JPS60107515A - Distance detector - Google Patents

Distance detector

Info

Publication number
JPS60107515A
JPS60107515A JP21567383A JP21567383A JPS60107515A JP S60107515 A JPS60107515 A JP S60107515A JP 21567383 A JP21567383 A JP 21567383A JP 21567383 A JP21567383 A JP 21567383A JP S60107515 A JPS60107515 A JP S60107515A
Authority
JP
Japan
Prior art keywords
light
distance
light receiving
receiving element
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21567383A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishida
石田 廣明
Shinji Nagaoka
伸治 長岡
Koji Sato
幸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Koki KK
Original Assignee
Seiko Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Koki KK filed Critical Seiko Koki KK
Priority to JP21567383A priority Critical patent/JPS60107515A/en
Publication of JPS60107515A publication Critical patent/JPS60107515A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve the precision of distance detection by displacing an optical device through the operation of an electromagnetic driving means, deflecting the optical path of reflection from a subject and moving a light spot, and detecting the coincidence point of output levels of two split photodetecting elements. CONSTITUTION:Light from a light emitting element 11 strikes the subject 14 and is passed through a photodetection lens 7 and a prism 2 to form the light spot on a photodetecting element 1. The light spot of the reflected light strikes the majority of a photoelectric converting element 1-1 at the initial stage of the operation, so an integral output V1 is high and the optical path 8 is deflected according to the rightward movement of the prism 2 to decrease the output when the light spot becomes incident to a photoelectric converting element 1-2. The integral output V2 of the photoelectric converting element 1-2, on the other hand, varies from a low level to a high level. When the integral output levels V1 and V2 of the photoelectric converting elements 1-1 and 1-2 coincide with each other, the current voltage value VL is held by a capacitor.

Description

【発明の詳細な説明】 本発明は、三角測量の原理ケ利用した投光式の距離検出
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a projection type distance detection device that utilizes the principles of triangulation.

従来この種の距離検出装置は、被写体からの反射光全受
けるための複数の受光素子金偏え、発光素子に゛よって
発射した光が被写体に当たり、前記複数の受光素子のう
ち、どの受光素子によってその反射光を受光出来るかに
よって距離全検出するものである。例えば、特開昭54
−40663号において開示されている装置においても
明らかなように、この種の装置に複数の受光素子のそ几
ぞれと被写体までの距離の共役な領域があり、それら全
対応させるゾーンフォーカス型の距離検出7行なうため
のものである。このような装置の欠点は、受光素子音複
数個用いた構成であるために、本質的に被写体までの距
離が連続的に得られないという点にある。
Conventionally, this type of distance detecting device has a plurality of light receiving elements that receive all of the reflected light from the subject, a light emitting element that emits light that hits the subject, and which of the plurality of light receiving elements is used by which light receiving element. The entire distance is detected depending on whether the reflected light can be received. For example, JP-A-54
As is clear from the device disclosed in No. 40663, this type of device has a region where each of the plurality of light-receiving elements is conjugate with the distance to the subject, and a zone focus type that corresponds to all of them is required. This is for performing distance detection 7. A drawback of such an apparatus is that, since it is configured using a plurality of light-receiving element sounds, the distance to the subject cannot essentially be obtained continuously.

また、特開57−.104809号のように、2分割さ
れた受光素子の光電出力の止音演算し、距離全検出する
装置も提案さ几ている。しかし、この槙の装置において
は、演算回路が複雑になると共に、遠距離では、反射光
そのものが減少するために演算回路の誤差が犬きくなり
、検出結果のバラツキカ犬キくなるという欠点音用して
いる。
Also, JP-A-57-. As in No. 104809, a device has also been proposed which calculates the noise reduction of the photoelectric output of the divided light receiving element and detects the entire distance. However, in Maki's device, the calculation circuit is complicated, and at long distances, the reflected light itself decreases, so the error in the calculation circuit becomes large, and the detection results vary widely. are doing.

