JPS6010684A - Laser generating method - Google Patents

Laser generating method

Info

Publication number
JPS6010684A
JPS6010684A JP11749883A JP11749883A JPS6010684A JP S6010684 A JPS6010684 A JP S6010684A JP 11749883 A JP11749883 A JP 11749883A JP 11749883 A JP11749883 A JP 11749883A JP S6010684 A JPS6010684 A JP S6010684A
Authority
JP
Japan
Prior art keywords
laser
combustion gas
atmosphere
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11749883A
Other languages
Japanese (ja)
Other versions
JPH0454997B2 (en
Inventor
Yuko Kanazawa
金沢 祐孝
Hideaki Saito
英明 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11749883A priority Critical patent/JPS6010684A/en
Publication of JPS6010684A publication Critical patent/JPS6010684A/en
Publication of JPH0454997B2 publication Critical patent/JPH0454997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/095Processes or apparatus for excitation, e.g. pumping using chemical or thermal pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable to open combustion gas in atmosphere and to increase the output by mixing liquid fuel and liquefied oxidizer, burning the fuel, and feeding the combustion gas via a nozzle into a laser generating chamber. CONSTITUTION:When combustion gas is accelerated via a nozzle 2 to supersonic flow and a pulse laser light oscillated by a single frequency is introduced into a laser generating chamber 3, a laser is generated by vibrating energy of CO2 molecule in the combustion gas of reverse rotation distributed state. The combustion gas used for generating the laser and not in reverse rotation distributed state is exhausted into atmosphere through a supersonic diffuser 4 and a subsonic diffuser 5. The pressure, flowing speed and temperature of the gas at this time becomes the conditions capable of exhausting to the atmosphere as it is.

Description

【発明の詳細な説明】[Detailed description of the invention]

帯の波長で発振するレーザの発生方法に関する。 近年、レーザを用いたウラン235(U”’)の濃縮法
が注目されているが、六フツ化ウラン(UF.)θ子を
用いる分子法では16μmの波長を持つレーザが有用で
ある。 現在、各種のレーザが16μ屈レーザの候補として検討
されており、CO.ガスダイナミックレーザ(C02−
GDL)もその一つである。 しかし、従来のCo, − GDLにおけるガス組成は
CO,一N,−H,−He. Co,−N,−)!.で
あり、燃焼ガスのみで16μmレーザの発生を行なった
例はなく、付加ガスとしてHeやH2などのガスを用い
ていたため、ガス混合技術や装置が複雑になる欠点があ
った。 又、16μmco, − GDLの実用化を考えた場合
、排気の大気圧開放が可能であることが望ましいが、従
来は大気圧開放条件を満足する燃焼圧力、温度条件で作
動する装置がなく、このため真空ポンプやイジェクタ−
ポンプを用いて燃焼ガスを大気へ排出する必要があった
。従って、系が複雑となり、又真空ポンプやイジェクタ
−ポンプの能力によりレーザ出力が制限される等、装置
の大型化にあたって支障となっていた。 本発明は斯かる実情に鑑みなしたちので、取扱いが容易
な液体燃料と液体(化)酸化剤を混合して燃焼し、燃焼
ガスをノズルによりレーザ発生室へ送るようにすること
により、燃焼ガスを大気圧開放でき且つ大出力−化を可
能にした16μm帯のレーザ発生方法にかかるものであ
る。 以1・゛、本発明の実施例を図面を参照しつつ説明する
。 図は本発明の実施に使用するCo、16μmレーザ発生
装置の一例であり、燃焼室1、超音速ノズル2、レーザ
発生室3、超音速ディフューザ4及びrn;音速ディフ
ューザ5を140次直列に配置し、液体燃料(例えば、
ベンセン C,H,)及び液体酸化剤(例えば、液化亜
酸化窒素: 1iq−N、0)の供給装置6をバルブ7
を有する供給ライン8により曲記燃焼室1に接続し、該
燃焼室に設けた点火器9により混合燃料を炉焼するよう
にしである。 m1記レーザ発生室3には、中−周波数発振パルスCO
2レーザ発生器10からのレーザを光路訓整用鏡11及
び鏡112を粁て導入するようにしてあり、更に該導入
されたレーザのレーザ発生室3通過後の光路上に鏡1[
13を設け、鏡+12及び鏡1113とで16μlレ一
ザ発生用の光学共振器を椙成し、16μmレーザ発振光
が得られるよう
This invention relates to a method of generating a laser that oscillates at a wavelength in the band. In recent years, the method of concentrating uranium-235 (U"') using a laser has attracted attention, and a laser with a wavelength of 16 μm is useful for molecular methods using uranium hexafluoride (UF.) theta particles.Currently, a laser with a wavelength of 16 μm is useful. , various lasers are being considered as candidates for the 16μ laser, and the CO. gas dynamic laser (C02-
GDL) is one of them. However, the gas composition in the conventional Co, -GDL is CO, -N, -H, -He. Co, -N, -)! .. However, there has been no example of generating a 16 μm laser using only combustion gas, and gases such as He and H2 were used as additional gases, which had the disadvantage of complicating gas mixing technology and equipment. Furthermore, when considering the practical application of 16 μm co, - GDL, it is desirable to be able to release the exhaust gas to atmospheric pressure, but there is currently no device that operates under combustion pressure and temperature conditions that satisfy the atmospheric pressure release conditions. Vacuum pump or ejector
It was necessary to use a pump to exhaust the combustion gases to the atmosphere. Therefore, the system becomes complicated, and the laser output is limited by the capacity of the vacuum pump or ejector pump, which poses a problem in increasing the size of the device. The present invention has been developed in view of the above circumstances, and therefore, a liquid fuel and a liquid (chemical) oxidizer, which are easy to handle, are mixed and combusted, and the combustion gas is sent to the laser generation chamber through a nozzle. The present invention relates to a method for generating a laser in the 16 μm band, which allows the laser to be released to atmospheric pressure and achieves high output. Embodiments of the present invention will be described below with reference to the drawings. The figure shows an example of a Co, 16 μm laser generator used to carry out the present invention, in which a combustion chamber 1, a supersonic nozzle 2, a laser generation chamber 3, a supersonic diffuser 4 and rn; a sonic diffuser 5 are arranged in 140th order series. and liquid fuels (e.g.
A supply device 6 for benzene C, H,) and a liquid oxidizer (for example, liquefied nitrous oxide: 1 iq-N, 0) is connected to a valve 7.
The fuel mixture is connected to the combustion chamber 1 by a supply line 8 having a combustion chamber, and the mixed fuel is ignited by an igniter 9 provided in the combustion chamber. In the laser generation chamber 3 m1, there is a medium-frequency oscillation pulse CO
The laser from the two laser generators 10 is introduced through an optical path training mirror 11 and a mirror 112, and a mirror 1 [
13, and mirror +12 and mirror 1113 form an optical resonator for generating 16 μl laser, so that 16 μm laser oscillation light can be obtained.

