JPS6010582B2 - Constant current testing method for electrical equipment - Google Patents

Constant current testing method for electrical equipment

Info

Publication number
JPS6010582B2
JPS6010582B2 JP11868776A JP11868776A JPS6010582B2 JP S6010582 B2 JPS6010582 B2 JP S6010582B2 JP 11868776 A JP11868776 A JP 11868776A JP 11868776 A JP11868776 A JP 11868776A JP S6010582 B2 JPS6010582 B2 JP S6010582B2
Authority
JP
Japan
Prior art keywords
current
test
constant current
under test
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11868776A
Other languages
Japanese (ja)
Other versions
JPS5343552A (en
Inventor
長義 今村
三津男 秋定
公明 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11868776A priority Critical patent/JPS6010582B2/en
Publication of JPS5343552A publication Critical patent/JPS5343552A/en
Publication of JPS6010582B2 publication Critical patent/JPS6010582B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、応答のすぐれた電気機器の一定電流通電試
験方に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant current energization test method for electrical equipment with excellent response.

電気機器は短絡電流などの過渡電流や過負荷電流による
熱や電磁力などで損傷したり特性が変化したり、繰返し
断続電流によって機器が破壊されることがある。
Electrical equipment may be damaged or its characteristics may change due to heat or electromagnetic force caused by transient currents such as short-circuit currents or overload currents, and equipment may be destroyed by repeated intermittent currents.

また、通轟々流による機器の動作特性を求める必要があ
る場合もあり、これらを検証するために、一定電流の通
電を必要とすることが多い。
In addition, there are cases where it is necessary to determine the operating characteristics of equipment due to the continuous current, and in order to verify these characteristics, it is often necessary to apply a constant current.

この場合、電圧は定格電圧のような高電圧は必要ではな
く、ただ一定の電流さえ供給されればよく、設備容量を
小さくし、消費電力を少なくするために、低電圧で試験
されるのが普通である。以下、低電圧、一定電流で試験
されることの多い機器として「ヒューズを例にとって説
明すると、ヒューズは電気機器や送配電系統保護用とし
て広く使われている。これは、短絡電流などの異常電流
で機器や送配電系統が破壊される前に銀線などの可溶体
が溶融し、周囲に設けられた消弧剤によって消弧し、電
流を遮断するように構成されている。そのため、通蚤々
流と動作時間との関係(一般に溶断特性と称されている
)は、最も重要な特性であり、その検証には一定電流が
必要となる。また、繰返し断続電流の通電によりト可溶
体は伸縮を起し(これをヒートサイクルと称している入
その繰り返しにより、やがては溶断に至ることがあり、
この場合の性能検証も一定電流の断続により行なわれ、
性能検証に一定電流の必要性の最も大きい機器である。
In this case, the voltage does not need to be as high as the rated voltage, but only a certain amount of current needs to be supplied.In order to reduce the equipment capacity and reduce power consumption, it is preferable to test at a low voltage. It's normal. Below, we will explain fuses as an example of equipment that is often tested at low voltage and constant current. Fuses are widely used to protect electrical equipment and power transmission and distribution systems. Before equipment or power transmission and distribution systems are destroyed, fusible materials such as silver wires are melted, the arc is extinguished by the arc extinguishing agent provided around the area, and the current is cut off. The relationship between continuous current and operating time (generally referred to as fusing characteristics) is the most important characteristic, and a constant current is required to verify it. Expansion and contraction (this is called a heat cycle) may eventually lead to melting.
Performance verification in this case is also performed by intermittent constant current.
This is the equipment that requires the most constant current for performance verification.

ここで、ヒューズの溶断浄性の試験方法の一般的に行な
われている例を第1図に示す。
Here, FIG. 1 shows an example of a commonly used test method for fuse blowability.

この第亀図において、T,,T2は電源端子であっても
100Vまたは200yの低電圧の交流電源に接続する
ようになっている。の低電圧は誘導電圧調整器やスラィ
ダックの電圧調整器盲を経て0〜400V!こ電圧調整
され、さらに、大軍流トランス2を経て0〜10Vの低
電圧、大電流に変成して被試験ヒューズ3に供給される
。ヒューズに供給される電流は検出器4によりチェック
され、設定器5で設定された電流との差を補正するよう
に調整器6によって電圧調整器翼を調整し、常に設定器
5の設定値に近い電流値に保持される。
In this diagram, T, , T2 are power supply terminals connected to a low voltage AC power supply of 100V or 200y. The low voltage is 0 to 400V via an induction voltage regulator or Slydac voltage regulator blind! This voltage is adjusted, and further transformed into a low voltage of 0 to 10V and a large current through a large current transformer 2, and then supplied to the fuse 3 under test. The current supplied to the fuse is checked by a detector 4, and the voltage regulator blade is adjusted by a regulator 6 to compensate for the difference between the current and the current set by the setting device 5, so that the current supplied to the fuse is always at the setting value of the setting device 5. Current values are maintained close to each other.