本発明は、上記問題点に着目したもので、連続的な距離
情報が得られると共に、回路構成も容易で、精度のよい
距離検出が可能な置換鑓に提供するものである。本発明
の特徴は、被写体に向って投光し、その反射光上受i−
素子で受光すると共に、前記受光素子と受光レンズとの
間に、前もって機械的偏倚さnて配置された光学装置【
設け、前記機械的偏倚とに反対方向の駆動力全前記光学
装置に電磁駆動手段で与え、前記光学置換會走査させる
ことで反射光光路?変位させ前記受光素子の光電出力比
が所定値となったときの電磁駆動手段の入力電気に全検
出し距離情報とするものである、以下図面に従って具体
的に説明する。図中同じものは同一記号で示しである、 第1図は、本発明の原理図である。1は2分割受光素子
、2は光学装置であるプリズム、3に機械的偏倚を与え
るばね、4は電磁駆動手段で、例えば、電磁往復部a置
換と呼ばれているもの、5は前記′亀磁往復駆動装ff
t4の′電源、6は前記電源5が電磁往復駆動装置4へ
給電する電圧値tコントロールする可変抵抗器である。
The present invention has focused on the above-mentioned problems, and provides a replacement chisel that can obtain continuous distance information, has a simple circuit configuration, and can perform accurate distance detection. The feature of the present invention is that the light is projected toward the subject and the reflected light is received on the i-
an optical device that receives light with the element and is placed in advance with a mechanical bias between the light receiving element and the light receiving lens;
A driving force in a direction opposite to the mechanical deflection is applied to the optical device by an electromagnetic driving means, and the optical displacement system scans the reflected light optical path. When the photoelectric output ratio of the light-receiving element reaches a predetermined value by displacement, the input electricity of the electromagnetic driving means is fully detected and used as distance information.This will be specifically explained below with reference to the drawings. The same parts in the figures are indicated by the same symbols. FIG. 1 is a diagram illustrating the principle of the present invention. 1 is a two-split light receiving element, 2 is a prism which is an optical device, 3 is a spring that provides mechanical bias, 4 is an electromagnetic driving means, for example, what is called an electromagnetic reciprocating part a replacement, and 5 is the above-mentioned 'camera'. Magnetic reciprocating drive ff
The power source t4, 6, is a variable resistor that controls the voltage value t supplied by the power source 5 to the electromagnetic reciprocating drive device 4.

7は2分割受光素子1.の前面に配置された受光レンズ
、9は前記受光レンズ7の光軸である。ばね5に、一端
ケプリズム2に、他端上固定部材にそれぞれ接続されて
、図中左方向の力にプリズム2に加えている。
7 is a two-part light receiving element 1. A light receiving lens 9 is disposed in front of the light receiving lens 7, and 9 is an optical axis of the light receiving lens 7. It is connected to the spring 5, one end to the prism 2, and the other end to the upper fixing member, respectively, and applies a force to the prism 2 in the left direction in the figure.

また電磁往復駆動装置t4は、可動軸がプリズム2に連
結されている。
Further, the electromagnetic reciprocating drive device t4 has a movable shaft connected to the prism 2.

次に作動について説明する、前記電伍往復駆動装置4ば
、第2図のグラフのように、供給電圧Vあるいは消費電
流Aを横軸、電磁往復駆動装fit4の可動軸の移動量
E1 あるいは力Fを縦軸にとると、直線的な特性?も
っている。電磁往復駆動装置4に電圧全供給すると、可
動軸に、第1図中右方向に移動する。可変抵抗器6會調
整し、電磁往復駆動装置4に加わる電力?増加させると
、プリズム2は、ばね3と電磁往復駆動装置4の可動軸
の力のバランス?とりながら図中右方向に移動すること
になる。プリズム2の移動量が、!磁往復駆動装置4に
供給される電力と1対1の対応となる。
Next, the operation of the electromagnetic reciprocating drive device 4 will be explained. As shown in the graph of FIG. If we take F as the vertical axis, is it a linear characteristic? I have it. When the full voltage is supplied to the electromagnetic reciprocating drive device 4, the movable shaft moves rightward in FIG. Adjust the variable resistor 6 and apply the power to the electromagnetic reciprocating drive 4? When increased, the prism 2 balances the forces of the spring 3 and the movable shaft of the electromagnetic reciprocating drive device 4? While holding it, you will move to the right in the figure. The amount of movement of prism 2 is! There is a one-to-one correspondence with the electric power supplied to the magnetic reciprocating drive device 4.

