JPS60105945A - Measurement for concentration of hexavalent chromium ion in solution - Google Patents

Measurement for concentration of hexavalent chromium ion in solution

Info

Publication number
JPS60105945A
JPS60105945A JP21386983A JP21386983A JPS60105945A JP S60105945 A JPS60105945 A JP S60105945A JP 21386983 A JP21386983 A JP 21386983A JP 21386983 A JP21386983 A JP 21386983A JP S60105945 A JPS60105945 A JP S60105945A
Authority
JP
Japan
Prior art keywords
solution
measured
concentration
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21386983A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kono
吉久 河野
Yoshiichi Harimaya
針間矢 宣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21386983A priority Critical patent/JPS60105945A/en
Publication of JPS60105945A publication Critical patent/JPS60105945A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable a continuous and accurate measurement by a method wherein a measuring light with a specified wavelength is made incident into a solution to be measured flowing through a flowcell and the intensity of the transmission light to determine the ion concentration by absorptiometry. CONSTITUTION:A part of a waste liquid to a reducing tank 20 is shunted to a shunt tube 22 with a pump 24 to be accumulated at a liquid tank 26. Then, it is withdrawn from the liquid tank 26 at a specified speed with a pump 28 and flows into a flowcell 30 continuously. Then, a measuring light with the wavelength of 335-345nm is made incident into the waste liquid and the intensity of the transmission light is measured with an absorptiometer 32 to be recorded on a recorder 34. Thus, the concentration of hexachromium ion can be measured continuously online by absorptiometry from the intensity ratio between the incident light and the transmission light.

Description

【発明の詳細な説明】 本発明は、′?FJ液中の61Illiクロムイオン濃
度の測定方法に係り、特に、吸光光度法により、溶液中
の6価りロムイオン淵度をオンラインで連続的に測定可
能とした溶液中の6価りロムイオン淵度の測定方法に関
する。
[Detailed Description of the Invention] The present invention is based on '? This method relates to a method for measuring the 61Illi chromium ion concentration in an FJ solution, and in particular, it is possible to continuously measure the hexavalent chromium ion depth in a solution online by spectrophotometry. Regarding measurement methods.

従来、鋼板等の連続クロムめっき、あるいは電気錫めつ
き、亜鉛めっき等における、いわゆるクロメート処理に
使用したC r6 +を含んだ廃液は、還元剤によりC
r3+に還元処理を行うようにしている。このための還
元方法としては、公知のF62+による方法、Na 2
SO3による方法等があるが、これらの還元方法は、周
知の如く酸化剤と還元剤との当量関係を利用して行うも
のである。従って、添加すべき還元剤の吊を知るために
、廃液中のCr6+濃度を知る必要性が生じる。
Conventionally, waste liquid containing C r6 + used for so-called chromate treatment in continuous chromium plating, electrolytic tin plating, zinc plating, etc. of steel sheets, etc., is reduced by reducing agent.
Reduction processing is performed on r3+. Reduction methods for this purpose include the known method using F62+, Na 2
Although there are methods using SO3, etc., these reduction methods utilize the equivalence relationship between the oxidizing agent and the reducing agent, as is well known. Therefore, in order to know the amount of reducing agent to be added, it is necessary to know the Cr6+ concentration in the waste liquid.

従来、この廃液中のOr”flfIの測定は、廃液を採
取後、化学分析によってめるか、あるいは導電率計によ
ってめるか等の方法によっていた。
Conventionally, Or"flfI in this waste liquid has been measured by methods such as collecting the waste liquid and then measuring it by chemical analysis or by measuring it with a conductivity meter.

