JPS60106927A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPS60106927A
JPS60106927A JP21252083A JP21252083A JPS60106927A JP S60106927 A JPS60106927 A JP S60106927A JP 21252083 A JP21252083 A JP 21252083A JP 21252083 A JP21252083 A JP 21252083A JP S60106927 A JPS60106927 A JP S60106927A
Authority
JP
Japan
Prior art keywords
raw material
sintering
sintered ore
sintering machine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21252083A
Other languages
Japanese (ja)
Other versions
JPS6334213B2 (en
Inventor
Tetsuo Kawahara
川原 哲夫
Yasuaki Ishikawa
石川 安昭
Shinichi Kurosawa
黒沢 信一
Koichiro Nakano
中野 皓一郎
Takeshi Tada
健 多田
Hiroshi Kurihara
博 栗原
Satoru Fujiwara
哲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21252083A priority Critical patent/JPS60106927A/en
Publication of JPS60106927A publication Critical patent/JPS60106927A/en
Publication of JPS6334213B2 publication Critical patent/JPS6334213B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To improve air permeability of a sintering raw material layer and to increase productivity as well by supplying the middle-temp. waste gas which is discharged from an apparatus for producing sintered ore and is subjected to heat recovery in a boiler and the middle-temp. waste gas after cooling of the sintered ore to the crude raw material part of a sintering raw material. CONSTITUTION:The coke in the sintering raw material layer 5 on a pallet 4 of a DL type sintering device is ignited by an ignition device 6 and as said layer is moved rightward by a pallet 4, the sintering raw material is sintered. The high temp. waste gas of 350-500 deg.C discharged from the sintering machine is recovered of sensible heat in a boiler 26 and is supplied as the relatively middle- temp. waste gas of 150-250 deg.C via a conduit 29 to an ignition furnace 6 by a suction blower 27. The cooling waste gas from a cooler 12 for the sintered ore has also the middle temp. of 150-250 deg.C and is therefore supplied via a conduit 30 to the furnace 6. These gases are blown into the wet sintering raw material by which the heat contained therein is recovered. The CO2 in the gases reacts with the Ca(OH)2 in the raw material to form CaCO3 which forms secure pseudo particles. The air permeability of the layer 5 is thus improved, the rate of sintering is increased and the productivity of the sintered ore is improved.

Description

【発明の詳細な説明】 本発明は焼結鉱の製造方法特に焼結機排ガスの排熱をボ
イラー等により回収した後の回収排ガス並にその他の中
温排ガスを更に焼結に利用し、原料層の通気性を改善し
焼結成績を向上せしめる焼結鉱製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing sintered ore, in particular, in which the exhaust heat of the sintering machine exhaust gas is recovered by a boiler, etc., and the recovered exhaust gas and other medium-temperature exhaust gas are further utilized for sintering, and The present invention relates to a method for producing sintered ore that improves the air permeability of sintered ore and improves sintering performance.

一般に高炉装入原料としての焼結鉱の製造には大量生産
に適した連続式のドヮイトロイド(DL)焼結機が多く
用いられている。また焼結機には直線形DL式と円形D
L式とがあるが一般的には第1図に示す如き直線形DL
式が採用されている。
In general, a continuous dotroid (DL) sintering machine, which is suitable for mass production, is often used to produce sintered ore as a raw material for blast furnace charging. In addition, the sintering machines include linear DL type and circular D type.
There is an L type, but generally it is a linear type DL as shown in Figure 1.
formula is adopted.

第1図は従来公知の直線形1) I、焼結機を中心とし
た焼結鉱の製造方法を示す模式図である。
FIG. 1 is a schematic diagram showing a method for producing sintered ore using a conventionally known linear type 1) I sintering machine.

第1図において、1は床敷原料ホッパーであり2は鉄鉱
石、フシックス、コークス等主原料のミキサー設備であ
り、6は主原料ホッパーである。
In FIG. 1, 1 is a bedding raw material hopper, 2 is a mixer equipment for main raw materials such as iron ore, fusix, coke, etc., and 6 is a main raw material hopper.

これら原料を移動火格子4上に装入し、焼結原料層5を
形成する。次で、点火炉予熱ゾーン゛7点火ゾーン8燃
焼保熱ゾーン9より成る点火炉6によって、原料層50
表面は均一に着火され、焼結焼成を移動火格子4の移動
に伴なって点火→焼結→冷却の順に鉱層表面より順次下
部に向って行なう。
These raw materials are charged onto the moving grate 4 to form a sintered raw material layer 5. Next, the raw material layer 50 is
The surface is uniformly ignited, and sintering and firing is performed in the order of ignition → sintering → cooling from the surface of the ore layer downward as the movable grate 4 moves.