今、受光レンズ7に入射する入射光の光路で8とすると
、プリズム2の位置が(1)の場合、光路8の光スボツ
)fl、2分割受光素子1の位置(1)に生ずる。1!
伍往復駆動装置4の供給電圧v’2可変抵抗器6で調整
し、プリズム2を右方向に移動させ、入射光がプリズム
2によって偏光されると、光スポットに、2分割受光素
子1表面を図中左方向に移動する、プリズム2の位置(
2)および(3)のとき、2分割受光素子1表面の光ス
ポット位Itハそれぞれ(2)および(3)に対応する
。プリズム2の位置が(3)のとき、ちょうど2分割受
光素子2の中心に光スポットができ、2分割受光素子2
のそれぞれの光電変換素子の出力は一致する。
Now, assuming that the optical path of the incident light entering the light-receiving lens 7 is 8, when the prism 2 is at the position (1), the light slot (fl) of the optical path 8 occurs at the position (1) of the two-split light-receiving element 1. 1!
5) Adjust the supply voltage v'2 of the reciprocating drive device 4 with the variable resistor 6, move the prism 2 to the right, and when the incident light is polarized by the prism 2, the surface of the 2-split light receiving element 1 will become a light spot. The position of prism 2 moving to the left in the figure (
In cases 2) and (3), the light spot position It on the surface of the two-part light receiving element 1 corresponds to (2) and (3), respectively. When the prism 2 is in position (3), a light spot is created exactly at the center of the two-split light-receiving element 2, and the two-split light-receiving element 2
The outputs of the respective photoelectric conversion elements match.

第3図は、電磁往復駆動装置4の構造の一例である8 
31は可動軸、32にヨーク、35は軸31に取付けら
れている永久研石、、34.351ff電磁コイル、3
6.37u軸31の軸受である。
FIG. 3 shows an example of the structure of the electromagnetic reciprocating device 4.
31 is a movable shaft, 32 is a yoke, 35 is a permanent grinding stone attached to the shaft 31, 34.351ff electromagnetic coil, 3
This is a bearing for the 6.37u shaft 31.

電磁コイル34および35に電圧會供給すると、可動軸
41に、その電圧値に対応した移動上する。
When a voltage is supplied to the electromagnetic coils 34 and 35, the movable shaft 41 moves upward in accordance with the voltage value.

第4図(1k) 、 (b)は、本発明?三角測距によ
る距離検出に利用した図である。、11は、近赤外発光
ダイオ−・ドのような発光素子である。12は、照射元
會ビームにするための投光レンズ、13に、前記投光レ
ンズ12の光軸である。1−1.1−2は、2分割受光
素子1のそれぞれの光電変換素子である。発光素子11
から照射さfした光は、被写体14および14′で反射
され、光路8および8′ヲ)IV!ジ、受光レンズ7で
集光されて、受光素子1の表面に、元スポットを生ずる
Is Fig. 4 (1k) and (b) the invention? It is a diagram used for distance detection by triangulation. , 11 are light emitting elements such as near-infrared light emitting diodes. Reference numeral 12 designates a light projection lens for producing an irradiation source beam, and 13 designates an optical axis of the light projection lens 12. 1-1 and 1-2 are respective photoelectric conversion elements of the two-split light receiving element 1. Light emitting element 11
The light irradiated from f is reflected by the objects 14 and 14', and the light passes through the optical paths 8 and 8'.IV! The light is then focused by the light receiving lens 7 to form an original spot on the surface of the light receiving element 1.

第5図に、距離に対応した電気信号を得るための一例の
回路図である。51は、発光素子11の変調駆動回路、
52 、5 ’7は、発光素子11がら照射さn1仮写
体で反射さn 7t 7&調光の周波数成分のみ2通過
させるためのカップリングコンデンサ、55.58に増
幅器、54.59は信号分音検波するための夕′イオー
ド、55.60および56.61は積分回路音形成する
抵抗およびコンデンサである、62にコンパレータで、
光電変換素子1−1側積分出カレベルV、と、ft、電
変換素子1−2側積分出力レベルv2が一致したとき反
転信号を出す。66にスイッチで、コンパレータ62の
反転信号でスイッチが切換わる6 64は電磁往復駆動
装置4に供給される電圧葡メモリーまたはホールドする
ためのコンデンサである、第6図は、第5図の回路出力
を表わす波形である。横軸に、プリズム2の移動数!で
ある。
FIG. 5 is an example circuit diagram for obtaining an electric signal corresponding to distance. 51 is a modulation drive circuit for the light emitting element 11;
52, 5'7 are coupling capacitors for passing only the frequency components of light emitting element 11 irradiated n1 reflected by the temporary object n7t7 & dimming, 55.58 is an amplifier, and 54.59 is a signal component. 55.60 and 56.61 are the resistors and capacitors for forming the integrating circuit sound; 62 is the comparator;
When the photoelectric conversion element 1-1 side integrated output level V, ft, and the electric conversion element 1-2 side integrated output level v2 match, an inverted signal is output. 66 is a switch, and the switch is changed by the inverted signal of the comparator 62. 64 is a capacitor for storing or holding the voltage supplied to the electromagnetic reciprocating drive device 4. FIG. 6 shows the circuit output of FIG. 5. This is a waveform representing The horizontal axis is the number of movements of prism 2! It is.

