JPS60104832A - Multiple coupling type driving belt - Google Patents

Multiple coupling type driving belt

Info

Publication number
JPS60104832A
JPS60104832A JP21208983A JP21208983A JPS60104832A JP S60104832 A JPS60104832 A JP S60104832A JP 21208983 A JP21208983 A JP 21208983A JP 21208983 A JP21208983 A JP 21208983A JP S60104832 A JPS60104832 A JP S60104832A
Authority
JP
Japan
Prior art keywords
belt
belts
elasticity
power transmission
tensile elasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21208983A
Other languages
Japanese (ja)
Other versions
JPS6260571B2 (en
Inventor
Shinobu Sagisawa
鷺沢 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP21208983A priority Critical patent/JPS60104832A/en
Publication of JPS60104832A publication Critical patent/JPS60104832A/en
Publication of JPS6260571B2 publication Critical patent/JPS6260571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts

Abstract

PURPOSE:To reduce the generation of vibration and noise, by a method wherein synthetic elasticity distribution on the whole multiple belt is approximately uniformized. CONSTITUTION:A range having high elasticity is displaced from a range having low elasticity so that they are prevented from aligning in a phase manner with each other between multiply belts, and synthetic elasticity distribution is about uniform throughout the whole periphery of the belt. Namely, a relation position between the belts is decided so that a maximum elasticity spot and a minimum elasticity spot are positioned in alignment with each other in a phase manner between elasticity distributions I and II being inherent to each belt. This enables control of twist vibration generated at a belt driving system and caused by uneven elasticity distribution of the belt and the secondary generation of vibration and noise.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は一般産業用の原動機と被動機側のプーリ間に
架は渡して動力伝達を行う多連結台形伝動ベルトに関す
る。
The present invention relates to a multi-connected trapezoidal power transmission belt for general industrial use, which transmits power by passing a frame between a prime mover and a pulley on a driven machine side.

【従来技術とその問題点】[Prior art and its problems]