しかしながら、大量の廃液が刻々と放出され、しかも現
場の稼動状況によりC1゛6+澹度が時間的に変動する
環境にあっては、化学分析による方法は正確に測定でき
るものの、分析に要する峙間が長くかかり、Cr6や濃
度変化を適確に捉えることができないという問題がある
。一方、導電率計による方法は、原理的に他の成分の影
響を受けるため、信頼性に乏しい等の問題がある。この
ため実際の還元処理工程においては、これらのCrS+
の測定値よりかなり安全を見込んだ量だけ還元剤を過剰
に添1ノロする操作が行われ、結果としてスラッジ邑の
増大、還元剤試薬の費用増大を招いているというのが実
情であった。
However, in an environment where a large amount of waste liquid is released every moment, and where the C1゛6+ concentration fluctuates over time depending on the operating conditions at the site, chemical analysis methods can provide accurate measurements, but the amount of time required for analysis is There is a problem in that it takes a long time and changes in Cr6 and concentration cannot be accurately captured. On the other hand, the method using a conductivity meter has problems such as poor reliability because it is affected by other components in principle. Therefore, in the actual reduction process, these CrS+
The actual situation was that an excessive amount of reducing agent was added in an amount that was considered to be far safer than the measured value, resulting in an increase in the amount of sludge and an increase in the cost of the reducing agent reagent.

本発明は、このような従来の問題点に鑑みてなされたも
のであって、溶液中のCr6+濃度を連続的に、且つ正
確に測定することができ、従って、こうした還元処理を
効率的、且つ経済的に行うこができる溶液中のCrS+
濃度測定方法を提供することを目的としている。
The present invention has been made in view of these conventional problems, and is capable of continuously and accurately measuring the Cr6+ concentration in a solution, and therefore enables efficient and efficient reduction treatment. CrS+ in solution that can be done economically
The purpose is to provide a concentration measurement method.

本発明は、被測定溶液をフローセル中に連続的に流すと
共に、該70−セル中を流れる被測定溶液に波長335
〜345 nmの測定光を大剣してその透過光の強度を
測定し、該入射光と透過光との強度比から吸光光度法に
よって被測定溶液中のCr”iR度をオンラインで連続
測定するようにして上記目的を達成したものである。
The present invention allows the solution to be measured to flow continuously through a flow cell, and also allows the solution to be measured to flow through the 70-cell to have wavelengths of 335
The intensity of the transmitted light is measured by using a measuring light of ~345 nm, and the Cr"iR degree in the solution to be measured is continuously measured online using the absorption photometry method based on the intensity ratio of the incident light and the transmitted light. In this way, the above objective was achieved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、溶液中のCrG+濃度を連続的にIll定す
るために、いわゆる吸光光度法を採用した。
The present invention employs a so-called spectrophotometric method to continuously determine the CrG+ concentration in a solution.

吸光光度法とは、光の吸収において入射光の強度Inと
透過光の強度Iとの比の対数が、吸し!4勿、質層の厚
さXに比例するというランバートの法i1と、気体又は
溶液による光の吸収は、その中の分子数だ【プによって
決まり、希釈によって分子数カー変化しない限り希釈度
には無関係であると(1う/(−ルの法則とを組合わせ
たいわゆるランノ\−1−・ベールの法則に基づいて溶
液の濃度をめるものである。即ち、入射光の強度をIO
1透過光の弓m度を1.被測定溶液の厚さをX、溶液濃
度をC(モル)とすると、濃度Cがあまり濃くな(へ溶
液では次のような関係がある。
Absorption photometry is a method in which the logarithm of the ratio of the intensity In of incident light to the intensity I of transmitted light in the absorption of light is Abs! 4 Of course, Lambert's law i1 is proportional to the thickness of the mass layer, and the absorption of light by a gas or solution is determined by the number of molecules in it. It calculates the concentration of the solution based on the so-called Lanno\-1-Beer's law, which is a combination of (1u/(-Le's law), which is unrelated. In other words, the intensity of the incident light is
1. Bow m degree of transmitted light is 1. If the thickness of the solution to be measured is X and the concentration of the solution is C (moles), then the concentration C is not very high.

I=■o10−F−0′ ・・・・・・・・・(1)−
log (1/Io)−ε C× ・・・・・・・・・
(2)ここで、εはモル吸光係数と呼ばれ、εclま吸
光係数と呼ばれるものである。この吸光係数εC(よ物
質と波長のみによって決まる定数である。又、εC×は
吸光度と呼ばれ、この吸光度εCXを測定することによ
って、モル吸光係数εが既知である物質の、溶液中の濃
度Cをめることができる。
I=■o10−F−0′ ・・・・・・・・・(1)−
log (1/Io)−ε C× ・・・・・・・・・
(2) Here, ε is called the molar extinction coefficient, and εcl is called the extinction coefficient. This extinction coefficient εC (is a constant determined only by the substance and the wavelength. Also, εC× is called the absorbance, and by measuring this absorbance εCX, the concentration of a substance with a known molar extinction coefficient ε in a solution can be determined. You can get C.