ところで、第2図(ヒューズに一定電流を通電する場合
に「電源電圧を急速に上昇させなければならない必要性
を説明するための図)における特性aに示すように、通
電とともにヒューズは温度が上昇しもそれにともなって
被試験ヒューズ3の電気抵抗は第2図の特性bに示すよ
うに上昇する。
By the way, as shown in characteristic a in Figure 2 (a diagram to explain the necessity of rapidly increasing the power supply voltage when a constant current is applied to a fuse), the temperature of the fuse increases as the current is applied. Along with this, the electrical resistance of the fuse 3 under test increases as shown by characteristic b in FIG.

この場合も試験回路のインピーダンスは被試験ヒューズ
の抵抗が大半を占めるからも電圧を一定にすると、電流
は第2図の特性cに示すように低下する。
In this case as well, since the resistance of the fuse under test accounts for most of the impedance of the test circuit, if the voltage is kept constant, the current decreases as shown in characteristic c in FIG. 2.

したがって〜電流を第2図の特性dに示すように設定値
に一定に保つためには、特性dとcの差の分を補正する
ために、電源電圧を特性eに示すように上昇補正される
。しかし、この方式ではt従来の誘導電圧調整器やスラ
ィイダックのような電圧調整器ではも応答が遅く「数秒
以下の急速な抵抗変化には追随できない。
Therefore, in order to keep the current constant at the set value as shown in characteristic d in Figure 2, the power supply voltage must be increased as shown in characteristic e in order to compensate for the difference between characteristics d and c. Ru. However, with this method, even conventional induction voltage regulators and voltage regulators such as Sly-Dac have a slow response and cannot follow rapid resistance changes lasting less than a few seconds.

そのような場合にはち第8図に示すように高電圧で試験
が行なわれている。すなわち「 電源端子T卑賎 T2
間に3000Vまたは6000Vの高電圧を印加しもド
ランス′雷で電圧を100〜1000Vの大電流に変成
し〜 電流調整用のみ部負担8を経て被試験ヒューズ3
に電流を供給するようにしている。
In such cases, tests are conducted at high voltages as shown in FIG. In other words, "Power terminal T2
Even if a high voltage of 3000V or 6000V is applied between them, the voltage is transformed into a large current of 100 to 1000V by lightning.
It is designed to supply current to.

この場合の試験回路のインピーダンスはほとんど電流調
整用の外部負担8で占め、被試験ヒューズ3のインピー
ダンスが変化しても、被試験ヒューズ3には一定電流が
供給される。
In this case, the impedance of the test circuit is mostly accounted for by the external load 8 for current adjustment, and even if the impedance of the fuse 3 under test changes, a constant current is supplied to the fuse 3 under test.

しかし、この方法では「設備容量および消費電力は第1
図に示す低電圧大電流試験方法に比べて10〜10び苦
の大きなものとなりt設備費用および試験費用は膨大な
ものとなる。
However, with this method, ``installed capacity and power consumption are
This is 10 to 10 times more expensive than the low voltage, high current test method shown in the figure, and the equipment costs and test costs are enormous.

この発明は、上記の点にかんがみなされたもので「従来
の誘導電圧調整器やスラィダックのうな電圧調整器の代
りにトランスに多数のタップを設け、そのタップを双方
向性サィリスタで切り換えることにより、応答のすぐれ
た低電圧大電流試験を行なうことのできる電気機器の一
定電流通電試験方法を提供するものである。
This invention was developed in consideration of the above points, and was developed by providing a transformer with a large number of taps and switching the taps with a bidirectional thyristor instead of a conventional induction voltage regulator or Slydac type voltage regulator. The present invention provides a constant current energization test method for electrical equipment that enables low voltage, high current testing with excellent response.

