JPS60104728A - Purging for fuel oil in gas turbine - Google Patents

Purging for fuel oil in gas turbine

Info

Publication number
JPS60104728A
JPS60104728A JP21254283A JP21254283A JPS60104728A JP S60104728 A JPS60104728 A JP S60104728A JP 21254283 A JP21254283 A JP 21254283A JP 21254283 A JP21254283 A JP 21254283A JP S60104728 A JPS60104728 A JP S60104728A
Authority
JP
Japan
Prior art keywords
fuel
fuel oil
purge
oil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21254283A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
稔 吉田
Hidetora Kojima
児嶋 日出虎
Yoshihisa Namekawa
滑川 喜久
Takashi Miura
高 三浦
Noriyuki Mamura
間村 宣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP21254283A priority Critical patent/JPS60104728A/en
Publication of JPS60104728A publication Critical patent/JPS60104728A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent the sharp rise of combustion temperature by gradually purging fuel oil by gradually increasing the amount of purging air when the fuel oil in a fuel oil line is purged by air in the case when fuel gas is used in substitution for fuel oil. CONSTITUTION:When a gas turbine is driven by feeding fuel gas 26 in substitution for fuel oil 1 into a fuel injector 8, a solenoid valve 19 is excited by a control signal 25, after switching of fuel from oil to gas is performed, and a purge valve 22 is opened by the compressed air 11. After flow rate is controlled by allowing the purging air 20 to flow into a bypass 47 and a cushion tank 49 having orifices 48 and 51 on the upstream and downstream sides, said purging air is introduced into each fuel injector 8 through a manifold 23, and the residual oil is gradually purged. After the delay for a prescribed time on a timer 52, a solenoid valve 18 is excited to open a purge valve 50, and the amount of purging air is increased, and the residual oil is completely purged, and the top edge part of a fuel injection valve 31 is cooled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料油と燃料ガスとの切替運転ができるよう
に(燃料油と燃料ガスとの混合使用を含む)構成され/
ヒガスタービン設備において、燃料油の使用を停止して
燃料ガス運転に切シ替えた際の、燃料油ライン中の燃料
油をパージ空気によってパージする方法に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is configured to enable switching operation between fuel oil and fuel gas (including mixed use of fuel oil and fuel gas).
The present invention relates to a method for purging fuel oil in a fuel oil line with purge air when the use of fuel oil is stopped and the operation is switched to fuel gas operation in Hygas turbine equipment.

〔発明の背景〕[Background of the invention]

第1図は燃料油と燃料ガスによる2重燃料焚き可能な多
筒形燃焼器を有するカスタービンの燃料及びパージ系統
を示す系統図であり、第2図は2重燃料焚用燃料噴射装
置と燃焼器との組合せを示した詳細図である。(第1図
参照)燃料油焚きの場合、燃料油1は、燃料遮断弁2を
通り燃料ポンプ3によシ昇圧され、燃料流量調整弁4に
よって流量制御され燃料油フィルタ5を通り燃料分配器
6によシ等分に分配された後、燃料油逆止弁7を通9各
燃料噴射装置8に導かれる。一方、タービン圧縮機(図
示せず)より抽出された圧縮電気11は、噴霧空気圧縮
機13によって一定温度に調整され、噴霧空気圧縮機1
4で圧縮され燃料噴霧空気12として噴霧空気マニホー
ルド15より各燃料噴射装置8に導かれる。
Fig. 1 is a system diagram showing the fuel and purge system of a cast turbine having a multi-cylinder combustor capable of dual fuel combustion using fuel oil and fuel gas, and Fig. 2 shows the fuel injection system for dual fuel combustion and the purge system. FIG. 3 is a detailed diagram showing a combination with a combustor. (See Figure 1) In the case of fuel oil firing, the fuel oil 1 passes through a fuel cutoff valve 2, is pressurized by a fuel pump 3, is controlled in flow rate by a fuel flow rate adjustment valve 4, passes through a fuel oil filter 5, and is sent to a fuel distributor. After being equally distributed among the fuel oil 6, the fuel oil is led to each fuel injection device 8 through a check valve 7. On the other hand, compressed electricity 11 extracted from a turbine compressor (not shown) is adjusted to a constant temperature by a spray air compressor 13.
4 is compressed and guided as fuel atomizing air 12 from an atomizing air manifold 15 to each fuel injection device 8 .