まず、第1図に基本的なベルト伝動機構を示す。 図において工は駆動側プーリ、2ば被動側プーリ、3が
プーリ1と2の間に巻掛けたベルトであり、運転時には
ベルトの上側が張り側、下側が弛み側となってベルトと
プーリ表面との間の摩擦力で動力の伝達の行われること
は周知の通りである。また伝達動力が比較的大きい一般
産業機械では通常複数本のベルトを巻掛けて使用し、か
っこの場合にはすべりが少なく伝動効率のよいVベルト
が広く採用されている。 ところで、上記ベルト伝動maの運転時には、ベルト伝
動機構に振動発生が見られ、特に動力伝達系内に歯車装
置などが一緒に組込まれていると振動騒音が強くなるこ
とがある。またこの振動騒音は、ある時はうなり音信に
変化して運転保守要員に不安感を与えることがある。 かかる騒音の発生メカニズムについて発明者の考察した
ところによれば、その原因は次記に詳記スルように、個
々のベルトについてその引張り弾性がベルトの全長に亙
って一様でないことに起因していることが判明した。す
なわち、一般に市販されているベルトを試料として、そ
の全長に亙る引張り弾性分布を開べるために次記の検査
を行った。まず1本のベルト3に第2図のようにベルト
3を16等分して各位置に■〜[相]番号をつけて標点
とする。さらに標点■からプーリ1,2の軸間距離βに
相当する距離だけ離れた地点から等間隔に■゛〜[相]
゛の標点をつけ、そしてこのヘルド3を第1図のように
プーリ1と2の間に架は渡し、プーリ1,2に力Pを与
えてベルト3に張力を加えながら駆動側からプーリを回
転させる。ここでベルトの標点■が第1図に示すX点に
来た時の標点■と■°間のベルト長さを測ってベルトの
伸び分△!をめ、この測定値から標点■〜■°間の平均
引張り弾性C−△β/Pを算出する。同様な操作4各標
点■〜[相]の各点について行うことにより、第3図に
示す引張り弾性分布が得られる。第3図から明らかなよ
うにベルトはその全長に亙る引張り弾性が均一でな(、
弾性の大きい領域と小さな領域が存在する。このような
傾向は程度の違いこそあれ、市販のベルトには1本1本
についてそれぞれ固有の弾性分布を示すことが発明者の
行った検査結果から確認されている。その原因は次の点
にあると推定される。すなわち、頭記したVベルトの製
法は、第4図ないし第6図に示すようにまずドラム4の
上に幅の広いベース用の未加硫ゴム5を巻付け、ざらに
このベース層の上に曲げ剛性強化用のゴム6を巻付ける
。次に芯線コード7を狭いピンチ間隔でスパイラル状に
連続巻したものを加硫する。次いで第5図に示した破線
に沿って定寸法幅で輪切りし、最後にその周面に布8を
巻付けてVベルト3を完成する。このように幅の広いも
のから輪切りして作られた芯線コード入りベルト3の製
品は、その周方向に沿った場所によりスパイラル巻され
たコード7の本数が多いところもあれば逆に少ないとこ
ろもあり、かつこのコードは全長のいずれかの地点で途
切れている。また製造工程で帯状のゴムを巻付けるため
に当然その継ぎ目も存在する。しかも芯線コード7はベ
ルトに作用する張力のかなりの割合を分担していること
から、この結果としてベルト3ば周方向に沿って引張り
弾性の大きい領域と、小さい領域が形成されることにな
る。 ところで第1図に示したベル1−伝動機構において、ベ
ルト3によりプーリlと2の間に伝達されるトルクTI
、T2は次式で表されることは周知の通りである。 TI =R1(Fl −F2 ) T2 =R2(Fl −F2 ) なお、Fl、F2はそれぞれ張り側、弛み側のベルト張
力、R1,R2はプーリI、2の半径である。 一方、第1図、第2図に示したベルト3の全長について
長さβの領域の平均的な弾性が小さい領域をA、弾性が
大きい領域をBとして、それぞれA。 B領域の弾性をC1,C2とする。なおベルトに張力を
与えない状態では前記のA、B領域の長さはいずれもl
であり、また第3図の測定結果に見られるように、1本
のヘルドについて一般にA領域とB領域は互いにベルト
の反対側位置にある。ここでベルト3をプーリ1,2に
架は渡し、先記と同時に力Pを加えてベルト3に張力を
与えながら回転した場合に、それぞれA領域とB領域が
ヘルドの張り側に来た時のベルトの各伸び分△pはヘル
ド長さlに対してFI C1、FI G2となり、この
状態を図示すると第7図、第8図のごとくである。一方
、それぞれA領域と、B領域がベルトの弛み側に来た時
のヘルドの各伸び分Δlはヘルド長さlに対してFI 
CI 、F2 C,2となる。このことから、ベルト3
の張り側に弾性が小さいA領域、弛み側に弾性の大きい
B SJi域が来た状態と、逆にベルトの張り側にB領
域、弛み側にA領域が来た状態とでベルトの伸び分△β
が変わり、かつそのヘルドの伸び分の差、すなわち第9
図における角度△θ(ラジアン)は次式で表される。 △θ−((FICI−F2C2) −(FIC2−F2
CI) l /R2−(CI −C2) (Fl +F
2 ) /R2すなわちA、B領域の弾性CI、C2の
差が大きいと△θば大きくなり、かつこの伸び分の変化
が公転周期で繰り返し発生することになる。なおベルト
の公転周期はベルトの周速をV、ベルトの全長をLとす
ればL / vで表される。この結果、ベルト伝動機構
の運転時には、被動側の軸に第1θ図に示すような振幅
603周波数v / Lの捩り振動が生じることになる
。この場合の振動周波数は、−例としてベルト長さ1.
5m、プーリの直径150mmのベルト伝動機構をモデ
ルとして算出すると回転速度が200Or、 p、 m
では10.511z、4000r、p、mでは21 H
zとなる。 上記のように運転時におけるベルトの伸びの差が基因し
て振動が発生した場合に、伝動機構を構成している回転
軸、歯車等の固有振動数が先記したヘルドから生じる励
振振動数と一致すると、共振作用により大きな捩り振動
となり、特に歯車装置があると大きな騒音が発生する。 またプーリの回転軸の曲げ固有振動数と励振振動数が一
致して共振すると振動の増大や軸の破損を引き起こすお
それもある。 さて、上記はベルトが1本の場合につい
て述べたが、実際の伝導装置のように複数本のベルトを
並列に巻掛けた多連ベルトの場合には、振動の様子がさ
らに複雑になる。すなわち、奇問しプーリに2本のベル
トを平行して架は渡した場合には、2本のヘルド相互の
相対的な位置の如何によって、各ベルトの同上の弾性分
布が第11図あるいは第12図における(イ)、(ロ)
のようになる。このうち、第11図の場合は各ベルトの
弾性(イ)と(ロ)が位相的に重畳し合って2本のベル
トの合成弾性ば(ハ)のようになり、弾性の最大値と最
小値との差りが大きくなる。一方、第12図の場合は弾
性分布(イ)と(ロ)が位相的に互いに相殺し合うので
合成弾性は(ハ)のようになり、弾性の最大値と最小値
の差りは小さくなり、全長に亙って平均化する。一方、
周知のようにベルトは運転時に生じるクリープにより、
プーリとの間で局部的にスリップしながら移動するが、
この場合にこのスリップ量は個々のヘルドによって異な
ることから、実際の運転時には時間とともに各ベルトの
周方向の相対位置が変化し、第11図と第12図の状態
が交互に繰り返して生じることになる。この結果、被動
側のプーリ軸には第13図のように時間とともに振幅が
変化する捩り振動が生じる。さらに使用ベルトの本数が
多くなれば益々複雑な不規則の捩り振動が生し、この結
果として発生する振動騒音はうなり音となり、機械の保
守員に不安感を与える。
First, FIG. 1 shows a basic belt transmission mechanism. In the figure, 2 is the driving pulley, 2 is the driven pulley, and 3 is the belt wrapped between pulleys 1 and 2. During operation, the upper side of the belt is the tension side and the lower side is the slack side, and the surface of the belt and pulley is It is well known that power is transmitted by the frictional force between the two. Furthermore, in general industrial machinery where the transmitted power is relatively large, multiple belts are usually used, and in the case of brackets, V-belts with less slippage and high transmission efficiency are widely used. By the way, when the belt transmission ma is in operation, vibrations are observed in the belt transmission mechanism, and especially if a gear device or the like is also incorporated in the power transmission system, vibration noise may become strong. In addition, this vibration noise may sometimes turn into a buzzing sound, giving a sense of anxiety to operation and maintenance personnel. According to the inventor's study of the mechanism by which such noise is generated, the cause is that the tensile elasticity of each belt is not uniform over the entire length of the belt, as detailed below. It turned out that That is, using a commercially available belt as a sample, the following tests were conducted to determine the tensile elasticity distribution over its entire length. First, as shown in FIG. 2, one belt 3 is divided into 16 equal parts, and each position is marked with a number from ■ to [phase] to serve as gauge points. Furthermore, at equal intervals from a point away from the gauge point ■ by a distance corresponding to the distance β between the axes of pulleys 1 and 2,
Place the heald 3 between the pulleys 1 and 2 as shown in Figure 1, and while applying force P to the pulleys 1 and 2 and tensioning the belt 3, pull the pulley from the drive side. Rotate. Here, when the belt gauge mark ■ reaches point X shown in Figure 1, measure the belt length between the gauge mark ■ and ■° and find out the belt elongation △! From this measured value, the average tensile elasticity C-Δβ/P between the gauge points ■ and ■° is calculated. By carrying out similar operation 4 for each of the gauge points 1 to [phase], the tensile elasticity distribution shown in FIG. 3 is obtained. As is clear from Figure 3, the tensile elasticity of the belt is not uniform over its entire length (
There are regions of high elasticity and regions of low elasticity. Although the degree of this tendency varies, it has been confirmed from the test results conducted by the inventor that each commercially available belt exhibits its own unique elasticity distribution. The reason for this is presumed to be the following. That is, the manufacturing method of the V-belt mentioned above is as shown in FIGS. 4 to 6. First, a wide unvulcanized rubber 5 for the base is wrapped around the drum 4, and then the unvulcanized rubber 5 for the base layer is roughly wrapped. Rubber 6 for reinforcement of bending rigidity is wrapped around. Next, the core wire cord 7 is continuously wound in a spiral shape with narrow pinch intervals and then vulcanized. Next, the V-belt 3 is completed by cutting it into pieces with a fixed width along the broken line shown in FIG. 5, and finally wrapping the cloth 8 around the circumferential surface. In this way, the product of the belt 3 with core wire cords made by cutting a wide belt into rings has a large number of spirally wound cords 7 in some places and a few places in other places depending on the location along the circumferential direction. Yes, and this cord is interrupted at some point along its length. Naturally, seams also exist because the rubber band is wrapped in the manufacturing process. Furthermore, since the core cord 7 shares a considerable proportion of the tension acting on the belt, as a result, regions of high tensile elasticity and regions of low tensile elasticity are formed along the circumferential direction of the belt 3. By the way, in the bell 1-transmission mechanism shown in FIG. 1, the torque TI transmitted between the pulleys 1 and 2 by the belt 3