ところで、クロメート処理等によって排出される廃液は
、設備の稼(動状況によって種々に変化し、特にpH(
水素イオン濃度)は1〜8と幅広く変動する。本発明は
、吸光光度法を基礎としてC「6+濃度を測定しようと
するものであるが、実鋏至で検問した結果、例えば測定
光の波長が3751101、Cr6+濃度が7mし/ρ
の場合、第1図に示すようにCH−6+の吸光度はl)
Hにより著しく変化するため、このままではこの吸光光
度法により測定することが困難であることが解った。
By the way, the waste liquid discharged from chromate treatment etc. changes variously depending on the operating conditions of the equipment, and especially the pH (
hydrogen ion concentration) varies widely from 1 to 8. The present invention attempts to measure the C6+ concentration based on the spectrophotometric method, but as a result of inspection with a real scissors, for example, the wavelength of the measurement light is 3751101, and the Cr6+ concentration is 7m/ρ.
In the case of , the absorbance of CH-6+ is l) as shown in Figure 1.
It has been found that it is difficult to measure using this spectrophotometric method as it is because it changes markedly due to H.

しかるに、更にこれらの吸収曲線を詳細に調査してみた
ところ、第2図に示すように、測定光の波長として近紫
外線領域の一部である335〜345 nm (同図A
に承り範囲)を用いた場合には、t+ l−1の変動に
拘わらず透過度1 / i oは常に等しく、従って、
波長335〜345 ramの測定光を用いて測定する
ことによって、++Hの影響を受けることなく測定でき
ることか解った。本発明はこの知見を基礎とし、Cr”
il1度の測定手段として吸光光度法を採用したもので
ある。なお、同図から明らかな如く、この範囲の中でも
340 nmの波長を選択することにより誤差を最少に
することができる。
However, when we further investigated these absorption curves in detail, we found that the wavelength of the measurement light was 335 to 345 nm, which is part of the near ultraviolet region (see Figure 2).
(acceptable range), the transmittance 1/io is always equal regardless of the variation of t+l-1, and therefore,
It was found that measurement can be performed without being affected by ++H by measuring using measurement light with a wavelength of 335 to 345 ram. The present invention is based on this knowledge, and Cr”
Absorption photometry was adopted as a means of measuring il1 degrees. As is clear from the figure, the error can be minimized by selecting a wavelength of 340 nm within this range.

第3図に本発明方法の測定原理を示す。FIG. 3 shows the measurement principle of the method of the present invention.

即ち本発明は、還元槽等に向かうCr6+を含む被測定
溶液の一部を、ポンプ10等によって分岐引流し、該分
岐引流した被測定溶液を、溶液層厚さを一定10!Xに
維持可能なフローセル12中に連続的に流すと共に、こ
のフローセル12中を流れる被測定溶液に波長335〜
345 nmの測定光1oを大剣して、その透過光Iの
強さを測定し、該入射光1oと透過光■との強度比I 
/ I o 、即ち透過度1 / I oの常用対数を
ることによって被測定溶液の吸光度εaXをめ、該吸光
度εCXを基に予め解っているCr6 +のモル吸光係
数ε、溶液の厚さ×より、Cr 6”m度Cをめるもの
である。
That is, in the present invention, a part of the solution to be measured containing Cr6+ headed for a reduction tank or the like is diverted in a branch direction using a pump 10 or the like, and the solution to be measured that has been branched out is kept at a constant solution layer thickness of 10! The sample solution flowing through the flow cell 12 is continuously supplied with a wavelength of 335~
Measure the measurement light 1o of 345 nm with a long sword, measure the intensity of the transmitted light I, and calculate the intensity ratio I of the incident light 1o and the transmitted light 2.
/Io, that is, the common logarithm of the transmittance 1/Io, determines the absorbance εaX of the solution to be measured, and based on the absorbance εCX, the previously known molar extinction coefficient ε of Cr6 +, the thickness of the solution x Therefore, the Cr 6”m degree C is reduced.