10及び11は点火炉用ガスブロワ−及び燃#L用空気
プロワ−である。
Reference numerals 10 and 11 are a gas blower for the ignition furnace and an air blower for the fuel #L.

移動火格子4は給鉱側に、駆動装置(図示なし)を配置
し、スズロケットホイール15とパレット本体に取付け
られたローラとの噛み合わせによってパレットを駆動さ
せる1、排鉱側ではパレットをリターンさせ焼結鉱を焼
結鉱冷却クーラ12に排鉱せしめ、冷却クーラにては強
制フローツ13によって焼結鉱を強制冷却する。14は
排鉱シュートカバーである。これらパレットのリターン
はトラックガイドのみ或はそれにスフロケットホイル1
5を糾み合わせた方式によって行なう。焼結反応によっ
て生ずる排ガスは、風箱16を〔由し主排ガスタクト1
7に導入され、その後例えば電気収塵器18にて適宜除
塵後生ブロワ−(図示なシ、)によって吸引され、史に
脱硫設(iii+19、脱硝設備20を経て大気中に煙
突21からII”Aされる。尚22は風箱に量表示を示
す。
The movable grate 4 has a drive device (not shown) on the ore feeding side, which drives the pallet by the engagement of a tin rocket wheel 15 and a roller attached to the pallet body.On the ore discharge side, the pallet is returned. The sintered ore is discharged to a sintered ore cooling cooler 12, and the sintered ore is forcibly cooled by a forced float 13 in the cooling cooler. 14 is an ore discharge chute cover. These pallets can only be returned using a track guide or a sprocket foil 1.
This is done using a method that combines steps 5 and 5. The exhaust gas generated by the sintering reaction is transferred to the main exhaust gas tact 1 through the wind box 16.
After that, the dust is appropriately removed by an electric precipitator 18, and then sucked by a blower (not shown), and then passed through a desulfurization facility (III+19) and a denitrification facility 20, and then into the atmosphere from a chimney 21 to II"A. 22 shows the amount displayed on the wind box.

近時エネルギーの有効利用の観点から斜上の如き焼結鉱
製造において、種々焼結過程で発生した排ガス、例えは
焼結鉱の排鉱側の排ガス或は焼結鉱の冷却クーラ排ガス
を排熱ガス回収設備に導入し排熱を利用する方法が図ら
れている。また特開昭53−76103号或は特開昭5
3−125905号公報には、焼結機クー2排ガスの一
部を点火炉並びに焼結機上の保熱、燃焼ゾーンに循環さ
せ、保熱燃焼用エアーとして利用する設備或は顕熱回収
方法が開示されている。
In recent years, from the viewpoint of effective energy use, in the production of sintered ore such as Slope, exhaust gases generated during various sintering processes, such as exhaust gas from the discharge side of sintered ore or exhaust gas from coolers for cooling sintered ore, have been exhausted. A method is being developed to utilize waste heat by introducing it into hot gas recovery equipment. Also, JP-A No. 53-76103 or JP-A No. 5
Publication No. 3-125905 describes equipment or a sensible heat recovery method for circulating a part of the sintering machine Ku2 exhaust gas to the ignition furnace and the heat retention and combustion zone above the sintering machine and using it as heat retention combustion air. is disclosed.

更に特開昭56−166338号には焼結U1鉱1jl
j排ガス並にクーラ排ガスを廃熱ボイラーにより排熱を
回収し、回収後の排ガスを再び焼結工程に於て再循環す
る顕熱回収方法が、また特開昭56−30681号公報
には、焼成工程に於てそのv1ガス中の酸素濃度が10
%以上の漏風主体の排ガスを再び焼結工程に循環使用し
、且つ酸素を添加する粉鉱の焼結方法が開示されている
。上記坊外にも炉、結排ガスの@埠処理方法に関する例
が開示されている。
Furthermore, 1 jl of sintered U1 ore is disclosed in JP-A-56-166338.
JP-A-56-30681 discloses a sensible heat recovery method in which waste heat is recovered from exhaust gas as well as cooler exhaust gas using a waste heat boiler, and the recovered exhaust gas is recirculated in the sintering process. In the firing process, the oxygen concentration in the v1 gas is 10
A method for sintering fine ore is disclosed in which the exhaust gas, which is mainly leakage, is reused in the sintering process and oxygen is added thereto. Examples of methods for treating furnace and condensed exhaust gas are also disclosed in the above-mentioned articles.