(第2図参照)燃料噴射装置8に導〃)れた燃料油1は
、燃料噴射装置内部の燃料油通路32全通シ燃料噴射弁
31へ導かれ、噴霧空気通路34全通って導かれた燃料
噴霧空気によって微細化されて燃料噴射口35よシ燃焼
器内筒10へ噴霧され燃焼する。
(See Fig. 2) The fuel oil 1 introduced into the fuel injection device 8 is guided through the entire fuel oil passage 32 inside the fuel injection device to the fuel injection valve 31, and then through the entire atomizing air passage 34. The fuel is atomized by the atomized fuel air and sprayed into the combustor inner cylinder 10 through the fuel injection port 35, where it is combusted.

燃料油から燃料ガスへ燃料切替を行なう場合、燃料切替
操作により第1図に示したガス遮断弁27が開き、燃料
ガス26は、ガス流量制御弁28によって流量全調節さ
れガスマニホールド29よシ各燃料噴射装@8へ導かれ
、第2図に示す燃料ガス通路33を通シガス噴射口36
より燃焼器内筒10へ噴射δれゐ。一方、燃料油1の流
量は、第1図に示した燃料流′i]を調整弁4によって
仄第に減少せられ、完全に燃料ガス運転に切替後、燃料
遮断弁2が閉じられる。同時に、電磁弁制御信号25に
よって電磁弁(A)18が励磁され圧縮空気11によシ
噴霧空気バイパス弁17が開き、燃料噴霧空気12は唄
霧窒気バイパスライン16へバイパス芒れる。また、電
磁弁(B)19も励磁嘔れ、パージ弁22が開き、パー
ジ空気2oは、バー シフ4 ルl 21 kym’)
 パージマニホールド23よりパージ逆止弁24を通シ
各燃料噴射装置8へ導かれ、第2図に示した燃料油通路
32及び燃料噴射弁31内にIAla¥している燃料油
k パージし、燃料油の炭化による燃料噴射弁31及び
燃料油通路32の詰まりを防止し、燃料噴射弁31の先
端部の冷却を行なうものである。
When switching the fuel from fuel oil to fuel gas, the fuel switching operation opens the gas cutoff valve 27 shown in FIG. The fuel gas is guided to the fuel injection device @ 8 and passes through the fuel gas passage 33 shown in FIG.
Injected into the combustor inner cylinder 10 from δ. On the other hand, the flow rate of the fuel oil 1 is slightly reduced by the regulating valve 4, and the fuel cutoff valve 2 is closed after the fuel gas operation is completely switched to the fuel gas operation. At the same time, the solenoid valve (A) 18 is energized by the solenoid valve control signal 25, and the compressed air 11 opens the atomizing air bypass valve 17, so that the fuel atomizing air 12 is bypassed to the atomizing nitrogen bypass line 16. In addition, the solenoid valve (B) 19 is also energized, the purge valve 22 is opened, and the purge air 2o is released.
The purge manifold 23 passes the purge check valve 24 to each fuel injection device 8, and the fuel oil flowing into the fuel oil passage 32 and fuel injection valve 31 shown in FIG. This prevents clogging of the fuel injection valve 31 and fuel oil passage 32 due to carbonization of oil, and cools the tip of the fuel injection valve 31.