ここで@4図(a) 、 (1))の距離検出作動に、
第5図の回路および、第6図の波形を用いて詳細に説明
する。
Here, for the distance detection operation in Figure 4 (a) and (1)),
This will be explained in detail using the circuit shown in FIG. 5 and the waveforms shown in FIG.

第4図のような構成で、発光素子11から照射された光
に、近距離にある被写体14に蟲たり、その反射光が受
光レンズ7およびプリズム2を通して受光素子1上に光
スポットとしてできる、第4図(a)は、上記の状態上
表わす。今、可変抵抗器6を調整し、11!磁往復駆動
装@、aに供給さ几る電圧全土げると、プリズム2に、
ばね3の力に打ちかつて、図中右方向に移動する、作動
の初期でに反射光の光スボタトは、光電変換素子1−1
に大部分あたっているために積分出力v1ニ高く、プリ
ズム2が右方向に移動するに従い、光路8が偏光され、
光スポットが光電変換素子1−2側に入射されて・くる
と、出力が下がってくる。反対に光電変換素子1−2の
積分出力v、i、低レベルから高レベルへ変化する。第
6図のV、およびv2がそnである。′tIL磁往復駆
動装置4へ供給する電圧tさらに上げて、プリズム2t
さらに移動させると、積分出力V、と積分出力v2の交
点が生ずる、コンパレータ62は、光電変換素子1−1
.1−2のそれぞれの積分出力V1.v2 が一致した
ときに反転信号がでる。光電変換素子1−1の積分出力
V、が光電変換素子1−2の積分出力v2よす高い場合
にはコンパレータ62の出力vcは高レベル、低い場合
vLハ、低レベルである、また、コンパレータ62出力
VCが高レベルのときに、スイッチ63にオン、低レベ
ルのときにオフとなるように、スイッチ63に連動して
いる。スイッチ63がオンしている時、コンデンサ64
は電磁往復駆動装置4の電圧値會サンプリングし、オフ
すると、その瞬間の電圧値上ホールドする。第6図中V
Lがコンデンサ64の電圧波形である。、第6図におい
て上記作動中のタイミングについて示す。電磁往復駆動
装置4に給電しプリズム2がE、移動し、光電変換素子
1−1.1−2のそnぞれの積分出力レベルV、 、 
vx カ一致スると、コンパレータ62の出力VCは反
転し、その信号で、電磁往復駆動装置4に給電さnる電
圧値■L會コンデンサ64がホールドする。
With the configuration shown in FIG. 4, the light emitted from the light emitting element 11 hits the subject 14 located at a close distance, and the reflected light passes through the light receiving lens 7 and the prism 2 and forms a light spot on the light receiving element 1. FIG. 4(a) shows the above state. Now, adjust variable resistor 6 and get 11! When the entire voltage supplied to the magnetic reciprocating drive device @, a is reduced, the prism 2 becomes
At the initial stage of operation, when the light beam is overcome by the force of the spring 3 and moves to the right in the figure, the reflected light beam passes through the photoelectric conversion element 1-1.
As the prism 2 moves to the right, the optical path 8 becomes polarized.
When the light spot enters the photoelectric conversion element 1-2 side, the output decreases. On the contrary, the integrated output v,i of the photoelectric conversion element 1-2 changes from a low level to a high level. V and v2 in FIG. 6 are the n. 'tIL The voltage t supplied to the magnetic reciprocating drive device 4 is further increased, and the prism 2t is
When the comparator 62 is moved further, an intersection point between the integral output V and the integral output v2 occurs, and the photoelectric conversion element 1-1
.. 1-2, each integral output V1. When v2 matches, an inverted signal is output. When the integrated output V of the photoelectric conversion element 1-1 is higher than the integrated output V2 of the photoelectric conversion element 1-2, the output vc of the comparator 62 is at a high level, and when it is lower, the output vL is at a low level. It is interlocked with the switch 63 so that it is turned on when the output VC 62 is at a high level, and turned off when it is at a low level. When the switch 63 is on, the capacitor 64
samples the voltage value of the electromagnetic reciprocating drive device 4, and when turned off, holds the voltage value at that moment. V in Figure 6
L is the voltage waveform of the capacitor 64. , FIG. 6 shows the timing during the above operation. Power is supplied to the electromagnetic reciprocating drive device 4, the prism 2 moves by E, and the integral output level of each of the photoelectric conversion elements 1-1, 1-2 is V, ,
When vx matches, the output VC of the comparator 62 is inverted, and the voltage value supplied to the electromagnetic reciprocating drive device 4 is held by the capacitor 64 with that signal.