, T2 are well-known to be expressed by the following equations. TI = R1 (Fl - F2 ) T2 = R2 (Fl - F2 ) Note that Fl and F2 are belt tensions on the tight side and slack side, respectively, and R1 and R2 are the radii of pulleys I and 2. On the other hand, with respect to the entire length of the belt 3 shown in FIGS. 1 and 2, the region of average elasticity of the region of length β is designated as A, and the region of high elasticity is designated as B, respectively. Let the elasticities of region B be C1 and C2. Note that when no tension is applied to the belt, the lengths of areas A and B are both l.
As can be seen from the measurement results in FIG. 3, the A and B areas of one heald are generally located on opposite sides of the belt. Here, when the belt 3 is passed over the pulleys 1 and 2 and rotated while applying tension to the belt 3 by applying force P at the same time as described above, when the A area and B area respectively come to the tension side of the heald. The elongation Δp of the belt becomes FI C1 and FIG G2 with respect to the heald length l, and this state is illustrated in FIGS. 7 and 8. On the other hand, when area A and area B come to the slack side of the belt, each elongation Δl of the heald is FI with respect to the heald length l.
CI, F2 C,2. From this, belt 3
The amount of elongation of the belt is determined by the state in which the A region with low elasticity is on the tension side and the B SJi region with high elasticity on the slack side, and the state where the B region is on the tension side of the belt and the A region on the slack side. △β
changes, and the difference in the extension of the heald, that is, the 9th
The angle Δθ (radian) in the figure is expressed by the following formula. △θ-((FICI-F2C2) -(FIC2-F2
CI) l /R2-(CI-C2) (Fl +F
2) When the difference in /R2, that is, the elasticity CI of the A and B regions, and C2 is large, Δθ becomes large, and a change corresponding to this elongation occurs repeatedly in the revolution period. Note that the revolution period of the belt is expressed as L/v, where V is the circumferential speed of the belt and L is the total length of the belt. As a result, when the belt transmission mechanism is in operation, torsional vibration with an amplitude of 603 frequency v/L as shown in Fig. 1θ occurs on the shaft on the driven side. The vibration frequency in this case is - for example, belt length 1.
Calculating a belt transmission mechanism with a pulley diameter of 5 m and a pulley diameter of 150 mm, the rotational speed is 200 Or, p, m.
So 10.511z, 4000r, p, m is 21H
It becomes z. As mentioned above, when vibration occurs due to the difference in belt elongation during operation, the natural frequency of the rotating shaft, gears, etc. that make up the transmission mechanism is the excitation frequency generated from the heald mentioned above. If they match, the resonance effect will result in large torsional vibrations, which will generate large noises, especially if there is a gear system. Furthermore, if the natural bending frequency of the rotary shaft of the pulley and the excitation frequency match and resonate, there is a risk of increased vibration and damage to the shaft. Now, the above description has been made regarding the case where there is only one belt, but in the case of a multi-belt in which multiple belts are wound in parallel as in an actual transmission device, the state of vibration becomes even more complicated. In other words, if two belts are passed parallel to each other on a pulley, the elastic distribution of each belt will be as shown in Fig. 11 or 12 depending on the relative positions of the two healds. (a) and (b) in the diagram
become that way. Among these, in the case of Fig. 11, the elasticities (a) and (b) of each belt are superimposed topologically, resulting in the composite elasticity of the two belts (c), and the maximum and minimum elasticity values are The difference between the values becomes larger. On the other hand, in the case of Figure 12, the elasticity distributions (a) and (b) cancel each other out topologically, so the composite elasticity is as shown in (c), and the difference between the maximum and minimum elasticity values becomes small. , averaged over the entire length. on the other hand,
As is well known, belts suffer from creep that occurs during operation.
It moves while slipping locally between the pulleys,
In this case, since the amount of slip varies depending on the individual heald, the relative position of each belt in the circumferential direction changes over time during actual operation, and the states shown in Figures 11 and 12 occur alternately and repeatedly. Become. As a result, torsional vibration whose amplitude changes with time occurs on the driven pulley shaft as shown in FIG. 13. Furthermore, as the number of belts used increases, more and more complex and irregular torsional vibrations occur, and the resulting vibration noise becomes a whirring noise, which gives a sense of anxiety to machine maintenance personnel.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、多
連ベルトにおいて上述のようにヘルドの製法上避は得な
い各ベルト固有の不均一な引張り弾性分布が原因となっ
て発生する励振力を巧みに抑制でき、るようにした多連
結台形伝動ヘルドを提供することを目的とする。
This invention was developed in view of the above points, and is designed to reduce the excitation force generated in multiple belts due to the uneven tensile elasticity distribution unique to each belt, which is unavoidable due to the heald manufacturing method as described above. It is an object of the present invention to provide a multi-connected trapezoidal power transmission heald which can be skillfully suppressed.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は第1図ないし第
3図で述べた手法により、個々のベルトについてその全
長に亙る引張り弾性分布を実測によりめ、この弾性分布
を基に多連ヘルドを構成する各ベルトにおける弾性の大
きな領域と小さな領域の位置をベルト相互II、で相殺
するように周方向へ偏位させることによって、多連ベル
ト全体での合成弾性分布を全長に亙ってほぼ均等化させ
るように各ベルト相互の相対位置を設定し、かつこの相
対位置を保持したまま連結手段を介して各ベルトを相互
一体に結合するようにし、運転時に発生ずる軸の捩り振
動、および2次的に住しる振動騒音を低減させるように
したものである。
In order to achieve the above object, the present invention actually measures the tensile elasticity distribution over the entire length of each belt using the method described in FIGS. By shifting the positions of large and small elastic regions in each of the constituent belts in the circumferential direction so as to offset each other, the composite elasticity distribution of the entire multi-belt can be made almost uniform over the entire length. The relative positions of the belts are set so that the belts are aligned with each other, and the belts are integrally connected to each other through the connecting means while maintaining this relative position, thereby reducing torsional vibration of the shaft that occurs during operation and It is designed to reduce vibration and noise in people's homes.