【こしである。 CrH,等の液体燃料と液体酸化剤又はN、O等の゛ 
常温で容易に液化(約40気圧加圧)するl皮化酸化剤
を適当な混合比(例えば当量比0.1)で供給装置6か
ら燃焼室1に供給し、該燃焼室1にて点火器9で着火す
ると燃焼するが、このときの炉、焼条件を大気圧開放条
件を満足するよう選択する。例えば、圧力・70気圧以
上が条件となり、燃焼湿度: 2000″にとすると燃
焼偏度に対応して当量比は決まり、ガス組成は下記のよ
うな燃焼反応式によりまる。 m06H,+15N20.!−15N、、+6mGO,
,+3ThH20+”!(] −d)O,。 (グは当量比を示す。) この時得られる燃焼ガス(N、、Co、 、 )1,0
.0、及び微量のCO等の混合ガス)を超音速ノズル2
にて超音速涼へ加速しく例えばマツハ6.7)、レーザ
発生室3へ送ると、該燃焼ガスは断熱膨張し、該レーザ
発生室3では気体力学的にレーザ動作に必要な逆転分布
状態が形成される。 1このような状態のガスが流れる
レーザ発生室3にI′l’+−周波数発振パルスCO2
レーザ発生器10かr; 9.4μm帯の中−・周lル
数で発振するパルスCO,レーサ光を光路、ill整用
鐙l】を経て導入すると、+ij前記逆転分布状f塵に
ある燃焼ガス中のCO2分子の1辰動エネルギにより1
6μm帯のレーザが発生し、レーザ発生室3の前後の光
路上に設けた鏡112及び鏡■じにより構成される16
μmレーザ発生用の光学共振器により、高出力の16μ
mのレーザ発生室が得られる。 レーザ発生に使われ逆転分布状態でなくなった燃焼ガス
は超音速ディフューザ4及び亜音速ディフューザ5を通
り大気へ放出される。このとき各ディフューザ4,5を
通過する燃焼ガスの圧力、IM速、湿度はそのまま大気
へ排出し得る条件となっているため、真空ポンプ等の付
帯設イ[111を必要としない。 なお、本発明のレーザ発生方法は上述の実施例のみに限
定されるものではなく、本発明の要旨を逸脱しない範囲
内において種々変更を加え肖ることは勿論である。 以」二述べたように本発明のレーザ発生方法によればb
゛記のような種々の優れた効果を発揮する。 (i) 液体燃料と液体(化)酸化剤とを燃焼室で燃焼
させ、超音速ノズルで逆転分布させた後レーザ発生室か
ら16μm帯のレーザを得るようにしたので、常温、常
圧で液体の燃料、常ン品で容易に液化できる酸化剤は貯
゛蔵が容易である。 01)燃焼カスだけでレーザ発生用に使用できるので、
従来のようにHe、 H,ガスを付加混合する必要がな
いため供給装置が簡略化できる。 00 大気圧開放条件を満足する燃焼条件(例えば燃焼
圧力フ0kg / atr以上)でも、GDLか616
μmレーザを発生させるレーザ発生室圧力、温度条件が
達成でき、理論的に16μmレーザの微小信号利得係数
0.5%/an程度の値が得られる。 (1121大気圧開放条件を満足することにより、レー
ザ発生室の下流側に超音速ディフューザや亜音速ディフ
ューザを備えることで、燃焼ガスを大気へ放出できる。 このため装置を小型化できる。 (V)(ηHv)により、従来必要とされていた真空ポ
ンプやイジェクタ−ポンプが不要となり、装置の人7(
lj化が容易になる。
[It's strained. Liquid fuel such as CrH and liquid oxidizer or N, O, etc.
A skin-forming oxidizing agent that easily liquefies at room temperature (approximately 40 atmospheres of pressure) is supplied from the supply device 6 to the combustion chamber 1 at an appropriate mixing ratio (e.g. equivalence ratio 0.1), and ignited in the combustion chamber 1. When ignited in the vessel 9, it burns, and the furnace and firing conditions at this time are selected so as to satisfy the atmospheric pressure release condition. For example, if the pressure is 70 atmospheres or more and the combustion humidity is 2000'', the equivalence ratio will be determined according to the degree of combustion deviation, and the gas composition will be determined by the combustion reaction equation below: m06H, +15N20.!- 15N, +6mGO,
,+3ThH20+"!(] -d)O,. (G indicates the equivalence ratio.) The combustion gas obtained at this time (N, , Co, , ) 1,0
.. 0 and a small amount of CO, etc.) through supersonic nozzle 2.
When the combustion gas is accelerated to supersonic speed (for example, Matsuha 6.7) and sent to the laser generation chamber 3, the combustion gas expands adiabatically, and in the laser generation chamber 3, an inverted distribution state necessary for laser operation is established gas-dynamically. It is formed. 1 I'l'+-frequency oscillation pulse CO2 is applied to the laser generation chamber 3 through which the gas in such a state flows.
Laser generator 10 r; When pulsed CO and laser light oscillated at a medium round number in the 9.4 μm band is introduced through the optical path and the illumination stirrup, +ij is in the above-mentioned inverted distribution pattern f dust. 1 due to the kinetic energy of one CO2 molecule in the combustion gas
A laser beam in the 6 μm band is generated, and a mirror 112 and a mirror holder provided on the optical path before and after the laser generation chamber 3 constitute a chamber 16.
Optical resonator for μm laser generation provides high output power of 16 μm.