第4図(b)のように遠距離にある被写体14′によっ
て、光が反射した場合には、第4図(a)の近距離にあ
る被写体14の場合とは、受光素子1上の異なる位置に
光スポットができる。第4図(a) 、 (b)のよう
に、被写体が近くにあるほど、受光素子1上の光スポッ
トは右の方に、遠距離にあるほど左の方へ生ずる。した
がって、第4図(’b)のように被写体が遠距離にある
場合には近距離にある場合と比べ、積分出力V、および
V、のレベルが一致するのにプリズム2の移動量Eに少
なくてすむ、すなわち、[磁往復駆動装置4への給電電
圧は低い。上記状態を第6図の破線のグラフで示す。本
発明によnば、電磁往復駆動装kAへの給電電圧tメモ
リーあるいはホールドするコンデンサ64の電圧値VL
がW離に対応した値となる。被写体が近距離にあるほど
、コンデンサ62の電圧値VLは高く、遠距離はど電圧
値VLは低くなる、 第7図は本発明の他の実施例r三角測距による距離検出
に利用しπ図である、71に反射鏡で、受光レンズ13
會通過した被写体14からの反射光を受光素子1へ導く
。72に、反射鏡71の取付部材で、軸72ai有し、
軸72a會中心に回転する。さらに、@72bf有し、
電磁往復駆動装置tAの軸31に取付けられているピン
4aと、連結されている。取付部材72は、ばね3で、
図中、時計方向の回転力が加えらnている。受光素子1
表面の元スポット位置は、被写体の位置により変わり、
糾7図中でに、被写体が近距離にあるほど、光スポット
は上の万へ、また遠距離にあるほど下の方へ生ずる。
When the light is reflected by the object 14' located at a far distance as shown in FIG. 4(b), the light receiving element 1 may be A light spot is created at the location. As shown in FIGS. 4(a) and 4(b), the closer the object is, the more the light spot on the light receiving element 1 appears to the right, and the farther the object is, the more the light spot appears to the left. Therefore, when the subject is at a long distance as shown in Figure 4('b), compared to when the subject is at a short distance, even though the levels of the integral outputs V and V are the same, the amount of movement E of the prism 2 is In other words, the power supply voltage to the magnetic reciprocating drive device 4 is low. The above state is shown by the broken line graph in FIG. According to the present invention, the voltage value VL of the power supply voltage t memory or holding capacitor 64 to the electromagnetic reciprocating drive device kA
is a value corresponding to W separation. The closer the object is to the object, the higher the voltage value VL of the capacitor 62 is, and the farther the object is, the lower the voltage value VL is. In the figure, 71 is a reflecting mirror, and light receiving lens 13
Reflected light from the subject 14 that has passed through the meeting is guided to the light receiving element 1. 72 is a mounting member for the reflecting mirror 71 and has a shaft 72ai;
Rotates around the shaft 72a. Furthermore, it has @72bf,
It is connected to a pin 4a attached to the shaft 31 of the electromagnetic reciprocating device tA. The mounting member 72 is a spring 3,
In the figure, a clockwise rotational force is applied. Light receiving element 1
The original spot position on the surface changes depending on the position of the subject,
In Figure 7, the closer the object is, the more the light spot will appear at the top, and the farther the object is, the more the light spot will appear at the bottom.

今、電磁往復駆動装置4は給′亀され、取付部材72が
はね3の力に打ちかつて反時計方向に回転すると、被写
体14からの反射光の光スポットは受光素子1表面t1
図中、上から下へ移動する、ことになる、距離検出方法
、検出回路についてはすでに述べであるので、ここでは
省略する、第7図でに、電磁往復駆動装+t 4への給
電電圧と反射鏡71の回転角が1対1の対応ケなす。被
写体が近距離はど反射鏡の回転角度は大きくなり、電磁
往復駆動装置への給電電圧も高くなる。
Now, the electromagnetic reciprocating device 4 is fed, and when the mounting member 72 is rotated counterclockwise by the force of the spring 3, the light spot of the reflected light from the subject 14 is shifted to the surface t1 of the light receiving element 1.
The distance detection method and detection circuit, which move from top to bottom in the figure, have already been described, so they are omitted here. The rotation angles of the reflecting mirrors 71 have a one-to-one correspondence. When the object is close, the rotation angle of the reflecting mirror becomes larger, and the voltage supplied to the electromagnetic reciprocating device also becomes higher.