【発明の実施例】[Embodiments of the invention]

以下図示実施例に基づき、この発明の構成並びに組立手
順について述べる。 この発明による多連結金形伝動ヘルドを組立るには、ま
ず多連ベルトを構成する各ベルトについて、個々にその
全長に亙る引張り弾性分布を実測してめる。この手法の
原理については先に第1図ないし第3図で述べたが、実
際には一例として第14図に示すようなストロボスコー
プ方式の測定装置で実測される。図において9は駆動モ
ータ、10は被動負荷としてのフライホイール、11は
回転速度またはトルクを検出するピンクアップ、12は
測定器、13はその指示針、14はストロボである。 プーリ1と2の間にはあらかじめその弾性分布がわかっ
ている基準ベルト15が架は渡してあり、そのベルト上
には所定の位置にストロボ基準マーク15aが付しであ
る。ここで被検査ヘルド3の同上の複数箇所にチョーク
等でマーク3aを付けておき、1本ずつ基準ベルト15
と並べてプーリ1,2に架は渡し、モータ9を運転する
。この場合に、基準ベル)15と被検査ベルト3の弾性
分布が第11図のように位相的に一致しているときは、
ベルトの公転周波数の周期で変化する速度変動あるいは
トルク変動が大きく指示計13に現れる。逆に弾性分布
が第12図のように位相的に相殺するようにずれている
ときは、指示計13の指示は最小になる。この際にスト
ロボスコープの光源をヘルドの公転速度に同期させて明
滅させ、ベルト15の基準マーク15aと被検査ヘルド
3のマーク3aの相対位置を検出することにより、基準
ベル!−15の弾性分布を基準にこ“れと対比して被検
査ベルト3の弾性分布がめられる。また、ここで後記の
ベルト組立作業のために弾性の最大、最小箇所の位置を
表す指示マークをベルト上に標記しておく。なお上記の
ストロボスコープ方式の他に、ロータリーエンコーダ方
式によって被検査ベルトの引張り弾性分布をめる方法も
ある。 次に上記測定法によってその弾性分布をめた個々のベル
トを用いて多連結台形伝動ヘルドを組立構成する手順に
ついて述べる。まず所定本数のベルトを並べ、各ベルト
ごとに前記工程で標記された弾性の大きい領域と小さい
領域を表す指示マークを頼りに、各領域が多連ベルト相
互間で位相的に一致しないように周方向に偏位させ、多
連ベルトとして各ベルトの合成弾性分布がベルトの全周
に亙ってほぼ均等となるようにベル1−相互間の相対位
置を決める。この場合に多連ベルトが2本のベルトで構
成される場合には、第15図のように各ベルト固有の弾
性分布Iと■の相互間で弾性最大箇所と最小箇所とが位
相的に一致して並ぶようにベルト相互の相対位置を決め
る。これにより2本のベルトの合成弾性分布はTで示す
ように全長しに亙って均一となる。同様に多連ベルトが
3本ヘルドからなる場合には、第16図のごとく各ベル
トについて固をの弾性分布1. Il、 IIIの合成
分布Tがベルト全長りに亙って均一となるようにベルト
を並べ替えてベルト相互の相対位置を設定する。 すなわち前記手法によるベルト相互の相対位置は丁度ベ
クトル合成の作図法と同様にして決められる。したがっ
て3本のベルトの個々の弾性分布およびその弾性値がま
ちまちであっても、上記した方法で適正な相対位置決め
を行うことにより、多連ベルトとしての合成弾性分布を
全に域に互ってほぼ均一化できることになる。 上記のようにして全長に亙る弾性分布が均一になるよう
に多連ベルトの各ベルト相対位置が決まったところで、
次にこの相対位置を保持したまま、連結手段を介して多
連^シト−1−構成する各ベルトの相互間を機械的に一
体結合し、これにより多連結台形伝動ベルトが組立構成
されることになる。 次に複数本のベルトをベル]・相互の相対位置を保持し
たまま一体結合する連結手段のいくつかの実施例を第1
7図ないし第20図に示す。各回において3I〜3■は
完配した弾性分布の均等化工程を経て周方向の相対位置
が決められた多連ベルトを構成する3本のベルトである
。かかるベルト3I〜3■の相対位置を保持して各ベル
トの相互を一体結合するために、第17図の実施例では
、連結手段としてベルト31〜3■にまたがり、その全
長に亙って背面側に幅の広いパックバンド16を貼着し
、このバンクパン1゛16を介して3本のヘルトヲ一体
結合している。なおこのバンクバンド16ば未加硫のも
のを各ベルトに重ねて加硫し、一体化することも可能で
ある。 第18図の実施例は、連結手段としてあらかじめ各ベル
ト31〜3■の背面に長手方向に沿って突出する歯列1
7を形成しておき、ベルト間の相対位置を決めた状態で
歯列付きの幅の広いバンクバンド18を各ベルト3I〜
3■の歯列17にまたがって係合被着し、これによりベ
ル)31〜3■を相互一体に結合したものである。この
実施例ではヘルドを1本単位で交換ないしは組替えるこ
とができ、先述のようにあらかじめ弾性分布測定結果を
基にベルトの周上に最大の弾性箇所と最小の弾性箇所を
表す指示マークを施しておくことにより、このマークを
頼りに使用先で多連結台形伝動ベルトの組立あるいは交
換を実施することも可能である。 第19図の実施例は、連結手段としてあらかじめ個々の
ベルト31〜3■にそれぞれ左右両側に突出する歯列1
7を形成しておき、ヘルド間の相対位置を設定した上で
歯列17同士を噛み合わせて一体結合したものであり、
この実施例でも第18図の実施例と同様に使用先で多連
結台形伝動ベルトの組立、あるいは交換が行える。 第20図の実施例は、各ベルト31〜3■の背面に長手
方向に沿って多数のねじ穴19をあけておき、ヘルド相
互の相対位置決めがなされた後に各ベルト31〜3mに
またがり、周上の複数箇所に連結片20をねし止め締結
して一体結合したものである。 以上の各実施例のように、複数本のヘルドを組合わせた
多連ベルトの弾性分布の均等化操作を行った後に、ベル
ト相互間の相対位置を保持したまま各ベルトの相互を連
結手段で一体結合したことにより、運転使用中に各ヘル
ド31〜3■がプーリとの間で別々にスリップすること
がなく、したがって常に多連ベルトとして合成弾性の均
等分布状態が維持されることになる。
The configuration and assembly procedure of the present invention will be described below based on the illustrated embodiments. In order to assemble the multi-connected metal transmission heald according to the present invention, first, the tensile elasticity distribution over the entire length of each belt constituting the multi-connected belt is actually measured. Although the principle of this method was previously described in FIGS. 1 to 3, it is actually measured using a stroboscope-type measuring device as shown in FIG. 14 as an example. In the figure, 9 is a drive motor, 10 is a flywheel as a driven load, 11 is a pink-up for detecting rotational speed or torque, 12 is a measuring device, 13 is an indicator thereof, and 14 is a strobe. A reference belt 15 whose elastic distribution is known in advance is stretched between the pulleys 1 and 2, and a strobe reference mark 15a is attached at a predetermined position on the belt. At this point, mark marks 3a are placed on the heald 3 to be inspected at multiple locations as described above with chalk, etc., and the reference belt 15 is placed one by one.
The frame is passed to the pulleys 1 and 2 in parallel, and the motor 9 is operated. In this case, when the elastic distributions of the reference belt 15 and the belt 3 to be inspected match in phase as shown in FIG.
Large speed fluctuations or torque fluctuations that change with the period of the revolution frequency of the belt appear on the indicator 13. On the other hand, when the elastic distributions are shifted so as to offset each other phasewise as shown in FIG. 12, the indication of the indicator 13 becomes minimum. At this time, the light source of the stroboscope is made to flicker in synchronization with the revolution speed of the heald, and the relative position of the reference mark 15a of the belt 15 and the mark 3a of the heald 3 to be inspected is detected. The elasticity distribution of the belt 3 to be inspected is determined based on the elasticity distribution of -15 as a reference and in comparison with this.In addition, for the belt assembly work described later, instruction marks indicating the positions of the maximum and minimum elasticity points are drawn. Mark it on the belt.In addition to the above-mentioned stroboscope method, there is also a method of measuring the tensile elasticity distribution of the belt to be inspected using a rotary encoder method.Next, the individual The