JPS60107541A - Analyzing device for process - Google Patents
Analyzing device for processInfo
- Publication number
- JPS60107541A JPS60107541A JP21474083A JP21474083A JPS60107541A JP S60107541 A JPS60107541 A JP S60107541A JP 21474083 A JP21474083 A JP 21474083A JP 21474083 A JP21474083 A JP 21474083A JP S60107541 A JPS60107541 A JP S60107541A
- Authority
- JP
- Japan
- Prior art keywords
- sample liquid
- liquid
- sample
- conduit
- analysis section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1095—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
- G01N35/1097—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はプロセス用分析装置に関するものである。特に
本発明はサンプル液の移送手段の改善されたプロセス用
分析装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process analysis device. More particularly, the present invention relates to a process analyzer with improved sample liquid transfer means.
サンプル源からサンプル液を取入れ、そのうちから所定
量のサンプル液を計量して分取し、これを分析部に間欠
的に移送して分析したのち分析部から排出する一連の操
作を自動的に行なりプロセス用分析装置は、工業分析に
おいて広く採用されている。このような分析装置では、
源に接続し、液の流通系全体を液排出口に向うほど減圧
度の高い状態にすることにょシ、流通系内を液が液排出
口に向って流れるようにしている。この液の移送方式は
、−個の減圧源でサンプル液をはじめ各種の試薬や洗浄
液の移送が可能なので、装置の構成上極めて合理的な方
式しかしながら、この方式では液の流通系全体が減圧と
なるので、流通系の各所例ある接続部や栓、蓋などの間
隙から空気が吸引され、サンプル液や試薬が変質する恐
れがある。Automatically performs a series of operations in which sample liquid is taken in from the sample source, a predetermined amount of sample liquid is measured and fractionated, it is intermittently transferred to the analysis section, analyzed, and then discharged from the analysis section. Process analyzers are widely used in industrial analysis. With such an analyzer,
The system is connected to a source, and the entire liquid distribution system is brought into a state where the degree of depressurization increases toward the liquid discharge port, so that the liquid flows within the distribution system toward the liquid discharge port. This liquid transfer method is extremely rational in terms of the device configuration, as it is possible to transfer sample liquid, various reagents, and washing liquids using one vacuum source.However, in this method, the entire liquid distribution system is under reduced pressure. As a result, air may be sucked in from gaps around connections, plugs, lids, etc. in various parts of the distribution system, and there is a risk that sample liquids and reagents may change in quality.
また、テンプル液の分析を水銀滴電極を使用するポーJ
−シログラフィによシ行なう場合には、分析部を減圧に
して液の移送を行う際に、キャピラリー中の水銀が若干
吸い出される。次いで分析部が常圧に復すると、キャピ
ラリー中の水銀の先端がキャピラリー内部に後退し、分
析部に存在する液がキャピラリー内に侵入する。これに
よシキャピラリーの内壁面が汚染され、キャピラリーの
先端に形成される水銀滴が変化して分析精度に悪影響を
及ぼす。In addition, the analysis of Temple fluid was carried out using a mercury drop electrode by Poe J.
- When silography is used, some mercury in the capillary is sucked out when the analysis section is reduced in pressure and the liquid is transferred. Next, when the analysis section returns to normal pressure, the tip of the mercury in the capillary retreats into the capillary, and the liquid present in the analysis section enters the capillary. This contaminates the inner wall surface of the capillary, changes the mercury droplet formed at the tip of the capillary, and adversely affects analysis accuracy.
吸引方式に伴う上述の如き問題は、サンプル液取入口に
ポンプ全設置し、液の流通系全体全加圧系とする押込み
方式とすることによシ解決できる。しかしこの方式では
ポンプ内’f:”j−ンプル液が通過するが、普通の工
業分析装置に用いられるプランジャーポンプは、その内
部を完全に洗浄および乾燥させることが困難である。The above-mentioned problems associated with the suction method can be solved by installing a pump at the sample liquid intake port and using a push-in method in which the entire liquid distribution system is pressurized. However, in this method, the sample liquid passes through the pump, but it is difficult to completely clean and dry the inside of the plunger pump used in common industrial analyzers.