上記吸光度εC×を実際に測定する方法としては、従来
は一般に、被測定溶液を毎回その厚さ×が5〜15I[
IIとなるセルに分取して測定する静的測定方法かとら
れていた。これに対し、本発明は、第3図に示すような
フローセル方式を採用し、被測定溶液の厚さを一定値X
に維持可能なフローセル12中を、被測定溶液が連続的
に通過できる構造としたものである。この結果、被測定
溶液の濃度変化に対応した吸光度変化を連続的に得るこ
とができるようになったものである。
Conventionally, the method of actually measuring the above absorbance εCx is to measure the solution to be measured at a thickness of 5 to 15 I[
A static measurement method was used in which the sample was fractionated into cells designated as II. In contrast, the present invention employs a flow cell system as shown in FIG.
The structure is such that the solution to be measured can continuously pass through the flow cell 12, which can be maintained at a constant temperature. As a result, it is now possible to continuously obtain changes in absorbance corresponding to changes in concentration of the solution to be measured.

なお、このフローセル12としては、例えば石英製で溶
液層厚さ×が5闘のものを使用することができる。この
溶液層厚さXが5非の70−セル12が良好なのは次の
理由による。即ち、第4図にこの吸光光度法によるCr
6すの検量線を示す。
The flow cell 12 may be made of quartz and have a solution layer thickness x 5, for example. The reason why the 70-cell 12 with the solution layer thickness X of 5 mm is good is as follows. That is, Fig. 4 shows the Cr
The calibration curve for 6s is shown.

同図より明らかな如く、5非の場合には1〜220+1
1!+/’J2のCl−6出濃度に対して測定可能であ
る。
As is clear from the figure, in the case of 5 nons, 1 to 220 + 1
1! It can be measured against the Cl-6 output concentration of +/'J2.

一般にフローセルのサイズは測定対象となる溶液′a度
に応じて選択すればよく、例えば1 mm以下のフロー
セルを用いた場合は、原理的にはi oo。
In general, the size of the flow cell can be selected depending on the degree of solution to be measured; for example, if a flow cell of 1 mm or less is used, in principle, the size of the flow cell should be selected according to the temperature of the solution to be measured.

mg/f!、以上の濃度についても測定可能であるが、
一方で送液量が限定されるため、大量の排水処理を行う
場合等においては、測定の遅れが大きくなるという不利
益がある。従って、必要な1lt11定範囲に見合うセ
ルサイズを採用し、Cr 6”11度変化の応答性との
両立を確保する方が望ましく、その意味において溶液層
厚さ5■のフローセルがよいものである。
mg/f! Although it is possible to measure concentrations higher than ,
On the other hand, since the amount of liquid to be sent is limited, there is a disadvantage that the delay in measurement increases when a large amount of wastewater is treated. Therefore, it is preferable to adopt a cell size that matches the required 1lt11 constant range and to ensure both the responsiveness of Cr 6" and 11 degree change, and in that sense, a flow cell with a solution layer thickness of 5 cm is better. .

次に本発明の有効性を確認するために、第5図のような
装置により、実際の廃液のOr”濃度を測定し、その結
果を化学分析による測定値と比較してみた。この装置は
、還元槽20に向かう廃液の一部を分流するための分流
管22と、この分流管22に廃液を引き入れるためのポ
ンプ24と、引き入れた廃液を試料採取用に溜めておく
ための液槽26と、この液槽26から廃液を8001β
/m t nで引き出すためのポンプ28と、該引き出
された廃液を5 mmの厚さに維持するための石英製の
フローセル30と、波長340 r+mの測定光によっ
て連続的にCrG+濃度を測定するための吸光光度計3
2と、この測定結果を記録するためのレコーダ34とか
ら主に構成されている。なお3Gは導電串計レコーダ、
38はpH訓である。
Next, in order to confirm the effectiveness of the present invention, we measured the Or'' concentration of actual waste liquid using the device shown in Figure 5, and compared the results with the values measured by chemical analysis. , a diversion pipe 22 for diverting a part of the waste liquid headed for the reduction tank 20, a pump 24 for drawing the waste liquid into the separation pipe 22, and a liquid tank 26 for storing the drawn waste liquid for sample collection. Then, the waste liquid is 8001β from this liquid tank 26.
/m t n, a quartz flow cell 30 to maintain the drawn waste liquid at a thickness of 5 mm, and a measurement light having a wavelength of 340 r+m to continuously measure the CrG+ concentration. Absorption photometer 3 for
2 and a recorder 34 for recording the measurement results. Note that 3G is a conductive skewer recorder,
38 is a pH lesson.