然しなから、以上の特許はいずわも単にvF熱を回収す
ることを目的としているものであるか、排熱を回収した
ものである。
However, the above-mentioned patents merely aim to recover vF heat or recover waste heat.

これに約して本願発明の目的は焼結機排117.側より
発生する350〜500℃のお1−ガスの紅白熱をボイ
ラーにより回収する設備を有する靜結設偏に於て、 (1)焼結機から発生する温度範囲150〜2 b O
”Cの排ガス(上記ボイラーで処理した後の渦gII>
、囲150〜250℃の拮ガスを含む)と、焼結クーラ
ーから発生する同じく温度範囲150〜250℃のp1
ガスを焼結機上原料の焼成過程の前半ks〜ハ範囲、換
言すると、原料湿潤ゾーンに循環せしめ、温度゛150
〜250℃の中淵排ガスのFi熱を回収する。
In view of this, the object of the present invention is to remove the sintering machine 117. (1) Temperature range of 150 to 2 b O generated from the sintering machine in a sintering facility equipped with equipment to recover the red and white heat of 350 to 500 °C gas generated from the sintering machine using a boiler.
“C exhaust gas (vortex gII after being treated with the above boiler)>
, containing antagonistic gas at a temperature range of 150 to 250 °C) and p1, which is also generated from a sintering cooler and has a temperature range of 150 to 250 °C.
The gas is circulated in the first half of the firing process of the raw material on the sintering machine, in other words, in the raw material wet zone, and the temperature is kept at 150.
Recover Fi heat from Nakafuchi exhaust gas at ~250°C.

(2)前記循環排ガス中のC02と、原料湿潤ゾーンに
存在する凝似粒子中のCa(OH)2との間には次の如
き炭酸化反応が起り、 Ca (()H)2+cO2−+ CcCO=、+H2
0原#IR4中に於ける寮)鉱石、コークス、石灰の結
合体である凝似粒子が安定した強固な結合体となり、原
料層の通気性が著しく改善さJl、この結呆焼結過程に
於ける燃焼性が改善され、歩留の同士と共に生産性を改
善する。この多大のメリットが期待されるものである。
(2) The following carbonation reaction occurs between CO2 in the circulating exhaust gas and Ca(OH)2 in the aggregated particles present in the raw material wet zone, resulting in Ca (()H)2+cO2-+ CcCO=, +H2
The aggregated particles, which are a combination of ore, coke, and lime, form a stable and strong combination, and the permeability of the raw material layer is significantly improved. The combustibility in the process is improved, which improves productivity as well as yield. This great benefit is expected.

(3)風箱風封、点火炉々内温度及び同圧ブハ原料の通
気性原料層高、成分等の性状、焼結機速度等を計算機に
インプットし、予測モチルミl算を行ない、データーを
アウトプットし、最適燃焼速度排ガス風量、原料層高を
制御し、これにより変動する原料性状に合せ、常に安定
した操業並に成品々位を得るKある。
(3) Input the wind box wind seal, the temperature inside the ignition furnace, the air permeable material bed height of the same-pressure bucha raw material, the properties of the components, the sintering machine speed, etc. into the computer, perform the predicted motilization calculation, and save the data. By controlling the output, optimum combustion speed, exhaust gas flow rate, and raw material bed height, we can always achieve stable operation and high quality products in accordance with the fluctuating raw material properties.

本願発明の要旨は、焼結機中間部及び焼結鉱の冷却クー
ラ後生部並びに焼結l?1eatガス刊熱回収設偏熱回
収設備0〜250℃の中温ワ1.ガスを、曽結機点火炉
前の生原料、点火炉保熱炉及び焼結機前部に供給し焼結
に利用することを特徴とする焼結鉱製造方法にある。
The gist of the present invention is the intermediate part of the sintering machine, the post-cooling part of the sintered ore, and the sintering machine. 1eat gas heat recovery equipment Unbalanced heat recovery equipment 0 to 250℃ medium temperature 1. A method for producing sintered ore characterized in that gas is supplied to the raw material in front of the sintering machine ignition furnace, the ignition furnace heat retention furnace, and the front part of the sintering machine and used for sintering.