following describes the procedure for assembling and configuring a multi-connected trapezoidal power transmission heald using belts.First, line up a predetermined number of belts, and using the instruction marks marked in the above process for each belt to indicate areas of high elasticity and areas of low elasticity, Belt 1 is offset in the circumferential direction so that each region does not match in phase between the multiple belts, and the composite elasticity distribution of each belt as a multiple belt is approximately equal over the entire circumference of the belt. -Determine the relative position between each other.In this case, if the multi-belt is composed of two belts, as shown in Figure 15, the point of maximum elasticity between I and ■, which is unique to each belt. The relative positions of the belts are determined so that the minimum point and the minimum point are aligned topologically.As a result, the composite elasticity distribution of the two belts becomes uniform over the entire length as shown by T.Similarly, When a multi-belt consists of three healds, as shown in Fig. 16, the elasticity distribution of each belt is determined so that the composite distribution T of Il and III is uniform over the entire length of the belt. The relative positions of the belts are set by rearranging the belts.In other words, the relative positions of the belts using the above method are determined in the same manner as the vector composition drawing method.Therefore, the individual elastic distributions of the three belts and their elastic values are Even if the elasticity distribution is uneven, by performing proper relative positioning using the method described above, the composite elasticity distribution of the multiple belt can be made almost uniform over the entire area. Once the relative position of each belt in the multi-belt is determined so that the elastic distribution is uniform,
Next, while maintaining this relative position, each of the belts constituting the multi-connection 1-1 is mechanically connected integrally with each other via a connecting means, thereby assembling and constructing a multi-connection trapezoidal power transmission belt. become. Next, several examples of connecting means for integrally connecting multiple belts while maintaining their relative positions are described in the first section.
This is shown in Figures 7 to 20. In each cycle, 3I to 3■ are three belts constituting a multiple belt whose relative positions in the circumferential direction are determined through a complete elastic distribution equalization process. In order to maintain the relative positions of the belts 3I to 3■ and to integrally connect the respective belts, in the embodiment shown in FIG. A wide pack band 16 is attached to the side, and the three healds are integrally connected via this bank pan 16. It is also possible to stack unvulcanized bank bands 16 on each belt and vulcanize them to integrate them. In the embodiment shown in FIG. 18, a tooth row 1 is provided in advance along the longitudinal direction on the back surface of each belt 31 to 3 as a connecting means.
7, and with the relative positions between the belts determined, a wide toothed bank band 18 is attached to each belt 3I~
The bells 31 to 3 are integrally connected to each other by being engaged with each other across the tooth rows 17 of the bells 3 and 3. In this embodiment, the healds can be replaced or rearranged one by one, and as mentioned earlier, indication marks are placed on the circumference of the belt to indicate the maximum elasticity points and the minimum elasticity points based on the elasticity distribution measurement results. By keeping these marks in mind, it is also possible to assemble or replace the multi-connected trapezoidal power transmission belt at the site of use, relying on this mark. In the embodiment shown in FIG. 19, a row of teeth 1 is provided in advance on each of the belts 31 to 3 as a connecting means, protruding on both the left and right sides.
7 is formed, and after setting the relative position between the healds, the tooth rows 17 are meshed with each other to be integrally connected,
In this embodiment, as in the embodiment shown in FIG. 18, the multi-connected trapezoidal power transmission belt can be assembled or replaced at the place of use. In the embodiment shown in FIG. 20, a large number of screw holes 19 are drilled along the longitudinal direction on the back surface of each belt 31 to 3. Connecting pieces 20 are fastened to a plurality of locations on the top to be integrally connected. As in each of the above embodiments, after performing an operation to equalize the elasticity distribution of a multi-belt that combines multiple healds, each belt is connected to each other by a connecting means while maintaining the relative position between the belts. Since they are integrally connected, each of the healds 31 to 3 will not slip separately between them and the pulley during operation, and therefore, an evenly distributed state of composite elasticity will always be maintained as a multiple belt.