第8図は、本発明の他の実施例で、光学装置として、平
行ガラス音用いたものである。電磁往復駆動装置4に給
電し、平行ガラス81i回転させることで、光路8に偏
光させ、受光素子1上に生ずる光スポットを移動させる
FIG. 8 shows another embodiment of the present invention, in which a parallel glass sound is used as the optical device. By supplying power to the electromagnetic reciprocating drive device 4 and rotating the parallel glass 81i, the light is polarized along the optical path 8 and the light spot generated on the light receiving element 1 is moved.

第9図は、本発明の他の実施例で、受光レンズ7そのも
の?電磁往復駆動装置4で変化させ、光路8會偏光させ
るものである。
FIG. 9 shows another embodiment of the present invention, and the light receiving lens 7 itself? The light is changed by an electromagnetic reciprocating device 4, and the optical path 8 is polarized.

第8図および第9図の装置での距離検出方法については
、すでに述べある方法と同一でよい。また、第7図ある
いに第8図のような光学装置を回転させるものについて
に、その駆動方法r1往復駆動装置友に限らず、直流モ
ータやステップモータのような回転運動装置でもよい。
The distance detection method in the apparatuses shown in FIGS. 8 and 9 may be the same as the method already described. Further, the driving method for rotating the optical device as shown in FIG. 7 or FIG. 8 is not limited to the reciprocating drive device r1, but may be a rotary motion device such as a DC motor or a step motor.

以上述べてきたように、本発明では、電磁駆動手段の作
動で光学装置i1.7変位させ、被写体からの反射光光
路r偏光し、2分割受光素子土の元スボツ)k移動させ
て、2分割受光素子のそ−nぞれの出力レベルの一致点
を検出する。その検出信号で電磁駆動手段への入力電圧
ケモニタすることで距離に対応した電気信号ケ得ること
ができる。上記実施例では、距離に対応する′電気信号
ケ電圧値として説明してきたが、電流値として取り出す
ことも可能である、 本発明によ11ば、2分割受光素子のそれぞnの出力の
一致点?検出すればよいため、複雑な演算回路全必要と
せず、棺度のよい距離検出が可能である。さらに距離情
報會連続しf0電気信号として得られる特長もある。こ
の信号上用いれば、W態表示も容易になり、また測距装
置もコンノζクト化が可能のため、カメラ等のオートフ
ォーカスとして適するものである。
As described above, in the present invention, the electromagnetic driving means is operated to displace the optical device i1.7, polarize the optical path r of the reflected light from the subject, move the two-split light receiving element (original socket) k, A matching point between the output levels of each of the divided light receiving elements is detected. By monitoring the input voltage to the electromagnetic drive means using the detection signal, an electric signal corresponding to the distance can be obtained. In the above embodiment, the electrical signal corresponding to the distance has been explained as a voltage value, but it is also possible to extract it as a current value. point? Since it is only necessary to detect the distance, there is no need for any complicated arithmetic circuits, and it is possible to accurately detect the distance. Another feature is that distance information can be continuously obtained as an f0 electrical signal. If this signal is used, it becomes easy to display the W-state, and the distance measuring device can also be connected, making it suitable for autofocus in cameras and the like.