第3図は、燃料切替時の時間に対する各変化を示したも
ので、カスタービンへ入る燃料油による熱量41、燃料
ガスによる熱量42、ガスタービン負荷45、及び、パ
ージ窒気量43の各変化を示している。燃料切替開始時
点t1の後、タービンへ入る熱量を一定に維持しながら
、燃料油を減少させ、燃料ガスを増加させ、燃料ガス1
00%になった時点t2で燃料切替終了となる。燃料切
替終了後ただちに13時点でパージ弁22を開いてパー
ジ開始され、パージ空気が流れるが、燃料噴射装置8内
部に残留している燃料油が瞬時にパージされて燃焼する
ため、燃焼温度が急上昇し、急激な負荷変動46が生じ
る。このため、タービン高温部品の損傷及び寿命低下を
引き越こし、燃料切替時の負荷が大きい場合、排気温度
の急上昇によりタービントリップに至る危険がある。上
記の危険性を回避しようとすると、従来技術においては
、ガスタービンの高負荷範囲において燃料油から燃料ガ
スへの切換ができなかった。
FIG. 3 shows changes over time during fuel switching, and changes in the amount of heat 41 due to fuel oil entering the cast turbine, the amount of heat 42 due to fuel gas, the gas turbine load 45, and the amount of purge nitrogen 43. It shows. After the fuel switching start time t1, while maintaining the amount of heat entering the turbine constant, the amount of fuel oil is decreased and the amount of fuel gas is increased, and the amount of fuel gas 1 is increased.
Fuel switching ends at time t2 when it reaches 00%. Immediately after the fuel switching ends, the purge valve 22 is opened at time 13 to start purging, and purge air flows, but the fuel oil remaining inside the fuel injection device 8 is instantly purged and combusted, so the combustion temperature rises rapidly. However, sudden load fluctuations 46 occur. Therefore, if the load at the time of fuel switching is large, there is a risk that the turbine trip will occur due to a sudden rise in exhaust temperature, which will cause damage and shortened lifespan of the high-temperature parts of the turbine. In order to avoid the above-mentioned danger, in the prior art, it has not been possible to switch from fuel oil to fuel gas in the high load range of the gas turbine.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、その目的
とするところは、パージ開始時における急激な燃焼温度
上昇およびこれに伴う負荷変動を防止し得るパージ方法
を提供し、タービン篩温部品の損傷防止並びにガスター
ビン設備の信頼性向上に貞献しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a purge method that can prevent a sudden rise in combustion temperature at the start of purge and the accompanying load fluctuation, and to The aim is to prevent damage to parts and improve the reliability of gas turbine equipment.

〔発明の概要〕[Summary of the invention]

上記の目的ta成するため、本発明の方法は、燃料油と
燃料ガスとを選択的に使用し得るガスタービン設備にお
いて、燃料油による運転から燃料ガスによる運転に切り
替えた匝後、燃料油ラインに供給するパージ免気量を、
流量調整手段によシ徐々に増加せしめ、燃料油ラインに
残留している燃料を徐々にパージして、パージ開始時に
おける燃焼温度の急上昇を防止すること全特徴とする。
In order to achieve the above-mentioned object, the method of the present invention, in gas turbine equipment that can selectively use fuel oil and fuel gas, connects the fuel oil line after switching from operation using fuel oil to operation using fuel gas. The amount of purge gas supplied to
The present invention is characterized in that the flow rate is gradually increased by the flow rate adjusting means, and the fuel remaining in the fuel oil line is gradually purged, thereby preventing a sudden rise in combustion temperature at the start of purging.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明方法を実施するためにイ;4成した燃料
及びパージ系統図のトレリを示し、本図は第1図(従来
装置)に鎖線で囲んだA部分に対応する。
FIG. 4 shows a trellis of a fuel and purge system diagram constructed in order to carry out the method of the present invention, and this figure corresponds to part A surrounded by a chain line in FIG. 1 (prior device).

本第4図に分いて、パージ弁22の下流側に、パージ斤
(A)50及び、クツジョンタンク49とその前後のオ
リフィス(A)481,4リフイスDS)51からなる
パージバイパスライン全設置してめシ、さらに、電磁弁
(A)18への電磁弁制御信号25ラインにタイマ52
を設置しである。
As shown in Fig. 4, a purge bypass line consisting of a purge tank (A) 50, a cushion tank 49, and orifices (A) 481, 4 ref. Furthermore, a timer 52 is connected to the solenoid valve control signal 25 line to the solenoid valve (A) 18.
It is installed.