【発明の効果】 以上述べたようにこの発明は、多連ベルトを構成する複
数本の各ベルトについて、その全長に亙る引張り弾性分
布を実測し、これを基に多連ベルトを組立構成する際に
は各ベルトの弾性の大きな領域と小さな領域とを相対的
に周方向へ偏位させることにより、多連ヘルドとしての
合成引張り弾性分布が全長に亙ってほぼ均等化されるよ
うに位置決め設定し、かつこの相対位置を保持したまま
連結手段により各ベルトを相互一体に結合して多連結台
形伝動ベルトを組立構成したものであり、したがってベ
ルトの製法上避は得ない各ヘルド固有の不均一な引張り
弾性を互いに補償し合って引張り弾性分布の均等な多連
結台形伝動ベルトを得ることができ、これによりベルト
の不均等な弾性分布が原因となってベルト伝動系に生じ
る捩り振動および2次的に派生する振動騒音を良好に抑
制できる優れた効果が得られる。
[Effects of the Invention] As described above, the present invention actually measures the tensile elasticity distribution over the entire length of each of the plurality of belts constituting the multiple belt, and based on this, when assembling and configuring the multiple belt. By relatively deviating the large and small elastic areas of each belt in the circumferential direction, the positioning is set so that the synthetic tensile elasticity distribution as a multiple heddle is almost equalized over the entire length. The multi-connected trapezoidal power transmission belt is constructed by integrally connecting each belt to each other by a connecting means while maintaining this relative position. Therefore, due to the manufacturing method of the belt, the inherent unevenness of each heddle is unavoidable. It is possible to obtain a multi-connected trapezoidal power transmission belt with an even tensile elasticity distribution by compensating for each other's tensile elasticities. This provides an excellent effect of suppressing the vibration noise derived from the vibration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベルト伝動機構の原理構成図、第2図はベルト
の展開図、第3図は第2図のベルトにおける引張り弾性
分布図、第4図ないし第6図は芯線コード入Vベルトを
製造工程順に示したコード巻装状態図、中間完成品の部
分Ijji面図、および完成ベルトの斜視断面図、第7
図ないし第9図はそれぞれ運転時に住しるベルトの伸び
の変化を表す説明図、第10図は1本ベルトによる運転
時に被動軸へ加わる捩り振動の波形図、第11図および
第12図はそれ・ぞれ2連ベルトの異なるベルト相対位
置における引張り弾性分布図、第13図は2連ベルトに
よる運転時に被動軸に加わる捩り振動の波形図、第14
図はストロボスコープ方式の引張り弾性分布測定装置の
構成図、第15図およg第16図はそれぞれ2連ベルト
および3連ベルトを対象としたこの発明によるベルト間
の相対位置決め手順を示す説明図、第17図ないし第2
0図はそれぞれこの発明によるベルト相互の連絡手段の
構成を示す異なる実施例の斜視断面図である。 1.2−プーリ、3,31〜3nt−g−ベルト、7−
 芯線コード、16−バンクバンド、17−歯列、18
−・歯付きバックバンド、2〇一連結片。 くづ亡・し、イ91J〉 才1図 寸2図 碑亭No− 牙3図 5.6 第4図 才5図 8 才6図 才9図 j10図 才11図 オフ2図 才13図 715図゛″“′1 ■ 第18図
Fig. 1 is a diagram of the principle configuration of the belt transmission mechanism, Fig. 2 is a developed view of the belt, Fig. 3 is a tensile elasticity distribution diagram of the belt in Fig. 2, and Figs. 4 to 6 are V-belts with core cords. A cord winding state diagram shown in the order of the manufacturing process, a partial Ijji side view of the intermediate finished product, and a perspective sectional view of the completed belt, No. 7
Figures 9 to 9 are explanatory diagrams showing changes in elongation of the belt during operation, Figure 10 is a waveform diagram of torsional vibration applied to the driven shaft during operation with one belt, and Figures 11 and 12 are Figure 13 is a diagram of the tensile elasticity distribution at different relative positions of the double belt, Figure 13 is a waveform diagram of torsional vibration applied to the driven shaft during operation with the double belt, Figure 14 is
The figure is a configuration diagram of a stroboscope-type tensile elasticity distribution measuring device, and Figures 15 and 16 are explanatory diagrams showing the relative positioning procedure between belts according to the present invention for double belts and triple belts, respectively. , Figures 17 to 2
FIG. 0 is a perspective sectional view of different embodiments showing the structure of communication means between belts according to the present invention. 1.2-pulley, 3,31~3nt-g-belt, 7-
Core wire cord, 16-bank band, 17-dentition, 18
-・Toothed back band, 20 pieces. Kuzutsu・shi,i91J〉 1st figure 2nd figure Heitei No. 3rd figure 5.6 4th figure 5th figure 8 10th figure 11th figure off 2nd figure 13th figure 715 Figure 18