従って、複数のテンプル源から順次サンプル液を取り入
れて系内に流通させる場合には、ポンプでのサンプル液
の汚染を避けるため、サンプル源の数だけのポンプが必
要となる。また、一種類のサンプル液だけを取扱う場合
でも、′+j′ンプル液の組成が経時的に大きく変化す
る場合には、ポンプ内での液の混合にょシ、この経時変
化を正確に示すサンプル液を分析部に送ることは困難で
ある。Therefore, when sample liquids are sequentially taken in from a plurality of temple sources and distributed within the system, as many pumps as there are sample sources are required to avoid contamination of the sample liquids with the pumps. In addition, even when handling only one type of sample liquid, if the composition of the '+j' sample liquid changes significantly over time, it is necessary to mix the liquid in the pump and use a sample liquid that accurately shows this change over time. It is difficult to send the information to the analysis department.
本発明は上述の如き吸引方式および押込方式のいずれの
欠点をも解決するブノプル液移送方式による分析装置を
提供するものである。The present invention provides an analyzer using the bunople liquid transfer method, which solves the drawbacks of both the suction method and the push-in method as described above.
すなわち本発明は、サンプル液取入口、丈ノズル液計量
部、および液排出口を有するサンプル液分析部を備えて
おり、サンプル液取入口といてテンプル液がサンプル液
取入口からサンプル液計量部を経てサンプル液分析部ま
で流通し得るようになっているプロセス用分析装置にお
いて、サンプル液取入口からテンプル液計量部までの液
の移送を吸引にょシ行ない、サンプル液計量部から丈ン
プル液分析部までの液の移送をサンプル液計量部に供給
される押出し媒体による押出しにより行なうように構成
されていることを特徴とする装置をその要旨とするもの
である。That is, the present invention includes a sample liquid analysis section having a sample liquid intake port, a long nozzle liquid measuring section, and a liquid discharge port. In a process analyzer that is designed to be able to flow to the sample liquid analysis section via suction, the liquid is transferred from the sample liquid inlet to the temple liquid measurement section, and then from the sample liquid measurement section to the sample liquid analysis section. The gist of the device is that the liquid is transferred by extrusion using an extrusion medium supplied to a sample liquid measuring section.
本発明についてさらに詳細に説明すれば、本発明に係る
装置では、テンプル液の移送は吸引と押出しとの両方式
の組合せにより行なわれる。To explain the invention in more detail, in the device according to the invention, the transfer of temple fluid is carried out by a combination of both suction and extrusion.
すなわち、本発明に係る装置は、サンプル液移送のため
にそれぞれ7個づつの減圧源とカn圧源とを備えている
。しかもこれらの減圧源および加圧源は、サンプル液取
入口からサンプル液計量部を経てサンプル液分析部に至
るサンプル液の流路に接続しているがその内部には組込
まれていないので、サンプル液分析部に送られるサンプ
ル液がこれらの内部を通過することはない。That is, the apparatus according to the present invention is equipped with seven vacuum sources and seven pressure sources for sample liquid transfer. Moreover, these depressurization sources and pressurization sources are connected to the sample liquid flow path from the sample liquid inlet to the sample liquid measurement unit and then to the sample liquid analysis unit, but they are not built into the sample liquid flow path. The sample liquid sent to the liquid analysis section does not pass through these.
従って本発明に係る装置では、サンプル液の流通系の洗
浄・乾燥が容易であシ、複数種のサンプル液を汚染させ
ずに流通させることができる。Therefore, in the apparatus according to the present invention, the sample liquid distribution system can be easily cleaned and dried, and a plurality of types of sample liquids can be distributed without contamination.
本発明に係る装置の7例について図を参照して説明すれ
ば、(1)はサンプル液取入口であり、S1〜S3 の
3種類のサンプル液を順次系内に取入れ得るようになっ
ている。+21はサンプル液計量部であシ、流路選択盤
(3)全回転させることに空ポンプ(図示せず)により
減圧を得ち得るようになっている。(5)〜(8)は押
出し媒体供給用ポンプであシ、タンク(9)〜αα円内
液を、選択器CI3を介してサンプル液の流路に順次供
給し得るようになっている。04はサンプル液分析部で
あシ、その内部に攪拌機o5、キャピラリーαQおよび
窒素ガス供給管Qηが設けられている。キャピラリーの
後端は水銀滴形成のだめの水銀送り出し用ポンプに接続
している。Seven examples of the device according to the present invention will be explained with reference to the drawings. (1) is a sample liquid intake port, which can sequentially introduce three types of sample liquids S1 to S3 into the system. . +21 is a sample liquid measuring section, and when the flow path selection board (3) is fully rotated, a vacuum pump (not shown) can be used to obtain a reduced pressure. (5) to (8) are extrusion medium supply pumps, which can sequentially supply the liquid in the tank (9) to αα to the sample liquid flow path via the selector CI3. Reference numeral 04 denotes a sample liquid analysis section, in which a stirrer o5, a capillary αQ, and a nitrogen gas supply pipe Qη are provided. The rear end of the capillary is connected to a mercury delivery pump for the mercury drop formation reservoir.
