the large diameter portion 14a to solve the problem of interference with the outer surface of the large diameter portion. In this case, the kite 34 is made thin (so that even if the weak four-point finger 10 comes into contact with the torpedo magnet 'ci31, which is eccentric, as shown by the chain line C in FIG. 9, it will not be damaged). The guide 34 serves to protect the large diameter portion 14a, and can also be used to improve earthquake resistance.

第10図および第11図に示す実施例にa)いCは、外
側延長管24に加速落下用の加速管36が被嵌されてお
り、またガイド34は第11図に示されているように、
4ILIi曲が内方凸にゆるやかに湾曲Jる形状とされ
Cいる。これらのガイド34の曲面形状はパン1−リン
グヘッド27がカイト34に内接されたとき加速管36
の下端近傍がどういう位置にあっ−Cも必ず両者が重な
り合う部分があるような幾何学的形状とされでいる。
In embodiment a) C shown in FIGS. 10 and 11, an acceleration tube 36 for accelerated falling is fitted into the outer extension tube 24, and the guide 34 is as shown in FIG. To,
4ILIi has a shape that is gently curved inwardly convexly. The curved shape of these guides 34 is similar to that of the acceleration tube 36 when the pan 1-ring head 27 is inscribed in the kite 34.
Regardless of the position of the lower end of C, the geometric shape is such that there is always a portion where the two overlap.

この実施例においCは制御棒16が単体ぐ落下し、かつ
加速管36にj−り加速される場合に、制御棒16の径
ど加速管36の下端部の径を刀イド36の形状を考慮し
C上jホの条件を満足づ−るようにしCあるので、制御
棒16の落下時に加速管36が制御棒16を追い越すこ
とがなく、制御棒16を確実に加速落下させることがC
きる。
In this embodiment, when the control rod 16 falls alone and is accelerated by the acceleration tube 36, the diameter of the control rod 16 and the diameter of the lower end of the acceleration tube 36 are changed to the shape of the blade 36. In consideration of the above conditions, the acceleration tube 36 will not overtake the control rod 16 when the control rod 16 falls, and the control rod 16 will surely accelerate and fall.
Wear.

なお、ガイド34は第12図に示すように断続螺旋状の
流動か237に置換えしてもよい。ηなわち上述のにう
に上部案内管14の大径部14.a内には制御棒16か
らの420℃位の低調冷N1祠と、燃料からの580℃
位の8温冷却拐が流れ込むが、この場合制御棒16から
の低?FJ+ BL冷211j祠のみが感温検知部に当
たつCいると燃料の出口温度異常上ツ1をキトツチでき
ないことになる。このノこめス然オ31出1コ流れと制
御捧出[」流れをできるだ(プミキシングする必要があ
り、刀イドとしで第12図に承り流動翼37を使用覆る
場合には、燃料と制御棒の出口冷却材がミキシングされ
温度の安定した流れが(qられ、信頼性の高い原子炉自
動停止装置が得られる。
Note that the guide 34 may be replaced with an intermittent spiral flow 237 as shown in FIG. η, that is, the large diameter portion 14 of the upper guide tube 14 as described above. Inside a is a low-temperature cooling N1 of about 420°C from the control rod 16 and a 580°C coolant from the fuel.
In this case, the 8-temperature cooling water from the control rod 16 flows in. If only FJ+ BL cold 211j hits the temperature sensing part, it will not be possible to set 1 due to abnormal fuel outlet temperature. It is possible to control the flow and control the flow (it is necessary to pre-mix the flow, as shown in Figure 12). The control rod outlet coolant is mixed to provide a stable flow of temperature (q), resulting in a highly reliable automatic reactor shutdown system.