上記の各構成機器は自kjJJ1ulJ御装置(図示せ
ず)により欠配の如く作動せしめられる。この装置を用
いて本発明方法によるパージ操作全行う場合、油からガ
スに燃料切替後、電磁弁制御信号25により電磁弁(B
)19が励磁されパージ弁22が開くと、パージ空気2
0は、パージバイパスライン47へ尋かれ、オリフィス
(A)48、クッションタン′り49、オリフィス(B
)51によって流1jiilJ呻され、パージマニホー
ルド23から各燃料噴射装a8に導かれ、残留している
燃料油を徐々にパージする。残留燃料油パージ後、タイ
マ52で遅延された電磁弁制御信号によシミ磁升(A)
18が励磁されパージ弁(A)5(l開き、パージ空気
量を増加させ残留燃料油を完全にパージするとともに燃
料噴射弁31の先端部を冷却する。
Each of the above-mentioned components is operated as if they were not provided by a control device (not shown). When performing all purge operations according to the method of the present invention using this device, after switching the fuel from oil to gas, the solenoid valve control signal 25 is used to control the solenoid valve (B
) 19 is energized and the purge valve 22 opens, the purge air 2
0 is connected to the purge bypass line 47, orifice (A) 48, cushion tongue 49, orifice (B).
) 51 and is guided from the purge manifold 23 to each fuel injection device a8 to gradually purge the remaining fuel oil. After purging residual fuel oil, the solenoid valve control signal delayed by timer 52 causes stains (A).
18 is energized, purge valve (A) 5 (1) opens, increases the amount of purge air, completely purges the residual fuel oil, and cools the tip of the fuel injection valve 31.

第5図は、上記の実施例の燃料切替時の時間に対する変
化を示したもので、パージ開始時点t3後のパージ空気
量変化56が小さくなっているため残留燃料油パージ流
量55の変化が小さくなり、燃焼温度の急激な上昇が防
止され、タービン負荷&!!!1(B)53も小さくな
る。タイマセット時間T k/AwI燃料油のパージに
要する時間以上に設定しておくと、時間Tを経過した時
点t4でパージ弁(A)が開かれてパージ空気が増加し
ても、タービン負荷変動は生じない。このため、全負荷
範囲で燃料油から燃料ガスへの円滑な切替が可能となる
FIG. 5 shows the change over time at the time of fuel switching in the above embodiment, and since the purge air amount change 56 after the purge start time t3 is small, the change in the residual fuel oil purge flow rate 55 is small. This prevents a sudden rise in combustion temperature, reducing turbine load &! ! ! 1(B)53 also becomes smaller. If the timer set time Tk/AwI is set to be longer than the time required to purge fuel oil, even if the purge valve (A) is opened at time t4 after time T and the purge air increases, the turbine load will fluctuate. does not occur. Therefore, smooth switching from fuel oil to fuel gas is possible over the entire load range.

従来方法によってパージ操作した場合、第3図の13時
点におけるパージ空気量43の立上が9カーブは、零か
ら定常値Qまでの所要時間は1/10秒オーダーであっ
た。本実施例(第5図)に2いては図示の時間Tを4秒
間に設定することにより、負荷変動カーブ53の増71
11iが事実上無視できるS[に減少した。
When the purge operation was performed by the conventional method, the time required from zero to the steady-state value Q was on the order of 1/10 seconds when the purge air amount 43 rose at time 13 in FIG. In this embodiment (FIG. 5), by setting the illustrated time T to 4 seconds, the load fluctuation curve 53 increases 71.
11i has been reduced to virtually negligible S[.

本発明者らの実験によれば、上記Tの時間を種種に変化
させた場合、この時間が1秒以下では、高負荷状態にお
けるパージ操作に危険を伴う。そして、この時間T’に
1秒間以上とすることによシ負荷変動の著しい改善(減
少)が認められる。
According to experiments conducted by the present inventors, when the time T is varied, if this time is less than 1 second, there is a danger in the purge operation under high load conditions. By setting this time T' to 1 second or more, a significant improvement (reduction) in load fluctuation is observed.