この装置の作動について説明すると、流路選択盤の流路
を図のように位置させたうえ真空ポンプを作動させて真
空タンク(4)を所定の真空度に保持する。サンプル液
取入ロ全丈ンプル源(Sl)に接続してバルブo樽ヲ開
とすると、サンプル液は系内に吸引され、導管(2@1
流路選択盤の流路(Al) 、計量管部αL流路選択盤
(3ンの流路(A3)・および導管(21)を経て真空
タンクに流入する。次いで流路選択盤(31’t g
O度回転させると、計量管部αつが導管(20)、(2
υから切離され、導管(イ)、(23jと接続される。To explain the operation of this device, the flow path of the flow path selection board is positioned as shown in the figure, and the vacuum pump is operated to maintain the vacuum tank (4) at a predetermined degree of vacuum. When the sample liquid intake port is connected to the full-length sample source (Sl) and the valve o barrel is opened, the sample liquid is sucked into the system and connected to the conduit (2@1
The flow path (Al) of the flow path selection board flows into the vacuum tank via the flow path (A3) of the metering tube section αL flow path selection board (3) and the conduit (21). Next, the flow path selection board (31' t g
When rotated by 0 degrees, the metering tube portions α are the conduits (20) and (2
It is separated from υ and connected to conduit (a) and (23j).
この状態で、選択器α3で選択された押出し媒体供給用
ポンプ(5)全作動させて。In this state, the extrusion medium supply pump (5) selected by the selector α3 is fully operated.
タンク(9)の押出し液を導管041.(財)を経て計
量管部α匂に供給すると、サンプル液は計量管部α鐘か
ら押出され、導管(23)内を移動してサンプル液分析
部0ゆに流入する。タンク(9)の液を所定量供給した
ならば1次いで、選択器Q3でポンプ(乙〜ト)全順次
選択することにより、タンク(70〜/2)の散音導管
(イ)、計量管部0りおよび導管(23)を経て順次サ
ンプル液分析部に供給する。The extrusion liquid from tank (9) is transferred to conduit 041. When the sample liquid is supplied to the metering tube section α through the metering tube section α, the sample liquid is pushed out from the metering tube section α, moves through the conduit (23), and flows into the sample liquid analysis section 0. After supplying a predetermined amount of liquid in tank (9), select all the pumps (B to G) sequentially with selector Q3, and the sound dissipating conduit (A) and metering pipe of tank (70 to 2) are selected. The sample liquid is sequentially supplied to the sample liquid analysis section via the tube 0 and the conduit (23).
所定の試薬がすべてサンプル液分析部に供給されたなら
ば、窒素ガス供給管αηから窒素ガスを供給して液の除
酸素を行ない、次いで常法に従ってポーラログラフイー
全行ない、サンプル液S、の分析が終了する。なお、次
回の分析を行なう前に’+1 ?ンプル液の流路は洗浄
水でよく洗浄したのち、乾燥窒素ガスを流通させて乾燥
させる。例えば導管(イ)は、サンプル液取入口を洗浄
水源(W)と接続して、導管(イ)、流路(A3)、導
管(21)の順に洗浄水を流通させ、次いでサンプル液
取入口を乾燥窒素源(N2)と接続する。!、た計量管
部(IL導管03)およびサンプル液分析部04)は、
選択器04を洗浄水ポンプ(25)に接続して洗浄水を
導管(イ)、流路(A2)、計量管部αつ、流路(A1
)、導管(23)およびサンプル液分析部α脣の順に流
通させ、排液はパルプ(26)を開いて排出する。次い
で選択器03を乾燥窒素源(N2)に接続して乾燥窒素
で系内を乾燥する。Once all the prescribed reagents have been supplied to the sample liquid analysis section, nitrogen gas is supplied from the nitrogen gas supply pipe αη to remove oxygen from the liquid, and then polarography is carried out in the usual manner to analyze the sample liquid S. ends. In addition, before performing the next analysis, '+1?' After thoroughly washing the sample liquid channel with washing water, dry nitrogen gas is passed through it to dry it. For example, the conduit (A) connects the sample liquid inlet to the washing water source (W), and flows the washing water in the order of the conduit (A), the channel (A3), and the conduit (21), and then the sample liquid inlet. is connected to a dry nitrogen source (N2). ! , the measuring tube part (IL conduit 03) and the sample liquid analysis part 04),
The selector 04 is connected to the wash water pump (25), and the wash water is sent to the conduit (A), the flow path (A2), the metering pipe part α, and the flow path (A1).