本発明の説明’? 2分割受光素子の場合について述べ
てきたが、前記受光素子ケそのまま位置検出素子(PS
D)におきかえても、本装置は冥現可能である、
Description of the invention'? Although we have described the case of a two-split photodetector, the photodetector can be used as it is as a position detection element (PS).
Even if replaced by D), this device is capable of manifestation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、第2図は′電磁往復駆動装置
の特性図、第3図は電磁往復駆動装置の一例の構造図、
第4図(a)および(b)は本発明の距離検出装置の一
実施例、第5図は本発明の距離検出のための回路図、第
6図は前記回路図の出力波形、第7図〜第9図は本発明
の距離検出装置の他の実施例である、 1・・・受光素子 2・・・グリズム 3・・・ばね 4・・・電磁往復駆動装置5・・・電源
 6・・・可変抵抗器 7・・・受光レンズ 11・・・発光素子12・・・投
光レンズ 14.14’・・・被写体 31・・・可動軸 32・・・ヨーク 33・・・永久磁石 54.35・・・電磁コイル36
.37・・軸受 1−1・、1−2・・・光電変換素子 51・・・駆動回路 52.57・・・カップリングコンデンサ53.58・
・・増幅器 54.59・・ダイオード 55.60・・・抵抗 56.61,64・・・コンデンサ 62・・・コンパレータ 63・・・スイッチ 71・・反射鏡 72・・・取付部材 81・・・平行ガラヌ 以 上 出願人 セイコー光機株式会社 第1図 V、A
Fig. 1 is a principle diagram of the present invention, Fig. 2 is a characteristic diagram of an electromagnetic reciprocating drive device, and Fig. 3 is a structural diagram of an example of an electromagnetic reciprocating drive device.
4(a) and 4(b) are one embodiment of the distance detection device of the present invention, FIG. 5 is a circuit diagram for distance detection of the present invention, FIG. 6 is an output waveform of the circuit diagram, and FIG. 9 to 9 show other embodiments of the distance detection device of the present invention. 1... Light receiving element 2... Grism 3... Spring 4... Electromagnetic reciprocating drive device 5... Power source 6 ...Variable resistor 7...Light receiving lens 11...Light emitting element 12...Emitting lens 14.14'...Subject 31...Movable axis 32...Yoke 33...Permanent magnet 54.35... Electromagnetic coil 36
.. 37...Bearing 1-1., 1-2...Photoelectric conversion element 51...Drive circuit 52.57...Coupling capacitor 53.58.
...Amplifier 54,59...Diode 55,60...Resistor 56,61,64...Capacitor 62...Comparator 63...Switch 71...Reflector 72...Mounting member 81... Parallel Galanu and above Applicant Seiko Koki Co., Ltd. Figure 1 V, A

Claims (1)

【特許請求の範囲】 (1) 発光素子と投光レンズとで成る投光手段ケ有し
、前記投光手段から投光され、被写体から反射さnた光
を受光して前記被写体までの距離會測定する距離検出装
置において、前記被写体からの反射光を受光するための
受光素子と受光レンズとで成る受光手段と、前記受光素
子と前記受光レンズの間に配置される光学装置と、前記
光学装置に機械的偏倚を与える方向とは反対方向の駆動
力を前記光学装置に与える電磁駆動手段とを備え、前記
電磁駆動手段に入力する電気量が距離信号となることt
%徴とする彫離検出置換椎。 (2、特許請求の範囲第1項記載の距離検出装置におい
て、前記受光素子は、2分割さA7v素子であること全
特徴とする距離検出装置。 (3) %許請求のれ間第2項記載の距離検出装置にお
いて、前記2分割受光素子の光電出力比が所定値になっ
たときの前記電伍駆動手段の入力電気量會、距離に対応
した信号とすること全特徴とする距離検出装置。 (4)特許請求の範囲第1.2項及び6項のいずnか1
つの項記載の距離検出装置において、前記光学装置に、
プリズムであることを%徴とする距離検出装置。 (5)特許請求の範囲第1.2項及び3項のいずnか1
つの項記載の距離検出装置において、前記光学装置は、
反射′、幌であること全特徴とする距離検出装置。 +6)特許請求の範囲第1.2項及び3項のいずれか1
つの項記載の距離検出装置において、前記光学装置に、
平行ガラスであることを特徴とする距離検出装置− (7) 発光素子と投光レンズとで成る投光手段孕有し
、前記投光手段から投光され、被写体から反射された光
音受光して前記被写体までの距離?測定する距離検出装
置において、前記被写体からの反射光を受光するための
受光素子と受光レンズとで成る受光手段と、前記受光レ
ンズに機械的偏倚金与える手段と、前記機械的偏倚を与
える方向とは反対方向の駆動カケ前記受光レンズに与え
る電磁駆動手段と全備え、前記電磁駆動手段に入力する
電気量が距離信号となることケ特徴とする距離検出装置
。 (8) 特許請求の範囲第7項記載の距離検出装置にお
いて、前記受光素子に、2分割さf′Lfc素子である
ことを特徴とする距離検出装置、 (9)%許請求の範囲第8項記載の距離検出装置におい
て、前記2分割受光素子の光電出力比が所定値になった
ときの前記電磁駆動手段の入力電気量を、距離に対応し
た信号とすることを特徴とする距離検出装置。
[Scope of Claims] (1) A light projecting means including a light emitting element and a light projecting lens is provided, and the distance to the object is determined by receiving the light projected from the light projecting means and reflected from the object. In a distance detection device for measuring a distance, a light receiving means includes a light receiving element and a light receiving lens for receiving reflected light from the subject, an optical device disposed between the light receiving element and the light receiving lens, and the optical device. an electromagnetic drive means that applies a driving force to the optical device in a direction opposite to a direction that imparts a mechanical bias to the device, and the amount of electricity input to the electromagnetic drive means becomes a distance signal.
Detection of cartilage and replacement vertebrae as percentage signs. (2. The distance detecting device according to claim 1, characterized in that the light receiving element is a two-divided A7v element. (3) Percentage gap in claim 2. The distance detecting device as described above is characterized in that when the photoelectric output ratio of the two-split light receiving element reaches a predetermined value, the input electric quantity of the electric power driving means is a signal corresponding to the distance. (4) Any one of claims 1.2 and 6.
In the distance detection device according to item 1, the optical device includes:
A distance detection device whose characteristic is that it is a prism. (5) Any one of claims 1.2 and 3.
In the distance detection device according to item 1, the optical device includes:
Distance detection device that is fully characterized by its reflection and hood. +6) Any one of claims 1.2 and 3
In the distance detection device according to item 1, the optical device includes:
Distance detection device characterized by being made of parallel glass (7) It has a light projecting means consisting of a light emitting element and a light projecting lens, and receives light and sound emitted from the light projecting means and reflected from a subject. What is the distance to the subject? In a distance detecting device for measuring, a light receiving means comprising a light receiving element and a light receiving lens for receiving reflected light from the object, a means for imparting a mechanical bias to the light receiving lens, a direction for imparting the mechanical bias; A distance detecting device comprising an electromagnetic driving means for applying a driving chip to the light receiving lens in the opposite direction, and an amount of electricity inputted to the electromagnetic driving means becomes a distance signal. (8) The distance detecting device according to claim 7, wherein the light receiving element is a two-divided f′Lfc element; (9) Permissible claim 8 The distance detecting device according to item 1, wherein the amount of electricity input to the electromagnetic driving means when the photoelectric output ratio of the two-split light receiving element reaches a predetermined value is a signal corresponding to the distance. .
JP21567383A 1983-11-16 1983-11-16 Distance detector Pending JPS60107515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21567383A JPS60107515A (en) 1983-11-16 1983-11-16 Distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21567383A JPS60107515A (en) 1983-11-16 1983-11-16 Distance detector