[発明の効果] 以上説明したように本発明の原子炉自動停止装置によれ
ば、1tIi造が単純で燃)’31 ;l+ D冷却拐
を十分に感温検知部に導入でき、またミキシングされ温
度が平均化された冷却月が得られるのr、誤動作かなく
信頼性が高いだけでなく桶造強度上も安定した)京子炉
自動停止ik−霞が得られる。
[Effects of the Invention] As explained above, according to the automatic nuclear reactor shutdown device of the present invention, the 1tIi structure is simple, the combustion)'31;l+D cooling can be sufficiently introduced into the temperature sensing part, and mixing is prevented. It is possible to obtain a cooling system in which the temperature is averaged, and an automatic shutdown of the Kyoshi reactor that is not only highly reliable without malfunctions but also stable in terms of tub construction strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は昌速増殖炉の概略構成を示J−縦断面図、第2
図ないし第4図はそれぞれ従来の原子炉自動停止装置を
例示J8縦断面図、第5図はそれらの作動を説明づるた
めの横断面図、第6図、第8図−3よび第10図はそれ
ぞれ本発明の実施例を示J要部の縦断面図、第7図、第
9図および第11図はそれぞれ第6図、第8図J3よび
第10図中の■−Vl線、IX −IX線お、J:びX
l−XI線に沿う横断面図、第12図は本発明の他の実
施例の横断面図である。 7・・・・・・・・・・・・制御棒集合体8・・・・・
・・・・・・・炉心上部機構10・・・・・・・・・・
・・h1測フィン力11・・・・・・・・・・・・保護
管 13・・・・・・・・・・・・制御棒駆動は41り14
・・・・・・・・・・・・土部案内管15・・・・・・
・・・・・・下t’lB案内管16・・・・・・・・・
・・・制御棒 17・・・・・・・・・・・・エン1ヘランスノスル2
4・・・・・・・・・・・・外側延長管25・・・・・
・・・・・・・連結棒 28・・・・・・・・・・・・感熱彫版体29・・・・
・・・・・・・・内側延長n31・・・・・・・・・・
・・キューり点心磁石32・・・・・・・・・・・・燃
 斜 34・・・・・・・・・・・・ガイド 35・・・・・・・・・・・・スペーサ−36・・・・
・・・・・・・・加速色 37・・・・・・・・・・・・流動翼 代理人弁理士 須 山 佐 − 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
Figure 1 shows the schematic configuration of the fast breeder reactor.
Figures 4 to 4 are J8 vertical cross-sectional views illustrating conventional automatic reactor shutdown devices, respectively, Figure 5 is a cross-sectional view for explaining their operation, Figures 6, 8-3, and 10. 7, 9 and 11 respectively show an embodiment of the present invention, and 7, 9 and 11 show the J3 line and IX in FIG. 6, 8 J3 and 10, respectively. -IX-ray O, J:bi-X
FIG. 12 is a cross-sectional view taken along the line l-XI, and FIG. 12 is a cross-sectional view of another embodiment of the present invention. 7... Control rod assembly 8...
......Core upper mechanism 10...
・・h1 Measuring fin force 11・・・・・・・・・・Protective tube 13・・・・・・・・・・Control rod drive is 41 ri 14
・・・・・・・・・・・・Dobe guide pipe 15・・・・・・
...Lower t'lB guide tube 16...
・・・Control rod 17・・・・・・・・・En 1 Herans nosuru 2
4......Outer extension tube 25...
...... Connecting rod 28 ...... Heat-sensitive engraving body 29 ...
・・・・・・Inner extension n31・・・・・・・・・
・・Cute dim sum magnet 32 ・・・・・・・・ Burning angle 34 ・・・・・ Guide 35 ・・・・・・・・・・・ Spacer 36...
・・・・・・・・・Acceleration color 37・・・・・・・・・Fluid wing agent Sa Suyama - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (3)