即ち本発明は、従来大気放散されていた焼結機上原料5
の焼成過程から発生する主排ガス及び焼結鉱の冷却クー
212からの発生ずる[温8[範1ij150〜250
℃の中温排ガス」を「焼結機上点火炉7,8.9及び焼
結機上原料5の焼成過程の内前牛ハ〜!A!lJ四の溝
程1貫Bに特に原料予熱帯にも循環再使用することによ
り、従来は燃焼用空気ブロワ−11又は周辺人受自然吸
引されていた炉焼用空包(標塗太9,20℃)が150
〜250℃の排ガス(酊素鏡度16〜21%)に置換り
、原料中水分の蒸発、靜;焼、ダ熱に対する投入熱が増
力Hし、点火燃焼用ガスの燃料原単位の低下及び、原相
中粉コークスル単位の減少かoJ it;どなるもので
ある。
That is, the present invention enables the raw material 5 on the sintering machine, which has conventionally been released into the atmosphere, to be released into the atmosphere.
The main exhaust gas generated from the sintering process and the gas generated from the sintered ore cooling cooler 212 [temperature 8 [range 1ij 150 to 250
℃ medium-temperature exhaust gas" in the sintering machine upper ignition furnace 7, 8.9 and the firing process of the sintering machine upper raw material 5. By recycling and reusing the air, empty cartridges for furnace firing (marker thickness 9.20°C), which were conventionally sucked naturally by the combustion air blower 11 or surrounding people, can now be
By replacing the exhaust gas with a temperature of ~250℃ (16~21% of carbon content), the input heat for the evaporation of moisture in the raw materials, sintering, and heat is increased, and the fuel consumption rate of the ignition combustion gas is reduced. , a decrease in the flour coke unit in the original phase is oJit;

この効果は火格子nO私400m′程度の焼結機にあっ
ては、前記湿潤帯に点火、燃焼用突気とし、て15〜2
0万Nrri’/l+に和尚する4#ガスを利用するこ
とが可能であり、その場合の顕熱回収景は1.328k
(”/’N+++’X (15〜20 ) X 10 
Nm7HxO:34 X [< 15[)−250°C
)72LJ”C,]=881)2260.TIka4/
Hの多遺の熱回11!vとなることが期待される。
This effect is achieved in a sintering machine with a grate length of about 400 m, with 15 to 2
It is possible to use 4# gas that reduces to 00,000 Nrri'/l+, and the sensible heat recovery in that case is 1.328k
(”/'N+++'X (15~20) X 10
Nm7HxO: 34X[<15[)-250°C
)72LJ”C,]=881)2260.TIka4/
H's hot episode 11! It is expected that v.

即2図は本発明の実施態様例を示すための説明図である
。第1しjと同じ特上−は同じ機能を示すものである。
FIG. 2 is an explanatory diagram for showing an embodiment of the present invention. The same special feature as the first one indicates the same function.

第2図において移動火格子4上の原料鉱層5は焼結焼成
反応を略々完了し、排鉱側の冷却ゾーンに移動する。こ
れら排鉱側の排ガス顕熱回収のため排熱ボイラー26が
設けられ、前記排鉱側の排ガスを排熱回収用吸引ブロワ
−27により吸引し7、排ガス白熱を蒸気とし更にこれ
を発電機28により電気エネルギーとして回収する。こ
の排熱ボイラー排カスの温度はまだ150〜250℃の
中涙杉[ガスなので餠引プロワ−27により点火炉6(
炉4結機上原料の湿潤帯前半%〜甚廟囲)にガス導管2
9を介して循環せしめる。
In FIG. 2, the raw material ore layer 5 on the moving grate 4 has almost completed the sintering reaction and moves to the cooling zone on the ore discharge side. An exhaust heat boiler 26 is provided to recover the sensible heat of the exhaust gas from the exhaust ore side. recovered as electrical energy. The temperature of this waste heat boiler exhaust residue is still 150 to 250℃.
Gas pipe 2 to the wet zone of the raw material above the furnace 4
9.

一方俳結鉱の冷却クーラ12後半部?冷却排ガスも15
0〜25υ0(、の中瀞排ガスなのでガス導管60を介
して廃火炉ゾーンに循環回収する。なお10結機中間部
の中温排ガスについては図示されてないが、前記中協排
ガスと同様に循環回収する。
On the other hand, the second half of Haikeiko's cooling cooler 12? Cooling exhaust gas is also 15
0 to 25υ0 (), it is circulated and recovered to the decommissioning furnace zone via the gas pipe 60. Although the intermediate temperature exhaust gas in the middle part of the 10-terminal is not shown in the figure, it is circulated and recovered in the same way as the above-mentioned Chukyo exhaust gas. do.