m laser generation chambers are obtained. The combustion gas used for laser generation and no longer in an inverted distribution state passes through a supersonic diffuser 4 and a subsonic diffuser 5 and is discharged to the atmosphere. At this time, the pressure, IM speed, and humidity of the combustion gas passing through each diffuser 4, 5 are such that it can be discharged to the atmosphere as is, so there is no need for ancillary equipment such as a vacuum pump. It should be noted that the laser generation method of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications may be made without departing from the gist of the present invention. As mentioned above, according to the laser generation method of the present invention, b
It exhibits various excellent effects as described below. (i) The liquid fuel and the liquid oxidizer are burned in the combustion chamber, and the supersonic nozzle performs reverse distribution, and then the laser in the 16 μm band is obtained from the laser generation chamber. Fuels and oxidizers that are commonly available and can be easily liquefied are easy to store. 01) Only the combustion residue can be used for laser generation, so
Since there is no need to add and mix He, H, and gas as in the conventional case, the supply device can be simplified. 00 Even under combustion conditions that satisfy atmospheric pressure release conditions (for example, combustion pressure 0 kg/atr or more), GDL or 616
The laser generation chamber pressure and temperature conditions for generating a .mu.m laser can be achieved, and theoretically a small signal gain coefficient of about 0.5%/an for a 16 .mu.m laser can be obtained. (By satisfying the atmospheric pressure release condition 1121, combustion gas can be released to the atmosphere by providing a supersonic diffuser or subsonic diffuser on the downstream side of the laser generation chamber. Therefore, the device can be made smaller. (V) (ηHv) eliminates the need for vacuum pumps and ejector pumps that were previously required, and the equipment personnel 7 (
lj conversion becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のレーザ発生方法の実施に使用するレーザ発
生装置の一例を示す説明図である。 1は燃焼室、2は超音速ノズル、3はレーザ発生室、4
は超音速ディフューザ、5は亜音速デ゛イフユーサ゛、
6は供給装置、10は単一周波数発振パルスCO,レー
ザ発生器、12は鏡1.13は鏡11である。 特許出願人 石川島1g磨重工業株式会社
The figure is an explanatory diagram showing an example of a laser generating device used to implement the laser generating method of the present invention. 1 is a combustion chamber, 2 is a supersonic nozzle, 3 is a laser generation chamber, 4
is a supersonic diffuser, 5 is a subsonic diffuser,
6 is a supply device, 10 is a single frequency oscillation pulse CO, a laser generator, 12 is a mirror 1, and 13 is a mirror 11. Patent applicant Ishikawajima 1gma Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)m、体燃料と液体若しくは液化酸化剤とを混合して
炉焼し、燃焼ガスを超音速ノズルで加速して逆転分布層
を形成し、該逆転分布層に単一周波数発振パルスCO,
レーザを照射することにより16μm帯のレーザを得る
ことを特徴とするレーザ発生方法。
1) Mix fuel and liquid or liquefied oxidizer and sinter in a furnace, accelerate the combustion gas with a supersonic nozzle to form an inverted distribution layer, and apply a single frequency oscillation pulse CO to the inverted distribution layer.
A laser generation method characterized by obtaining a 16 μm band laser by irradiating a laser.
JP11749883A 1983-06-29 1983-06-29 Laser generating method Granted JPS6010684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11749883A JPS6010684A (en) 1983-06-29 1983-06-29 Laser generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11749883A JPS6010684A (en) 1983-06-29 1983-06-29 Laser generating method