第6図に、このような装置を用い、前述した吸光光度法
に基づいた本発明方法によって測定された実測チャート
を示づ。又、下記第1表に、本発明方法によって測定さ
れた結果と、同時刻に試料採取を行い化学分析によって
Crg÷を分析した結果とを比較して示す。
FIG. 6 shows an actual measurement chart measured by the method of the present invention based on the above-mentioned absorptiometric method using such an apparatus. Further, Table 1 below shows a comparison between the results measured by the method of the present invention and the results obtained by taking samples at the same time and analyzing Crg÷ by chemical analysis.

第 1 表 これらの結果より、本発明方法によりCr6+を)■続
測定することが可能であり、且つ、刻々と変化する細か
な廃液中のCr6+11度の変動を、化学分析値とほと
んど変わらぬ精度で確実に捉えることが可能であること
が確認できた。なお、第6図において、時刻10詩46
分付近で急激に吸光度が変化しているようにみえるのは
、その時点で測定レンジを0〜2からO〜4に切換えた
ためである。
Table 1 From these results, it is possible to continuously measure Cr6+ using the method of the present invention, and to measure fluctuations in Cr6+11 degrees in fine waste liquid that change from moment to moment with an accuracy that is almost the same as chemical analysis values. It was confirmed that it is possible to reliably capture the In addition, in Figure 6, time 10 and verse 46
The reason why the absorbance appears to change rapidly around the minute is because the measurement range was switched from 0-2 to 0-4 at that point.

以上説明してきた如く、本発明によれば、溶液中の6価
りロムイオン濃度を連続的にオンラインで、且つ極めて
正確に測定することができるという効果が得られる。そ
の結果、例えば、クロメート処理にお(ブる廃液の還元
等に際して、残留6価クロムイオン量に見合う量のみの
還元剤を添加することが可能となり、過剰添加による費
用増大を防止できると共に、過剰スラッジの発生も防止
でき、処理コストの低減を図ることができるという効果
が(りられる。
As described above, according to the present invention, it is possible to obtain the effect that the concentration of hexavalent ROM ions in a solution can be measured continuously, online, and extremely accurately. As a result, for example, in chromate treatment (reducing waste liquid, etc.), it becomes possible to add only the amount of reducing agent commensurate with the amount of residual hexavalent chromium ions, which prevents increases in costs due to excessive addition, and This has the effect of preventing the generation of sludge and reducing processing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、pHと吸光度との関係を示す線図、第2図は
、1出をパラメータとする波長と透過度との関係を示す
線図、 第3図は、本発明方法の1111定原理図、第4図は、
溶液層厚さが5■mの場合のCp 6 +濃度と吸光度
との関係を示す線図、 第5図は、本発明方法の有効性を確認するために構成し
た装置の一部ブロック線図を含む配置図、第6図は、前
記装置における吸光光度計での実測チャート線図である
。 代理人 高 矢 論 (ほか1名)  p H 第2図 第3図 ↓ 第4図
Figure 1 is a diagram showing the relationship between pH and absorbance, Figure 2 is a diagram showing the relationship between wavelength and transmittance with 1 output as a parameter, and Figure 3 is a diagram showing the 1111 constant of the method of the present invention. The principle diagram, Figure 4, is
A diagram showing the relationship between Cp 6 + concentration and absorbance when the solution layer thickness is 5 μm. FIG. 5 is a partial block diagram of the apparatus configured to confirm the effectiveness of the method of the present invention. FIG. 6 is an actual measurement chart diagram using an absorption photometer in the above-mentioned apparatus. Agent Takaya Ron (and 1 other person) P H Figure 2 Figure 3 ↓ Figure 4