Claims (1)

【特許請求の範囲】 1)複数本のベルトを並列して相互一体に結合してなる
多連結台形伝動ベルトであって、個々のベルトについて
実測によりめたヘルドの全長に亙る引張り弾性分布を基
に、各ベルトにおける引張り弾性の大きな領域と小さな
領域の位置をベルト相互の間で相対的に周方向へ偏位さ
せることにより、多連ベルトとしての合成引張り弾性分
布が全長に亘りほぼ均等になるように各ベルト相互間の
相対位置を定め、この相対位置を保持したまま連結手段
を介して各ベルトを相互一体に結合したことを特徴とす
る多連結台形伝動ベルト。 2、特許請求の範囲第1項記載のベルトにおいて、各ベ
ルトが芯線コード入りベルトであることを特徴とする多
連結台形伝動ベルト。 3)特許請求の範囲第1項記載のベルトにおいて、各ベ
ルトの周上には引張り弾性分布の実測でめた引張り弾性
の最大箇所と最小箇所を表す指示マーりが標記されてい
ることを特徴とする多連結台形伝動ベルト。 4)特許請求の範囲第1項記載のベルトにおいて、連結
手段として各ベルトの背面にまたがって全周に幅広のバ
ックバンドを貼着し、このバンクバンドを介して各ベル
トを相互一体に結合したことを特徴とする多連結台形伝
動ベルト。 5)特許請求の範囲第1項記載のベルトにおいて、連結
手段として各ベルトに背面に突出する歯列を形成すると
ともに、これら各ベルトの全周にまたがって歯列付きの
バンクバンドを係合被着し、このハックバンドを介して
各ベルトを相互一体に結合したことを特徴とする多連結
台形伝動ベルト。 6)特許請求の範囲第1項記載のヘルドにおいて、連結
手段として各ベルトの両側面に突出する歯列を形成し、
該歯列と歯列を噛み合わせて各ベルトを相互一体に結合
したことを特徴とする多連結台形伝動ベルト。 7)特許請求の範囲第1項記載のベルトにおいて、ベル
ト上の複数箇所で各ベルトの相互にまたがって連結片を
固定し、この連結片を介して各ベルトを相互一体に結合
したことを特徴とする多連結台形伝動ベルト。
[Claims] 1) A multi-connected trapezoidal power transmission belt formed by connecting a plurality of belts in parallel and integrally with each other, which is based on the tensile elasticity distribution over the entire length of the heald determined by actual measurements for each belt. In addition, by shifting the positions of the regions of large and small tensile elasticity in each belt relative to each other in the circumferential direction, the synthetic tensile elasticity distribution as a multiple belt becomes almost uniform over the entire length. A multi-connected trapezoidal power transmission belt characterized in that the relative positions of each belt are determined as follows, and the belts are integrally connected to each other via a connecting means while maintaining this relative position. 2. A multi-connected trapezoidal power transmission belt according to claim 1, wherein each belt is a core corded belt. 3) The belt according to claim 1, characterized in that on the circumference of each belt, indicator marks indicating the maximum and minimum points of tensile elasticity determined by actual measurement of the tensile elasticity distribution are marked. A multi-connected trapezoidal transmission belt. 4) In the belt according to claim 1, a wide back band is attached to the entire circumference across the back side of each belt as a connecting means, and each belt is integrally connected to each other via this bank band. A multi-connected trapezoidal power transmission belt characterized by: 5) In the belt according to claim 1, each belt is provided with a row of teeth protruding from the back side as a connecting means, and a bank band with a row of teeth is engaged over the entire circumference of each belt. A multi-connected trapezoidal power transmission belt characterized in that each belt is integrally connected to each other via the hack band. 6) In the heddle according to claim 1, a row of teeth protruding from both sides of each belt is formed as a connecting means,
A multi-connected trapezoidal power transmission belt characterized in that each belt is integrally connected to each other by meshing the tooth rows. 7) The belt according to claim 1, characterized in that connecting pieces are fixed across the belts at a plurality of locations on the belt, and the belts are integrally connected to each other via the connecting pieces. A multi-connected trapezoidal transmission belt.
JP21208983A 1983-11-11 1983-11-11 Multiple coupling type driving belt Granted JPS60104832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21208983A JPS60104832A (en) 1983-11-11 1983-11-11 Multiple coupling type driving belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21208983A JPS60104832A (en) 1983-11-11 1983-11-11 Multiple coupling type driving belt