Publications (2)

Publication Number Publication Date
JPS6010684A true JPS6010684A (en) 1985-01-19
JPH0454997B2 JPH0454997B2 (en) 1992-09-01

Family

ID=14713222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11749883A Granted JPS6010684A (en) 1983-06-29 1983-06-29 Laser generating method

Country Status (1)

Country Link
JP (1) JPS6010684A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558831A (en) * 1978-07-03 1980-01-22 Hitachi Maxell Ltd Printing roll for magnetic body coater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558831A (en) * 1978-07-03 1980-01-22 Hitachi Maxell Ltd Printing roll for magnetic body coater

Also Published As

Publication number Publication date
JPH0454997B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US6655127B2 (en) Pre-burner for low temperature turbine applications
US3350887A (en) Two-stage rocket propulsion system
US3899749A (en) Gas dynamic lasers
US4787091A (en) Chemical laser system employing iodine atoms as a lasing gas
GB1567493A (en) Dynamic co gas laser
Gao et al. The effect of ozone addition on autoignition and flame stabilization
US3773947A (en) Process of generating nitrogen using metal azide
US8454713B2 (en) Natural gas production method utilizing a gas dynamic laser, with cogeneration of electrical power
GB1534929A (en) Method and apparatus for generating coherent 14 and 16 micron radiation
JPS6010684A (en) Laser generating method
US4213102A (en) Fluorine generator for chemical lasers
US4013976A (en) Gas dynamic lasers
US7790128B2 (en) Hydrogen peroxide catalytic decomposition
GB1394498A (en) Gaseous flux laser generator
US4236123A (en) High-power CO laser
JPS59982A (en) Pulsated laser
US4021362A (en) Gas generating system for chemical lasers
US4320358A (en) Gasdynamic lasers
Bailly et al. Toward a combustion-driven mixing GDL
US3716342A (en) Generation of carbon dioxide having a population inversion
US4031485A (en) Method for achieving gas dynamic lasing
Boreisho et al. Small-and medium-output-power CO2 GDL
RU2175743C2 (en) Method and device for gas-dynamic ignition
US3970955A (en) Gas dynamic-transfer chemical laser
MEINZER Experimental GDL investigation