次に、図面に基づきこの発明の電気機器の一定電流通電
試験方法の実施例について説明すると、第亀図はその一
実施例に適用される試験装置を示す回路図であり、この
第亀図におけるT1,T2は電源端子であって「100
Vまたは200Vの低電圧の交流電源が接続されるよう
になっているとともに「制御用トランス鯵の1次巻線が
接続されている。
Next, an embodiment of the constant current energization test method for electrical equipment of the present invention will be explained based on the drawings. Figure 1 is a circuit diagram showing a test device applied to the embodiment. T1 and T2 are power supply terminals, and
A low-voltage AC power supply of V or 200 V is connected, and the primary winding of the control transformer is also connected.

この制御用トランスgの2次巻線には、多数のタップA
,,A2,ん,…を有しておりもこの各タップA,鯖
A28 A3q,・は双方向性サィリスタB,母&?馬
…を介して共通に接続点P,に接続されている。
The secondary winding of this control transformer g has many taps A.
,,A2,n,... each tap A, mackerel
A28 A3q, · is bidirectional thyristor B, mother &? They are commonly connected to a connection point P, via...

そして「制御トランスgの2次巻線の一端(図の下端)
と接続点PIは大電流トランス2のX次巻線の両端に接
続されている。この大電流トランス多の2次巻線の両端
には被試験ヒューズ3が接続されるようになっており、
この被試験ヒューズ3と大電流トランス2の2次巻線の
一端間には変流器CTが設けられている。
"One end of the secondary winding of the control transformer g (lower end of the figure)
and connection point PI are connected to both ends of the X-order winding of the large current transformer 2. The fuse under test 3 is connected to both ends of the secondary winding of this large current transformer.
A current transformer CT is provided between the fuse 3 under test and one end of the secondary winding of the large current transformer 2.

この変流器CTの出力側は検出器4‘と接続されも検出
器川こは設定器Sも接続されておりもそしで〜 この検
出器4の出力側は調整器鼠と接続されているQ この調
整器8の出力側は上記双方向性サィリス夕B,?B2,
B39…の各ゲートに蟻競ごねているQ荻にも上述のよ
うに構成された試験装置によ■もこの発明の電気機器の
一定電流通電試験方法を行なう場合について説明すると
もまずも電源端子T畳Q T2に狐OVまたは20QV
の低電圧の交流電源を接続することにより、制御トラン
ス9および各双方向性サィリスタB,B2,公,…から
大電流トランス2を経て被試験ヒューズ3に電流を供給
する。
The output side of this current transformer CT is connected to the detector 4', and the detector 4' is also connected to the setting device S, so the output side of this detector 4 is connected to the regulator mouse. Q: Is the output side of this regulator 8 connected to the above-mentioned bidirectional syringe B,? B2,
B39... Ants are competing with each gate of the Q ogi.The test equipment configured as described above is also used to explain the case where the constant current energization test method for electrical equipment of this invention is performed.First of all, the power supply Fox OV or 20QV on terminal T tatami Q T2
By connecting a low-voltage AC power source, current is supplied from the control transformer 9 and each bidirectional thyristor B, B2, public, . . . to the fuse under test 3 via the large current transformer 2.

この被試験ヒューズ3に流れる電流は変流器C町こよっ
て検出されても変流器CTの出力は検出器年に供給され
る。
Even if the current flowing through the fuse 3 under test is detected by the current transformer C, the output of the current transformer CT is supplied to the detector.

この検出器4には設定器5により設定された設定値も供
給されており、したがって「検出器4は変流器CTの出
力と設定器5の設定値とをチェックし「その差に応じた
出力を調整器6に送出する。れにより「調整器6からも
ま上記差に応じた制御トランス9の2次巻線のタップに
接続されている双方向性サィリス夕のゲートに切換信号
を送り、双方向性サィリス夕を切り換えることにより「
常に設定値に近い値に保持される。
The detector 4 is also supplied with the setting value set by the setting device 5, and therefore the detector 4 checks the output of the current transformer CT and the setting value of the setting device 5 and adjusts the setting value according to the difference. The output is sent to the regulator 6. Accordingly, the regulator 6 sends a switching signal to the gate of the bidirectional syringe connected to the tap of the secondary winding of the control transformer 9 according to the above difference. , by switching the bidirectional sirens
Always kept close to the set value.