使って、本発明においてパージ空気tt’を徐々に増加
させるとは、流量零から定常流量に達する間の時間を1
秒間以上とする意である。この時間について技術的制約
による上限は特定されない。
In the present invention, gradually increasing the purge air tt' means increasing the time from zero flow rate to steady flow rate by 1.
It is meant to be more than a second. No upper limit is specified for this time due to technical constraints.

第6図は本発明方法の上記と異なる実施例のために構成
した燃料及びパージ系統図の1例である。
FIG. 6 is an example of a fuel and purge system diagram constructed for a different embodiment of the method of the present invention.

本例4′よ、パージ空気量を制御するため、パージライ
ンに流量制御弁59−t−設けたもので、本図は、従来
装置(第1図)に鎖線で示した8部分に対応する。
In this example 4', a flow control valve 59-t- is provided in the purge line to control the amount of purge air, and this figure corresponds to the 8 parts shown by chain lines in the conventional device (Figure 1) .

この装置を用いて本発明方法を実施する1例を述べると
、流量制御信号61によって制御弁駆動装置60を介し
てパージ空気用の流量制御弁59を徐開せしめる。即ち
、全開状態から1秒間以上かかつて全開せしめる。これ
によりパージ空気量が徐々に増加し、残留燃料油が徐々
に(1秒以上かけて)パージされ、前例と同一の効果が
得られる。
An example of implementing the method of the present invention using this device is to gradually open the purge air flow control valve 59 via the control valve drive device 60 in response to the flow control signal 61. That is, it is fully opened for more than one second from the fully open state. As a result, the amount of purge air is gradually increased, and the residual fuel oil is gradually purged (over 1 second), achieving the same effect as in the previous example.

第7図は更に異なる実施例を説明するために、パージ空
気流量の時間的変化を示した図表である。
FIG. 7 is a chart showing temporal changes in the purge air flow rate in order to explain a further different embodiment.

この実施例においては、パージ開始時点t3がら、パー
ジ空気流量が定常値Qとなる時点t4までの間に、0 
< Q <Q tkる空気流1fqを流して段階的に増
加させている。これによっても前例と同様の効果が得ら
れる。本発明において徐々に増加させるとは、パージ開
始からパージ空気流量が定常値となるまでの間に1秒間
以上’li装置くことであってこの時間内にνける増加
は直線的でりりでも、曲線的であっても、階段状であっ
てもよい。
In this embodiment, from the purge start time t3 to the time t4 when the purge air flow rate reaches the steady value Q,
<Q <Q tk airflow 1fq is flown and increased stepwise. This also provides the same effect as the previous example. In the present invention, "gradually increasing" means that the purge air flow rate is kept on for more than 1 second from the start of purge until the purge air flow rate reaches a steady value. It may be curved or stepped.