Publications (2)

Publication Number Publication Date
JPS60104832A true JPS60104832A (en) 1985-06-10
JPS6260571B2 JPS6260571B2 (en) 1987-12-17

Family

ID=16616689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21208983A Granted JPS60104832A (en) 1983-11-11 1983-11-11 Multiple coupling type driving belt

Country Status (1)

Country Link
JP (1) JPS60104832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237647B2 (en) * 2002-01-29 2007-07-03 Jtekt Corporation Electric power steering apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353479U (en) * 1989-09-26 1991-05-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237647B2 (en) * 2002-01-29 2007-07-03 Jtekt Corporation Electric power steering apparatus
US7360624B2 (en) 2002-01-29 2008-04-22 Jtekt Corporation Electric power steering apparatus
US7413052B2 (en) 2002-01-29 2008-08-19 Jtekt Corporation Electric power steering apparatus
US7490696B2 (en) 2002-01-29 2009-02-17 Jtekt Corporation Electric power steering apparatus

Also Published As

Publication number Publication date
JPS6260571B2 (en) 1987-12-17

Similar Documents

Publication Publication Date Title
AU758487C (en) Power transmission belt using stabilized open mesh textile material in overcord for enhanced rubber penetration
US3756091A (en) Positive power transmission system
CA2391109C (en) Power transmission belt with tubular knit overcord
US4041789A (en) Belt drive including toothed belts and toothed pulleys of improved tooth configurations
US5507699A (en) Belt construction, the combination of the belt construction and a pulley and methods of making the same
CA1040887A (en) Positive drive belt system
US5746674A (en) Power transmission belt and method of producing the same
EP0514002B1 (en) V-ribbed belt
JPS6049788B2 (en) Synchronous belt and pulley drive
JPS60104832A (en) Multiple coupling type driving belt
JPS6252237A (en) Double-acting type positive driving power transmission belt
ITMI932497A1 (en) TIMING BELT TRANSMISSION FOR THE CONTROL OF DYNAMIC BALANCING SHAFTS IN ENDOTHERMAL MOTORS
GB2138535A (en) Drive belt
JPS63235032A (en) Manufacture control method for belt for continuously variable transmission
EP0339249B1 (en) Flexible belt and relative driving system
EP1815161A2 (en) Elastically extensible poly-v tansmission belt for driving accessories of an internal combustion engine
US3759112A (en) V-belt
JP2003121140A (en) Measuring method for free-state diameter of metal ring
JPH0676817B2 (en) Timing belts and belt transmissions
JPH07243483A (en) Transmission belt
JPS62200051A (en) Toothed belt
JP2693668B2 (en) Toothed belt and toothed belt transmission using the same
JP2000105188A (en) Friction coefficient-measuring device
US3533225A (en) Endless monoform belt
EP1630451A2 (en) Power transmission belt using stabilized open mesh textile material in overcord for enhanced rubber penetration