これら回収排ガスは、声火炉予熱ゾーン7、点火ゾーン
8及び燃焼保熱ゾーン9に夫々循環供用されるが、排熱
ボイラー排ガスは導管29より夫々循環排ガス馬を調節
弁24−7.24−s 、24−qにより、また、焼結
鉱冷却クーラ排ガスは、導管30より夫々循環排ガス風
量調節弁25−y 、25−s 、25−9 Kより調
節循環使用されるーこれら楯環芥1ガスが焼結機の原料
層5を透過し風箱16、主排ガスダクト17を経由し史
Ktr、気収塵器18、脱硫、脱硝設備19 、20に
より公害防止処理され、煙突21より大気中に放出され
る。
These recovered exhaust gases are circulated to the furnace preheating zone 7, the ignition zone 8, and the combustion heat retention zone 9, respectively, and the exhaust heat boiler exhaust gases are circulated through the conduit 29 through the respective control valves 24-7, 24-s. , 24-q, and the sintered ore cooling cooler exhaust gas is used for controlled circulation from the conduit 30 through the circulating exhaust gas flow rate control valves 25-y, 25-s, and 25-9K. The gas passes through the raw material layer 5 of the sintering machine, passes through the wind box 16 and the main exhaust gas duct 17, is subjected to pollution prevention treatment by the air dust collector 18, desulfurization and denitrification equipment 19 and 20, and is released into the atmosphere from the chimney 21. be done.

上述の如く、循環排ガスを原料湿潤帯に吹込むことによ
り、焼結原料湿潤帯に存在する凝似粒子(粉鉱石、粉コ
ークス、石灰と水分の混合体)をか起り、凝イv粒子が
より強固なCa C01により硬化結合される。この結
果焼結原料層の通気性が改善され、燃焼速度が早くなり
、生産性が改賞される。
As mentioned above, by blowing circulating exhaust gas into the raw material wet zone, the coagulated particles (fine ore, coke powder, mixture of lime and water) existing in the wet zone of the sintered raw material are generated, and the coagulated particles are It is hardened and bonded by stronger Ca CO1. As a result, the permeability of the sintered raw material layer is improved, the combustion rate is increased, and productivity is improved.

次に本発明の構成に欠かす゛ことの出来ない微性として
、燃焼制御機構がある。焼結原料は、日本の例を示す迄
もなく、多品種の粉釦石が使用され、後の溶鉱炉工程の
要求により、各種原料銘柄の配合割合を変えて、その都
度生産されている。
Next, a combustion control mechanism is an indispensable feature of the structure of the present invention. The raw material for sintering is, as is the case in Japan, a wide variety of types of powdered stone, which are produced each time by changing the blending ratio of various raw material brands, depending on the requirements of the subsequent blast furnace process.

この様に焼結原料は原料の混合程度のバラツキ、銘柄配
合割合の変動、水分の変1トム等により、常時その性状
が変化している。この原料性状の変動に対応して、本発
明は常に最適な歩留りと品質と高生産性を得る為の制御
機構を有するものである。
As described above, the properties of the sintering raw materials are constantly changing due to variations in the degree of mixing of the raw materials, changes in the blending ratio of brands, changes in moisture content, etc. In response to this variation in raw material properties, the present invention has a control mechanism to always obtain optimal yield, quality, and high productivity.

各風箱16の風量並びに通気性をイ(表する圧力、温度
、点火炉炉内温度、炉内圧力、原料品位、分析データー
、焼結機回転速度(パレット速度)を計測し、データー
を投入し計算機23の予測モデルによる演尊により、各
風箱の最適S、景パターンと点火炉予熱ゾーン7、点火
ゾーン8、燃焼保熱シー79の最適風量分布をめ、この
結果により、常時風箱16の風景調整ダンパー及び、点
火炉各ゾーンへの風量調整ダンパー247=n 、 2
57〜9を制御する機構を有し、安定した操業と高品質
の生産の行うことの出来る機構を有するものである。最
適風景分布予測モデルを次に示す。
Measure the air volume and ventilation of each wind box 16 (representing pressure, temperature, temperature inside the ignition furnace, pressure inside the furnace, raw material quality, analysis data, sintering machine rotation speed (pallet speed), and input the data. Based on the prediction model of the computer 23, the optimum S and landscape pattern of each wind box and the optimum air volume distribution of the ignition furnace preheating zone 7, ignition zone 8, and combustion heat retention sea 79 are determined. 16 landscape adjustment dampers and air volume adjustment dampers for each zone of the ignition furnace 247=n, 2
It has a mechanism for controlling 57 to 9, and is capable of stable operation and high quality production. The optimal landscape distribution prediction model is shown below.