〔発明の効果] 以上詳述したように、本発明のパージ方法は、燃料油と
燃料ガスとを選択的に使用し爵るガスタービン設備にお
いて、燃料油による運転から燃料ガスによる運転に切り
替えた直後、燃料油ラインに供給するパージ空気瀘會、
流量調整手段によシ徐々に増加せしめ、燃料油ラインに
残留している燃料を徐々にパージして、パージ開始時に
おける燃焼温度の急上昇を防止することにより、パージ
開始時における急激な燃焼温度上昇、及び、これに伴う
負荷変動を防止することができ、高負荷状態においても
燃料油から燃料ガスへの切換を安全に行い得るという優
れfc実用的効果を奏し、ガスタービン設備の信頼性向
上に貢献するところ多大である。
[Effects of the Invention] As detailed above, the purging method of the present invention can switch from operation using fuel oil to operation using fuel gas in gas turbine equipment that selectively uses fuel oil and fuel gas. Immediately after, the purge air filter that supplies the fuel oil line,
By gradually increasing the flow rate using the flow rate adjustment means and gradually purging the fuel remaining in the fuel oil line to prevent a sudden rise in combustion temperature at the start of purge, a sudden rise in combustion temperature at the start of purge can be prevented. , and the accompanying load fluctuations can be prevented, and the switch from fuel oil to fuel gas can be safely performed even under high load conditions.It has excellent fc practical effects and improves the reliability of gas turbine equipment. There is a lot to contribute.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料油と燃料ガスによる2重燃料焚き可能な多
筒形燃焼器を有する従来のガスタービンの燃料及びパー
ジ系統図、第2図は2重燃料焚用燃料噴射装置と燃焼器
とを組合せた詳細図、第3図は従来の燃料切替時の時間
に対する各変化を示した図、第4図は本発明の1実施例
を説明するための燃料及びパージ系統図、第5図は上記
の実施例における燃料切替時の時間に対する各変化を示
した図、第6図は本発明の応用例を示したもので、燃料
油ラインのパージ空気流域全流量制御弁によって行なう
場合のパージ系統図、第7図は更に異なる実施例f:説
明するためのパージ空気流量変化を示す図表でおる。 1・・・燃料油、2・・・燃料遮断弁、3・・・燃料ポ
ンプ、4・・・燃料流量調整弁、5・・・燃料油フィル
ター、6・・・燃料分配器、7・・・燃料油逆止弁、8
・・・燃料噴射装置、9・・・燃焼器外筒、10・・・
燃焼器内筒、11・・・圧縮空気、12・・・燃料噴霧
空気、13・・・噴霧空気冷却器、14・・・噴霧空気
圧縮機、15・・・噴霧空気マニホールド、16・・・
噴霧空気バイパスライン、17・・・噴霧空気バイパス
弁、18・・・電磁弁(A)、19・・・電磁弁(B)
、20・・・パージ空気、21・・・パージフィルター
、2.2・・・パージ弁、23・・・パージマニホール
ド、24・・・パージ辿止弁、25・・・電#P制御信
号、26・・・燃料ガス、27・・・ガス遮断弁、28
・・・ガス流量制御弁、29・・・ガスマニホールド、
30・・・冷却水、31・・・燃料噴射弁、32・・・
燃料油通路、33・・・燃料ガス通路、34・・・噴霧
空気通路、35・・・燃料噴射口、36・・・カス噴射
口、37・・・圧縮機吐出空気、41・・・燃料油にL
/)熱量、42・・・燃料ガスによる熱量、43・・・
パージ空気量、44・・・伐′d燃料油、45・・・ノ
Jスタービン負荷、46・・・急激な負荷変動、47・
・・パージバイパスライン、48・・・オリフィス(A
)、49・・・クッションタンク、50・・・パージ弁
(A)、51・・・オリフィス(B)、52・・・タイ
マー、5.3・・・負荷変動(B)、55・・・残留燃
料油パージ流通、56・・・ノく一ジ仝気流瀘、57・
・・パージ弁(A)開時、59・・・流量制御弁、60
・・・制御弁駆動装置、61・・・流電制碑領号。 代理人 弁理士 秋本正実 第 l 日 lV 2と 29 第2図 茅50 第 6 図 二 ↑ 1 第 7 口 第1頁の続き [相]発 明 者 三 浦 高 日立市幸町:内 @発明者 間材 宣之 日立市会瀬艮 ング株式会ネ ミ丁目1番1号 株式会社日立製作所日立工場丁2丁目
9番1号 日立サービスエンジニアリド内
Figure 1 is a fuel and purge system diagram of a conventional gas turbine with a multi-tube combustor capable of dual fuel firing of fuel oil and fuel gas, and Figure 2 is a diagram of the fuel injection system and combustor for dual fuel firing. FIG. 3 is a diagram showing various changes over time during conventional fuel switching, FIG. 4 is a fuel and purge system diagram for explaining one embodiment of the present invention, and FIG. FIG. 6, which is a diagram showing each change over time during fuel switching in the above embodiment, shows an application example of the present invention, and shows a purge system in which the purge air region of the fuel oil line is controlled by a full flow rate control valve. FIG. 7 shows a further different embodiment f: a chart showing changes in the purge air flow rate for explanation. DESCRIPTION OF SYMBOLS 1...Fuel oil, 2...Fuel cutoff valve, 3...Fuel pump, 4...Fuel flow rate adjustment valve, 5...Fuel oil filter, 6...Fuel distributor, 7...・Fuel oil check valve, 8
...Fuel injection device, 9...Combustor outer cylinder, 10...
Combustor inner cylinder, 11... Compressed air, 12... Fuel atomizing air, 13... Atomizing air cooler, 14... Atomizing air compressor, 15... Atomizing air manifold, 16...
Atomizing air bypass line, 17... Atomizing air bypass valve, 18... Solenoid valve (A), 19... Solenoid valve (B)
, 20... Purge air, 21... Purge filter, 2.2... Purge valve, 23... Purge manifold, 24... Purge trace valve, 25... Electric #P control signal, 26...Fuel gas, 27...Gas cutoff valve, 28
...Gas flow control valve, 29...Gas manifold,
30...Cooling water, 31...Fuel injection valve, 32...
Fuel oil passage, 33... Fuel gas passage, 34... Spraying air passage, 35... Fuel injection port, 36... Waste injection port, 37... Compressor discharge air, 41... Fuel L in oil
/) Calorific value, 42... Calorific value due to fuel gas, 43...
Purge air amount, 44...Fuel oil, 45...J turbine load, 46...Rapid load fluctuation, 47.
... Purge bypass line, 48... Orifice (A
), 49... Cushion tank, 50... Purge valve (A), 51... Orifice (B), 52... Timer, 5.3... Load fluctuation (B), 55... Residual fuel oil purge distribution, 56...Kuichiji airflow filter, 57.
... When purge valve (A) is open, 59 ... Flow rate control valve, 60
... Control valve drive device, 61... Current control monument area. Agent Patent Attorney Masami Akimoto No. 1 Day 1V 2 and 29 Fig. 2 Kaya 50 Fig. 2 ↑ 1 No. 7 Continuation of page 1 [Phase] Inventor Takashi Miura Saiwai-cho, Hitachi City: Inventor Nobuyuki Mazai Hitachi City Kaisei Co., Ltd. Nemi-chome 1-1 Hitachi, Ltd. Hitachi Factory Chome 2-9-1 Hitachi Service Engineer Lido