このときのタップの切換順序はたとえさま、タップA,
翼 ふ,A3・・・と云うように断続的に切り換えるよ
りも「 タップをタップA,一A,十ん(タップA,と
んに並列して通電することを示す。
At this time, the tap switching order is, for example, tap A,
Rather than switching intermittently like "Fu, A3...", "Tap A, 1 A, 10" (indicates that the taps are energized in parallel).

以下同じ)−A2−A2十ん−〜と云うように、隣接し
たタップをラップさせて連続的に切り換える方が試験精
度がよい。またト薄電開始時のように、電流が大幅に変
化した場合には最底タップより隣接したタップを順次切
り上げていたのでは、設定値に達するまでに長時間を要
し、非常に応答の悪ものとなる。
The same applies hereafter) -A2-A2-~ The test accuracy is better if adjacent taps are overlapped and switched continuously. In addition, when the current changes significantly, such as when starting a thin current, if the taps adjacent to the bottom tap were rounded up sequentially, it would take a long time to reach the set value, resulting in extremely poor response. It becomes evil.

このような場合に、最も早く目標のタップに達する方法
を第5図に示す。すなわち、被試験機器の試験に支障と
らない程度の小電流1,を短時間通電し、その電流を検
出し、設定値12にするためのタップを演算して、その
タップに切り換える方法である。
In such a case, a method for reaching the target tap most quickly is shown in FIG. That is, this is a method in which a small current 1, which does not interfere with the testing of the device under test, is passed for a short time, the current is detected, a tap is calculated to set the set value to 12, and the tap is switched to that tap.

この発明の発明者らはこの方法で設定値95%に達する
のに約0.09砂の高応答を得るのに成功した。なお、
上記の実施例は単に一例を例示したにすぎず、この発明
の枠内で色々な改良や変形があり得ることは勿論である
The inventors of the present invention have succeeded in obtaining a high response of about 0.09 sand to reach a set point of 95% using this method. In addition,
The above embodiment is merely an example, and it goes without saying that various improvements and modifications can be made within the framework of the present invention.

以上のように、この発明によれば、応答の遠い低電圧、
大電流の一定電流が得られ、従来被試験機器の電気抵抗
が急速に変化するような場合に「高蟹圧で行なっていた
試験が低電圧で可能なり、設備容量および消費電力が少
なくなり、経済的な試験ができる利点が得られる。
As described above, according to the present invention, low voltage with a long response,
When a large constant current is obtained and the electrical resistance of the device under test changes rapidly, tests that were conventionally performed at high pressure can now be performed at low voltage, reducing equipment capacity and power consumption. This provides the advantage of being able to perform economical testing.

函南の簡単な説明 第亀図は従来の低電圧で電気機器の一定電流通電試験方
法に適用する試験装置を示す回路図、第2図は被試験ヒ
ューズに一定電流を流す場合に電源電圧を急速に上昇さ
せなければならない必要性を説明するための図、第3図
は従釆の高電圧で電気機器の一定電流通電試験方法に適
用する試験装置を示す回路図、第4図はこの発明の電気
機器の一定電流通電試験方法の一実施例に適用される試
験装置の回路図、第5図はこの発明の電気機器の一定電
流通電試験方法で通電開始時に高応答を得る方法を説明
するための図である。
Brief explanation of Kannami Figure 1 is a circuit diagram showing the test equipment applied to the conventional low voltage constant current energization test method for electrical equipment, and Figure 2 is a circuit diagram showing the test equipment applied to the conventional low voltage constant current energization test method for electrical equipment. Figure 3 is a circuit diagram showing a test device applied to a method for testing electrical equipment with a constant current at a high voltage, and Figure 4 is a diagram for explaining the necessity of increasing the voltage to FIG. 5 is a circuit diagram of a test device applied to an embodiment of the constant current energization test method for electrical equipment, for explaining a method for obtaining a high response at the start of energization in the constant current energization test method for electrical equipment of the present invention. This is a diagram.

2…大電流トランス、3・・・被試験ヒューズ、4…検
出器、5・・・設定器、6・・・調整器、9・・・制御
トランス、A,,A2,ん,…タップ、B,B2,B,
・・・双方向性サィリスタトCT・・・変流器。
2... Large current transformer, 3... Fuse under test, 4... Detector, 5... Setting device, 6... Adjuster, 9... Control transformer, A,, A2,... Tap, B, B2, B,
...Bidirectional thyristor CT...Current transformer.