即、6図は本発明において計算轡に入力するための計測
点の説明部に予測モデルを演算し、耕ガス量を調節制御
するための説明図である。また第4図は焼結ストランド
方向における風量分布と許結ベッド内(原料層内)の焼
成過程を一例として示した説明図である。、14図の株
に焼結機上原料は湿潤、乾燥、燃焼、溶融、赤熱保温、
冷却を経て焼成を完了する。
That is, FIG. 6 is an explanatory diagram for calculating the prediction model in the explanation part of the measurement point for inputting into the calculation board and adjusting and controlling the plowing gas amount in the present invention. Further, FIG. 4 is an explanatory diagram showing, as an example, the air volume distribution in the direction of the sintered strand and the firing process in the sintering bed (inside the raw material layer). ,14 The raw materials on the sintering machine are moistened, dried, burned, melted, red-hot heat-retained,
Firing is completed after cooling.

最適風景分布モデルは、スト2/ド方向に於ける風量分
布即ち各ウィンドボックスの風量分布と温度分布を数式
化したモデルにより予測するもので、投入循環排ガス量
(V) ×11α:原料層犀毎の基準値 C11’+ :原料性状係数 C5:焼結スピード係数 1゛a:温度変化0〜Pにおけるα点に於ける実演(1
温度の関数 となる。上式の様に第4図f * A + I’ +α
の面積で示される湿潤ゾーンの予測を基準値(原料層厚
毎に設定した)と原料品位データより解析した原料性状
係数、焼結機パレット速度の係数、並忙複数の0点(複
数の風箱)に於ける排ガス温度をベースとした補正関数
により、点火炉におけるル適投入循環排ガスルをめるこ
とが出来る。
The optimal landscape distribution model predicts the air volume distribution in the 2/2 direction, that is, the air volume distribution and temperature distribution of each wind box, using a mathematical model. Standard value for each C11'+: Raw material property coefficient C5: Sintering speed coefficient 1'a: Demonstration at α point at temperature change 0 to P (1
It is a function of temperature. As shown in the above formula, Fig. 4 f * A + I' + α
The prediction of the wet zone indicated by the area of By using a correction function based on the exhaust gas temperature in the ignition furnace, it is possible to determine the appropriate amount of circulating exhaust gas in the ignition furnace.

尚0点は湿泊ゾーンの長さく第4図1i−a)が原料条
件、焼結依:運転条件等により製動するので複数のポイ
ントの温度を実測し関係をめるもので1例として、複数
のα点中の温度変化0〜Fのみを基準に予測することも
p」能である。
Note that the 0 point is the length of the wet zone (Fig. 4 1i-a), which depends on the raw material conditions, sintering: operating conditions, etc., so the temperature at multiple points is actually measured to determine the relationship. As an example, It is also possible to make predictions based only on temperature changes from 0 to F among a plurality of α points.

本発明は前記湿潤ゾーンの予測数式モデル並に組4図に
示すように、各ウィンドボックス(廊5箱)に於ける排
ガス風1、温度、圧力の実測データと、原料の性状デー
ター、焼結機パレット速度、点火炉島内温度、圧力等の
データを指数とし、数式化したモデルにより溜潤完了点
α、乾燥完了点す。
The present invention uses the predictive mathematical model of the wet zone as well as the actual measurement data of the exhaust gas wind 1, temperature, and pressure in each wind box (5 boxes), the property data of the raw material, and the sintering process as shown in Figure 4. Using data such as the machine pallet speed, temperature inside the ignition furnace island, and pressure as an index, the moisture completion point α and the drying completion point are determined by a mathematical model.

燃焼完了点C2溶融完了点d、赤熱保温帯e、伶却″#
rf等を計算機演算結果から予測し、第3図に示す如く
焼結操業にフィードバックせしめるもので猟に最適の風
量パターンと最適な焼成過程により高品質、高生産性が
得られる焼結制御システムである。
Combustion completion point C2 Melting completion point d, red heat insulation zone e, 伶”#
It is a sintering control system that predicts rf etc. from computer calculation results and feeds it back to the sintering operation as shown in Figure 3.It is a sintering control system that achieves high quality and high productivity through the optimal air volume pattern for hunting and the optimal firing process. be.