), the conduit (23) and the sample liquid analysis section α, and the drained liquid is discharged by opening the pulp (26). Next, the selector 03 is connected to a dry nitrogen source (N2) and the inside of the system is dried with dry nitrogen.
以上、詳細に説明したように、本発明によれば減圧源と
加圧源とをそれぞれ7個づつ備えるだけで、複数のサン
プル液を、相互に汚染を招くことなく、系内を移送する
ことができ、かつ分析にポーラログラフイーを用いる場
合でも精度よく分析を行なうことができる。As explained in detail above, according to the present invention, by simply providing seven depressurizing sources and seven pressurizing sources, it is possible to transfer a plurality of sample liquids within the system without causing mutual contamination. The analysis can be performed with high accuracy even when polarography is used for the analysis.
図は本発明に係る装置の7例のフローシートである。
(1) サンプル液取入口
(2)サンプル液計量部
(3) 流路選択盤 (4) 減圧タンク(5)、(6
1,(7)、(8)、(251ポンプ(9)、Q東(i
ll、 (la 夕7り α4 選択器CI櫂 サンプ
ル液分析部 αラ 攪拌機0Q キャピラリー Oη
望累ガス供給管08)、(26)バルブ 09)計量管
部−、(2I)、(イ)、(23)、(24)導管特許
出願人 三菱化成工業株式会社
代理人 弁理士 長谷用 −
ほか/名The figure is a flow sheet of seven examples of the device according to the present invention. (1) Sample liquid intake port (2) Sample liquid measuring section (3) Flow path selection panel (4) Decompression tank (5), (6)
1, (7), (8), (251 pump (9), Q east (i
ll, (la Evening α4 Selector CI paddle Sample liquid analysis section αra Stirrer 0Q Capillary Oη
Gas supply pipe 08), (26) Valve 09) Metering pipe section -, (2I), (A), (23), (24) Conduit Patent applicant Mitsubishi Chemical Industries, Ltd. agent Patent attorney For Hase - Others/names
Claims (1)
排出口を有するサンプル液分析部を備えておシ、サンプ
ル液取入口とサンプル液計量部およびサンプル液計量部
とサンプル液分析部とがそれぞれ導管で連絡されていて
、サンプル液がサンプル液取入口からサンプル液計量部
を経てサンプル液分析部まで流通し得るでの液の移送を
吸引にょシ行ない、サンプル液計量部からサンプル液分
析部までの液の移送をテンプル液計量部に供給される押
出媒体による押出しにょシ行なうように構成されている
ことを特徴とする装置。 (2) サンプル液取入口が複数種のサンプル源に接続
し得るようになっていることを特徴とする特許請求の範
囲第1項記載の装置。 ている計量管部と、この計量管部をその前後の導管部か
ら切離し、かつ切離された計量管部の一端をサンプル液
計量部とサンプル液分析部とを連絡する導管に、他端を
押出し媒体源に接続する機構とを備えていることを特徴
とする特許請求の範囲第1項または第2項記載の装置。 (4)サンプル液分析部が、水銀溜1とこの水銀溜に連
絡しているキャピラリーと、このキャピラリーの先端に
水銀滴を形成する手段とを有しているポーラログラフイ
装置を備えていることを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の装置。[Claims] The sample liquid is connected to the liquid analysis section through a conduit, and the sample liquid can be passed from the sample liquid inlet to the sample liquid measurement section to the sample liquid analysis section. The apparatus is characterized in that the liquid is transferred from the sample liquid analysis section to the sample liquid analysis section by extrusion using an extrusion medium supplied to the temple liquid measuring section. The apparatus according to claim 1, characterized in that the device is adapted to be connected to a sample source. Claim 1, characterized in that one end of the measuring tube part is provided with a conduit connecting the sample liquid measuring part and the sample liquid analyzing part, and the other end is provided with a mechanism connecting the extrusion medium source. The apparatus according to item 1 or item 2. (4) The sample liquid analysis section includes a mercury reservoir 1, a capillary communicating with the mercury reservoir, and means for forming a mercury droplet at the tip of the capillary. Claim 1, characterized in that it comprises a polarography device.