Claims (1)

【特許請求の範囲】 〈1)被測定溶液をフローセル中に連続的に流すと共に
、 該フローセル中を流れる被測定溶渣に波長335〜34
5 nmの測定光を入射してその透過光の強度を測定し
、 該入射光と透過光との強度比から吸光光度法によって被
測定溶液中の61a[iクロムイオン濃度をオンライン
で連続測定することを特徴とする溶液中の6価りロムイ
オン濃度の測定方法。
[Scope of Claims] <1) A solution to be measured is continuously caused to flow through a flow cell, and a wavelength of 335 to 34 is applied to the solution to be measured flowing through the flow cell.
A measurement light of 5 nm is incident, the intensity of the transmitted light is measured, and the 61a [i chromium ion concentration in the solution to be measured is continuously measured online using the absorption photometry method based on the intensity ratio of the incident light and the transmitted light. A method for measuring the concentration of hexavalent ROM ions in a solution, characterized in that:
JP21386983A 1983-11-14 1983-11-14 Measurement for concentration of hexavalent chromium ion in solution Pending JPS60105945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21386983A JPS60105945A (en) 1983-11-14 1983-11-14 Measurement for concentration of hexavalent chromium ion in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21386983A JPS60105945A (en) 1983-11-14 1983-11-14 Measurement for concentration of hexavalent chromium ion in solution

Publications (1)

Publication Number Publication Date
JPS60105945A true JPS60105945A (en) 1985-06-11

Family

ID=16646360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21386983A Pending JPS60105945A (en) 1983-11-14 1983-11-14 Measurement for concentration of hexavalent chromium ion in solution

Country Status (1)

Country Link
JP (1) JPS60105945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954036A (en) * 1995-08-17 1997-02-25 Kobe Steel Ltd Cr concentration meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954036A (en) * 1995-08-17 1997-02-25 Kobe Steel Ltd Cr concentration meter

Similar Documents

Publication Publication Date Title
Eaton Measuring UV‐absorbing organics: a standard method
EP0447721B1 (en) Monitoring performance of a treating agent added to a body of water and analyzer therefor
FI75675C (en) A method for determining the hydrocarbon content of liquids containing its α.
EP0365815A1 (en) Continuous on-stream monitoring of cooling tower water
JPH08512134A (en) Measurement of chemical and physical parameters and characterization process of aqueous suspensions for characterization
CN106226257A (en) COD on-Line Monitor Device and monitoring method thereof in a kind of water
EP0486156B1 (en) Flow injection analysis of total inorganic phosphate
US3898042A (en) Method and apparatus for continuously determining total copper in an aqueous stream
DE3223167C2 (en) Method for examining water containing decomposable carbon compounds
US3635564A (en) System for measuring organic content of water
JPS62449B2 (en)
Dolinšek et al. Application of the carbon cup atomisation technique in water analysis by atomic-absorption spectroscopy
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
JPS60105945A (en) Measurement for concentration of hexavalent chromium ion in solution
DE3324606A1 (en) Apparatus for measuring and determining the nitrate content of liquids
JP3321289B2 (en) Mixed acid analysis method and pickling solution management method
JPS6118135B2 (en)
Zheng et al. Catalytic spectrophotometric determination of trace aluminium with indigo carmine
Thomas et al. Ultraviolet multiwavelength absorptiometry (UVMA) for the examination of natural waters and wastewaters: Part III. Determination of chromium (VI)
Seritti et al. A contribution to the determination of “reactive” and “total” mercury in sea water
JP2003075341A (en) Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
Gao Use of β-correction spectrophotometry to improve the determination of copper solution with eriochrome black T
Luthy Manual of methods: preservation and analysis of coal gasification wastewaters
JPS6038654B2 (en) Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
RU2212029C1 (en) Way of analysis of liquid biological medium in process of monitoring