斜上の如く本発明は従来の焼結機中間部、排熱回収設備
よりの抽熱回収後排ガス並に焼結鉱の冷却クーラからの
中温排ガスを焼結機前半の湿潤帯原料層に循環使用する
ことにより、焼結焼成における肺料屑の通気性を著しく
改善せしめ、これら循環供用に当っては、焼結機の後数
箇所の風箱風澗、温度、並に原料性状、更に点火炉温度
、圧力を計算機にインプットし、最適風量分布を予測計
算し、その結果に基いて制御するものであり、従来の単
なる熱回収とは異なり、この生産性改善効果は生産増5
〜10%に相当し、火格子面積400ぜ程度の焼結機に
あってを1、年間で4〜5備円に相当する多大のメリッ
トが期待されるものである。
As shown above, the present invention circulates the exhaust gas after extraction heat recovery from the conventional sintering machine middle section, the exhaust heat recovery equipment, and the intermediate temperature exhaust gas from the sintered ore cooling cooler to the wet zone raw material layer in the first half of the sintering machine. By using this, the air permeability of the lung debris during sintering and firing can be significantly improved, and when using these materials for circulation, it is important to consider the air flow, temperature, and raw material properties at several locations after the sintering machine. Furnace temperature and pressure are input into a computer, the optimal air flow distribution is predicted and calculated, and control is performed based on the results. Unlike conventional heat recovery, this productivity improvement effect can increase production by 5.
This is equivalent to ~10%, and for a sintering machine with a grate area of about 400 mm, a great benefit is expected, which is equivalent to 4 to 5 billion yen per year.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の焼結鉱製造方法の説明し1、第2図は本
発明における焼結鉱製造方法の説明図、第3図は本発明
における計算機による予測モデル計算のための計測点の
説明図、第4図は最適風量分布予測モデル説明図である
。 2・・・主原料ミキザー設備 4・・・移動火格子5・
・・焼結原料層 6・・・点火炉 7・・・点火炉予熱
ゾーン 8・・・点火ゾーン 9・・・燃焼保熱ゾーン
1U・・・点火炉用ガスプロワ−11・・・燃焼用空気
プロワ−12・・・焼結鉱冷却クーラ 16・・・風箱
17・・・主排ガスダクト 21・・・煙突 23・・
・it x機 247〜9 、257−9・・・循環排
ガス風量調節弁26・・・廃熱回収ボイラー 27・・
・排熱回収吸引プロワ−29,30・・・循環排ガスガ
ス導管代理人 弁理士 木 村 三 朗
Fig. 1 is an explanatory diagram of a conventional sintered ore manufacturing method, Fig. 2 is an explanatory diagram of a sintered ore manufacturing method according to the present invention, and Fig. 3 is an illustration of measurement points for predictive model calculation by a computer according to the present invention. The explanatory diagram, FIG. 4, is an explanatory diagram of the optimum air volume distribution prediction model. 2...Main raw material mixer equipment 4...Movable grate 5.
... Sintering raw material layer 6 ... Ignition furnace 7 ... Ignition furnace preheating zone 8 ... Ignition zone 9 ... Combustion heat retention zone 1U ... Gas blower for ignition furnace 11 ... Air for combustion Prower 12...Sintered ore cooling cooler 16...Wind box 17...Main exhaust gas duct 21...Chimney 23...
・It
・Exhaust heat recovery suction blower 29, 30... Circulating exhaust gas gas pipeline agent Patent attorney Sanro Kimura

Claims (2)

【特許請求の範囲】[Claims] (1)焼結機中間部及び焼結鉱の冷却クーラ後半部並び
に焼結機拮ガス排熱回収設備からの150〜250℃の
中温排ガスを焼結機点火炉前の生原料、点火炉保熱炉及
び焼結機前部に供給し、焼結に利用することを喝徴とす
る焼結鉱製造方法。
(1) Medium-temperature exhaust gas of 150 to 250°C from the middle part of the sintering machine, the latter part of the cooling cooler for sintered ore, and the sintering machine gas exhaust heat recovery equipment is used as raw material in front of the sintering machine ignition furnace, A method for producing sintered ore that is supplied to the front part of a heat furnace and sintering machine and used for sintering.
(2)前記焼結機の複数ケ所に於ける黙節風量、温度並
に原料層通勿度、原料性状、点火炉温度、点火炉々内圧
力、焼結機パレット速度等の夫々の値を計算機に入力し
、該計算機にて、最適Jjil量分布を予測計算し、点
火炉前の主原料、点火炉保熱炉及び焼結機前半部に供給
する前記中温排ガス量を制御することを特徴とする特許
請求の範囲第1項記載の焼結鉱製造方法。
(2) Determine the respective values of the silent air volume, temperature, raw material layer permeability, raw material properties, ignition furnace temperature, pressure inside the ignition furnaces, sintering machine pallet speed, etc. at multiple locations in the sintering machine. The method is characterized in that the amount of medium-temperature exhaust gas is input into a computer, and the computer predicts and calculates the optimal Jjil amount distribution, and controls the amount of medium-temperature exhaust gas supplied to the main raw material before the ignition furnace, the ignition furnace, and the front half of the sintering machine. A method for producing sintered ore according to claim 1.
JP21252083A 1983-11-14 1983-11-14 Production of sintered ore Granted JPS60106927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21252083A JPS60106927A (en) 1983-11-14 1983-11-14 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21252083A JPS60106927A (en) 1983-11-14 1983-11-14 Production of sintered ore