The device according to any one of Items 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21474083A JPS60107541A (en) | 1983-11-15 | 1983-11-15 | Analyzing device for process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21474083A JPS60107541A (en) | 1983-11-15 | 1983-11-15 | Analyzing device for process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60107541A true JPS60107541A (en) | 1985-06-13 |
Family
ID=16660806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21474083A Pending JPS60107541A (en) | 1983-11-15 | 1983-11-15 | Analyzing device for process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60107541A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260844U (en) * | 1988-10-27 | 1990-05-07 | ||
JPH03123268U (en) * | 1990-03-28 | 1991-12-16 | ||
WO1996031782A1 (en) * | 1995-04-03 | 1996-10-10 | B.C. Research Inc. | Intelligent flow analysis network |
JP2012088127A (en) * | 2010-10-18 | 2012-05-10 | Shimadzu Corp | Sampling device and sampling method |
JP2012088133A (en) * | 2010-10-19 | 2012-05-10 | Shimadzu Corp | Online sample introduction apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5647740B2 (en) * | 1972-11-30 | 1981-11-11 |
-
1983
- 1983-11-15 JP JP21474083A patent/JPS60107541A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5647740B2 (en) * | 1972-11-30 | 1981-11-11 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260844U (en) * | 1988-10-27 | 1990-05-07 | ||
JPH03123268U (en) * | 1990-03-28 | 1991-12-16 | ||
WO1996031782A1 (en) * | 1995-04-03 | 1996-10-10 | B.C. Research Inc. | Intelligent flow analysis network |
US5695720A (en) * | 1995-04-03 | 1997-12-09 | B.C. Research Inc. | Flow analysis network apparatus |
JP2012088127A (en) * | 2010-10-18 | 2012-05-10 | Shimadzu Corp | Sampling device and sampling method |
JP2012088133A (en) * | 2010-10-19 | 2012-05-10 | Shimadzu Corp | Online sample introduction apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4090848A (en) | Automatic analyzing apparatus | |
US3282651A (en) | Sample and reagent and/or wash liquid supply apparatus | |
WO2022062283A1 (en) | Apparatus for quantitatively treating liquid | |
JPH0718785B2 (en) | Flow cell device | |
US20110212539A1 (en) | Extraction system | |
US6623697B2 (en) | Analysis device for analyzing samples | |
US5032362A (en) | Analyzing apparatus | |
KR102219833B1 (en) | Automatic measurement apparatus for analysis of liquid samples and sample analysis method using the same | |
US3876374A (en) | Method and apparatus for automated quantitative fluid analysis | |
KR100860269B1 (en) | A method and apparatus for on-line monitoring wafer cleaning solution at single wafer process and a reagent container for the apparatus | |
US3241923A (en) | Method and apparatus for the treatment of liquids | |
JPS60107541A (en) | Analyzing device for process | |
US20030174306A1 (en) | Dilution apparatus and method of diluting a liquid sample | |
DE2211032A1 (en) | METHOD AND DEVICE FOR DETERMINING GASES SOLVED IN A LIQUID, IN PARTICULAR IN THE BLOOD | |
US3615234A (en) | System for processing and analyzing biological samples | |
US3401591A (en) | Analytical cuvette and supply system wherein the cuvette inlet and outlet are located on the bottom of the cuvette | |
KR102156360B1 (en) | Apparatus for on-line monitoring particle contamination in special gases | |
CN109374913B (en) | Liquid path system device and control method | |
US6053058A (en) | Atmosphere concentration monitoring for substrate processing apparatus and life determination for atmosphere processing unit of substrate processing apparatus | |
JPH09304248A (en) | Weighing apparatus and dilution apparatus | |
KR102124589B1 (en) | Apparatus for testing sensor | |
KR20150050229A (en) | On-line monitoring system for metal included in gas sample | |
EP0118478A1 (en) | Nebulizer. | |
US20030063271A1 (en) | Sampling and measurement system with multiple slurry chemical manifold | |
KR101596727B1 (en) | On-line monitoring system for metal included in liquid |