Publications (1)

Publication Number Publication Date
JPS60107515A true JPS60107515A (en) 1985-06-13

Family

ID=16676267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21567383A Pending JPS60107515A (en) 1983-11-16 1983-11-16 Distance detector

Country Status (1)

Country Link
JP (1) JPS60107515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
JPS63309810A (en) * 1987-06-11 1988-12-16 Asahi Optical Co Ltd Range finder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111858A (en) * 1978-02-21 1979-09-01 Minolta Camera Co Ltd Distance detector
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS58179828A (en) * 1982-04-15 1983-10-21 Canon Inc Safety device of active range finder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111858A (en) * 1978-02-21 1979-09-01 Minolta Camera Co Ltd Distance detector
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS58179828A (en) * 1982-04-15 1983-10-21 Canon Inc Safety device of active range finder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
JPS63309810A (en) * 1987-06-11 1988-12-16 Asahi Optical Co Ltd Range finder

Similar Documents

Publication Publication Date Title
EP0088441B1 (en) Vertical focus servo system for an optical disc player
JPH01264637A (en) Optical reader of record carrier
US20070076171A1 (en) Wobulator position sensing system and method
US5216648A (en) Objective lens drive apparatus applicable to optical disk apparatus
US5315374A (en) Three-dimensional measuring apparatus
CN112213853A (en) Optical scanning device, object detection device, optical scanning method, object detection method, and program
JPS60107515A (en) Distance detector
JP2857754B2 (en) Auto-focusing device using double reflection
US3527951A (en) Light modulation system
JPWO2018193499A1 (en) Fourier transform infrared spectrophotometer
KR910005373B1 (en) Automatic focusing apparatus
US20090251670A1 (en) Optical feedback for high speed scan mirror
JPH08129600A (en) Optical information reader
JP3216146B2 (en) Michelson interferometer
JPS6191620A (en) Optical lens device
JP3190783B2 (en) Focusing servo mechanism
JP2545903Y2 (en) Optical information recording / reproducing device
SU1007512A1 (en) Photoelectric device for monitoring object motion
RU1793418C (en) Automatic focusing device for photographic objective
JPS61190309A (en) Autofocus device
JPS6196532A (en) Optical lens device
CN100401394C (en) Optical picking system
JPS6132519A (en) Focusing device
CN118244476A (en) Galvanometer driving method, computer storage medium, galvanometer and projection device
JPH0213877B2 (en)