Publications (2)

Publication Number Publication Date
JPS60106927A true JPS60106927A (en) 1985-06-12
JPS6334213B2 JPS6334213B2 (en) 1988-07-08

Family

ID=16624029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21252083A Granted JPS60106927A (en) 1983-11-14 1983-11-14 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPS60106927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515042B1 (en) * 2000-08-19 2005-09-15 주식회사 포스코 Waste gas recirculation type iron ore sintering apparatus and the method by using LNG
KR101022455B1 (en) 2003-12-30 2011-03-15 주식회사 포스코 Apparatus for Controlling Surface Layer Temperature of Sintered Ore Using Waste Heat of Exhaust Gas from Boiler and Method for Controlling the Same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180047213A (en) * 2016-10-31 2018-05-10 주식회사 포스코 sintering apparatus and method for manufacturing sintered ore of using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109204A (en) * 1973-02-22 1974-10-17
JPS5249908A (en) * 1975-10-20 1977-04-21 Mitsubishi Heavy Ind Ltd Method for recovering and utilizing waste heat from
JPS5375103A (en) * 1976-12-16 1978-07-04 Nippon Steel Corp Producing method and apparatus for sintered ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109204A (en) * 1973-02-22 1974-10-17
JPS5249908A (en) * 1975-10-20 1977-04-21 Mitsubishi Heavy Ind Ltd Method for recovering and utilizing waste heat from
JPS5375103A (en) * 1976-12-16 1978-07-04 Nippon Steel Corp Producing method and apparatus for sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515042B1 (en) * 2000-08-19 2005-09-15 주식회사 포스코 Waste gas recirculation type iron ore sintering apparatus and the method by using LNG
KR101022455B1 (en) 2003-12-30 2011-03-15 주식회사 포스코 Apparatus for Controlling Surface Layer Temperature of Sintered Ore Using Waste Heat of Exhaust Gas from Boiler and Method for Controlling the Same

Also Published As

Publication number Publication date
JPS6334213B2 (en) 1988-07-08

Similar Documents

Publication Publication Date Title
US20170108275A1 (en) Process and system for waste heat grading cyclic utilization and pollutant emission reduction of sintering flue gas
SE436760B (en) PROCEDURE FOR DIRECT REDUCTION OF IRON OXIDE WITH THE REDUCING GAS
US20130139647A1 (en) Partially-reduced iron producing method and partially-reduced iron producing apparatus
US4689007A (en) Process of thermally treating lump or agglomerated materials on a travelling grate
EP0034389B1 (en) Method of agglomeration of fly ash into pellets
US4636342A (en) Method for continuously manufacturing non-fired pellets
RU2442826C2 (en) Method and device for production of granulated metallic iron
JP2001323326A (en) Sintering machine operating method
EP0861908B1 (en) Method of manufacturing sintered ore and sintering machine therefor
CA1174637A (en) Method and apparatus for heating process air for industrial purposes
JPS60106927A (en) Production of sintered ore
KR850001535B1 (en) System for control of sinter formation in iron oxide reducing kilns
KR100406358B1 (en) Flue gas recirculation type two story iron ore sintering method and flue gas recirculation type two story iron ore sintering apparatus
JP2002121620A (en) Waste gas circulation type sintering operation method
JP3879408B2 (en) Method for producing sintered ore and sintered ore
CN112985064A (en) Sintering device and sintering method based on plasma hot blast stove
CN215856269U (en) Pellet roasting simulation test system combining bulging and pumping
CN113652544B (en) Low-carbon sintering system and process method
JPH08260062A (en) Production of sintered ore
RU1778192C (en) Operating process of sinter plant cum blast-furnace shop complex
JPH08100222A (en) Production of sintered ore
JP2001279335A (en) Method and apparatus for granulating sintering ram material
JPH09217065A (en) Dry quenching of coke
CN110129500A (en) A kind of preparation method and preparation system of iron coke
CN117778062A (en) Method for producing fuel gas or reducing gas by using flue gas