なお、図中同一符号は同一部分または相当部分を示す。
第1図第2図第3図 第4図 第5図
Note that the same reference numerals in the figures indicate the same or equivalent parts.
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 制御トランスの1次巻線を低電圧の交流電源に接続
するとともに2次巻線に多数のタツプを設け、このタツ
プにそれぞれ双方向性サイリスタを接続し、この双方向
性サイリスタから大電流トランスを介して被試験機器に
電流を供給し、この電流を検出器で検出して設定された
値との差に応じて上記双方向性サイリスタを選択的に点
弧させることにより上記タツプを切り換えて上記被試験
器に一定電流を供給するようにし、さらに上記被試験機
器の通電開始時および電流が大幅に変化したときにはこ
の被試験機器の試験に支障にならない程度の小電流を短
時間通電し、この電流を検出して設定値との差に応じて
設定電流値にするためのタツプを演算し、そのタツプに
切り換えることを特徴とする電気機器の一定電流通電試
験方法。 2 被試験機器はヒユーズを使用するとともに、このヒ
ユーズの溶断特性試験、温度上昇試験およびヒートサイ
クル試験を行なうことを特徴とする特許請求の範囲第1
項記載の電気機器の一定電流通電試験方法。
[Claims] 1. The primary winding of the control transformer is connected to a low-voltage AC power supply, and the secondary winding is provided with a large number of taps, each of which is connected to a bidirectional thyristor, and the bidirectional thyristor is connected to the secondary winding. supplying current from the bidirectional thyristor to the device under test via a large current transformer, detecting this current with a detector, and selectively firing the bidirectional thyristor according to the difference from a set value. Switch the above tap to supply a constant current to the device under test, and also supply a small current that does not interfere with the test of the device under test when the device under test starts energizing or when the current changes significantly. A constant current energization test method for electrical equipment characterized by energizing for a short time, detecting this current, calculating a tap to set the current value according to the difference from the set value, and switching to that tap. 2. Claim 1, characterized in that the device under test uses a fuse, and the fuse is subjected to a fusing characteristic test, a temperature rise test, and a heat cycle test.
Constant current energization test method for electrical equipment described in Section 1.
JP11868776A 1976-10-01 1976-10-01 Constant current testing method for electrical equipment Expired JPS6010582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11868776A JPS6010582B2 (en) 1976-10-01 1976-10-01 Constant current testing method for electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11868776A JPS6010582B2 (en) 1976-10-01 1976-10-01 Constant current testing method for electrical equipment

Publications (2)

Publication Number Publication Date
JPS5343552A JPS5343552A (en) 1978-04-19
JPS6010582B2 true JPS6010582B2 (en) 1985-03-18

Family

ID=14742693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11868776A Expired JPS6010582B2 (en) 1976-10-01 1976-10-01 Constant current testing method for electrical equipment

Country Status (1)

Country Link
JP (1) JPS6010582B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922425A (en) * 1996-05-28 1999-07-13 Minnesota Mining And Manufacturing Company Multi-layer compositions and articles comprising fluorine-containing polymer

Also Published As

Publication number Publication date
JPS5343552A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
US3715742A (en) Alternating current fault indicating means
US4025820A (en) Contactor device including arc supression means
US2920242A (en) Electric circuit
JPS60518A (en) Device for responding dropped voltage at nonlinear section of diode
US3905748A (en) Primary control system for furnaces
JP2009115687A (en) Device and method for pressure relief testing of lightning arrester
JPS6010582B2 (en) Constant current testing method for electrical equipment
US656680A (en) System of electrical distribution.
GB1572457A (en) Fault detecting and indicating apparatus
US2838634A (en) Method for limiting excess currents in direct or alternating currents mains
US2200608A (en) Fuse
Cline et al. Fuse protection of DC systems
US2370037A (en) Protective device for electrical apparatus and systems
US2084495A (en) Fuse
US3351815A (en) Ballast employing plurality of temperature sensitive fuses
JP2861696B2 (en) Instrument transformer
US3436597A (en) Electric circuit breaker with assisted arc interruption
US835388A (en) Thermal cut-out.
US618812A (en) David j
US1740447A (en) Electrical distribution system
US2629072A (en) Gaseous discharge tube lighting system
SU595819A1 (en) Device for overload protection of ac electric installation
JPS5957524A (en) Ac current limiting type semiconductor circuit breaker
US2333520A (en) Electrical protective relay system
US1315809A (en) Planoaraph co