Claims (1)

【特許請求の範囲】[Claims] 1、燃料油と燃料ガスとを選択的に使用し得るガスター
ビン設備において、燃料油による運転から燃料ガスによ
る運転に切シ替えた直後、燃料油ラインに供給するパー
ジ望気量を、流量調整手段により徐々に増加せしめ、燃
料油ラインに残留している燃料を徐々にパージして、パ
ージ開始時における燃焼温度の急上昇を防止することを
%徴とするガスタービンの燃料油パージ方法。
1. In gas turbine equipment that can selectively use fuel oil and fuel gas, immediately after switching from operation using fuel oil to operation using fuel gas, adjust the flow rate of the desired purge air amount supplied to the fuel oil line. A method for purging fuel oil in a gas turbine, the method comprising: gradually increasing the fuel oil percentage by increasing the percentage of fuel remaining in the fuel oil line, and gradually purging the fuel remaining in the fuel oil line to prevent a sudden increase in combustion temperature at the start of purge.
JP21254283A 1983-11-14 1983-11-14 Purging for fuel oil in gas turbine Pending JPS60104728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21254283A JPS60104728A (en) 1983-11-14 1983-11-14 Purging for fuel oil in gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21254283A JPS60104728A (en) 1983-11-14 1983-11-14 Purging for fuel oil in gas turbine

Publications (1)

Publication Number Publication Date
JPS60104728A true JPS60104728A (en) 1985-06-10

Family

ID=16624399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21254283A Pending JPS60104728A (en) 1983-11-14 1983-11-14 Purging for fuel oil in gas turbine

Country Status (1)