【特許請求の範囲】[Claims] (1)燃料出口温度の異常を直接検知し制御棒を炉心内
に自動的に落下させる原子炉自動停止装置において、制
御棒駆動機構の上部案内管の下端部近傍内径が、前記制
御棒に隣接する燃料棒の出口面積の半分以上を含有する
内径とされCいることを特徴とする原子炉自動停止装置
(1) In an automatic reactor shutdown system that directly detects an abnormality in fuel outlet temperature and automatically drops a control rod into the reactor core, the inner diameter near the lower end of the upper guide tube of the control rod drive mechanism is adjacent to the control rod. An automatic nuclear reactor shutdown system characterized by having an inner diameter that includes more than half of the exit area of a fuel rod.
(2)上部案内管の下端部近傍には、制御棒駆動機構の
計測フィンガと制御棒との接触を防止するガイドが配設
されている特許請求の範囲第1項記載の原子炉自動停止
装置。
(2) The automatic reactor shutdown system according to claim 1, wherein a guide is provided near the lower end of the upper guide tube to prevent contact between the control rod and the measurement finger of the control rod drive mechanism. .
(3)下部案内管の下端部近傍には、制御棒がら流出す
る冷却材ど燃料から流出する冷却材とを渥合する流動買
が配設されている特許請求の範囲第1項または第2項記
載の原子炉自動停止装置。
(3) Near the lower end of the lower guide tube, a fluid flow tank is disposed to combine the coolant flowing out from the control rods and the coolant flowing out from the fuel. Nuclear reactor automatic shutdown device as described in section.
JP58215784A 1983-11-16 1983-11-16 Automatic stop device for nuclear reactor Granted JPS60107593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215784A JPS60107593A (en) 1983-11-16 1983-11-16 Automatic stop device for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215784A JPS60107593A (en) 1983-11-16 1983-11-16 Automatic stop device for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS60107593A true JPS60107593A (en) 1985-06-13
JPH0422231B2 JPH0422231B2 (en) 1992-04-16

Family

ID=16678170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215784A Granted JPS60107593A (en) 1983-11-16 1983-11-16 Automatic stop device for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60107593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331395U (en) * 1986-08-13 1988-02-29
JPH01163698A (en) * 1987-12-21 1989-06-27 Hitachi Ltd Nuclear reactor shut-down device
US5073334A (en) * 1989-03-17 1991-12-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Self-actuated nuclear reactor shutdown system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331395U (en) * 1986-08-13 1988-02-29
JPH01163698A (en) * 1987-12-21 1989-06-27 Hitachi Ltd Nuclear reactor shut-down device
US5073334A (en) * 1989-03-17 1991-12-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Self-actuated nuclear reactor shutdown system

Also Published As

Publication number Publication date
JPH0422231B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
KR100597722B1 (en) Stable and passive decay heat removal system for liquid metal reator
CN104269194B (en) The passive accident afterheat of pool reactor of a kind of temperature triggered discharges system
US20090207963A1 (en) Nuclear reactor
EP0928488B1 (en) Gap forming and cooling structure for a nuclear reactor
JPS60107593A (en) Automatic stop device for nuclear reactor
CA1096513A (en) Nuclear power plant with collector vessel for melting core masses
Koch et al. Construction design of EBR-II: an integrated unmoderated nuclear power plant
JP3160476B2 (en) Reactor core debris cooling system
US4064001A (en) Hot leg relief system
JPS6247584A (en) Fuel aggregate with emergency stop mechanism of nuclear reactor
RU2260211C1 (en) System for vessel nuclear reactor control and two-position switch of the passive protection of a nuclear reactor (nr)
JPH06324179A (en) Self-operating type reactor stopping device for fast reactor
JPS61226697A (en) Intermediate heat exchanger for tank type fast breeder reactor
WO2024195926A1 (en) Small modular reactor including heat pipe-type dual containment vessel
US4713211A (en) High temperature pebble bed reactor and process for shut-down
JPS6117984A (en) Heat shielding device for fast breeder reactor
EP0197291A1 (en) An automatic system and a method for reactivity control in a nuclear reactor
Buksha The status of work in the USSR on using inherent self-protection features of fast reactors, of passive and active means of shutdown and decay heat removal system
JPS6124676B2 (en)
JPS6465490A (en) Fuel assembly
JPH02222879A (en) Self-operation type auxiliary equipment for cooling reactor core
JPH04305192A (en) Cooling equipment for melted core
JPS58124989A (en) Reactor shutdown device
JPS59176692A (en) Fast breeder reactor
JPS587591A (en) Theremal shielding device for fast breeder