Country Link
JP (1) JPS60104728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054610A1 (en) * 1998-04-17 1999-10-28 Pratt & Whitney Canada Corp. Anti-coking fuel injector purging device
EP0949454A3 (en) * 1998-04-09 2000-01-26 General Electric Company Liquid fuel and water injection purge systems for a gas turbine
GB2348675A (en) * 1999-02-26 2000-10-11 Honda Motor Co Ltd Changing combustion modes in gas turbine engine
US6385975B1 (en) 1998-05-08 2002-05-14 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
FR2989736A1 (en) * 2012-04-18 2013-10-25 Ge Energy Products France Snc METHOD FOR PURGING A GAS TURBINE
CN104373220A (en) * 2013-08-15 2015-02-25 西门子公司 Purge system for gas turbine, and method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949454A3 (en) * 1998-04-09 2000-01-26 General Electric Company Liquid fuel and water injection purge systems for a gas turbine
US6145294A (en) * 1998-04-09 2000-11-14 General Electric Co. Liquid fuel and water injection purge system for a gas turbine
WO1999054610A1 (en) * 1998-04-17 1999-10-28 Pratt & Whitney Canada Corp. Anti-coking fuel injector purging device
US6385975B1 (en) 1998-05-08 2002-05-14 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
US6385961B2 (en) 1998-05-08 2002-05-14 Mitsubishi Heavy Industries, Ltd. Purging air supply system for a gas turbine
US6389795B1 (en) 1998-05-08 2002-05-21 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
US6393827B1 (en) 1998-05-08 2002-05-28 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
EP0955457A3 (en) * 1998-05-08 2002-07-17 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system
GB2348675A (en) * 1999-02-26 2000-10-11 Honda Motor Co Ltd Changing combustion modes in gas turbine engine
GB2348675B (en) * 1999-02-26 2003-03-05 Honda Motor Co Ltd Gas turbine engine
FR2989736A1 (en) * 2012-04-18 2013-10-25 Ge Energy Products France Snc METHOD FOR PURGING A GAS TURBINE
CN104373220A (en) * 2013-08-15 2015-02-25 西门子公司 Purge system for gas turbine, and method thereof

Similar Documents

Publication Publication Date Title
US5540045A (en) Steam injection system for a combustion turbine gas generator
US7104070B2 (en) Liquid fuel nozzle apparatus with passive water injection purge
US6145318A (en) Dual orifice bypass system for dual-fuel gas turbine
KR100705858B1 (en) Liquid fuel and water injection purge systems and method for a gas turbine having a three-way purge valve
JP3333407B2 (en) Fuel supply system for direct injection gasoline internal combustion engine
JPH11324715A (en) Liquid fuel for gas turbine and waer injection purge system
JP5701215B2 (en) Water effluent and exhaust system and method for turbine liquid fuel circuit
US20060248897A1 (en) Method for operating a power plant
EP1124047B1 (en) Dual-orifice bypass system for duel-fuel gas turbine
JP4220352B2 (en) Fuel supply system for liquefied gas engine
JPS60104728A (en) Purging for fuel oil in gas turbine
JP4206908B2 (en) Gas turbine combustor
JP2856860B2 (en) Gas turbine equipment
US5771848A (en) Device for feeding liquid fuel to a diesel-type I.C. engine
JP3746545B2 (en) Gas turbine nozzle purge method
FR2461113A1 (en) APPARATUS FOR CONTROLLING THE CIRCULATION OF FUEL IN THE CIRCUIT OF A DIESEL ENGINE
JPH04214931A (en) Gas turbine facility
KR20150134514A (en) Apparatus and method for supplying fuel using egr cooler
JPH08200096A (en) Fuel supply device of gas turbine equipment for power generation
JPH04155108A (en) Control method of proportional combustion in kerosene type hot water maker
JPH0715266B2 (en) Fuel injection device for vehicle gas turbine
JPH1089185A (en) Fuel injection device of gasoline engine
CN116517700A (en) Micro turbojet engine ignition system and ignition method
JPH05125958A (en) Liquid fuel supply device
JP4378666B2 (en) Engine liquefied gas supply device