JPS60104422A - Supporting method of internal-combustion engine for cylinder number control vehicle - Google Patents

Supporting method of internal-combustion engine for cylinder number control vehicle

Info

Publication number
JPS60104422A
JPS60104422A JP21207583A JP21207583A JPS60104422A JP S60104422 A JPS60104422 A JP S60104422A JP 21207583 A JP21207583 A JP 21207583A JP 21207583 A JP21207583 A JP 21207583A JP S60104422 A JPS60104422 A JP S60104422A
Authority
JP
Japan
Prior art keywords
cylinder operation
combustion engine
spring constant
vibration isolating
isolating rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21207583A
Other languages
Japanese (ja)
Inventor
Kohei Hori
堀 弘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21207583A priority Critical patent/JPS60104422A/en
Publication of JPS60104422A publication Critical patent/JPS60104422A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions

Abstract

PURPOSE:To reduce rolling due to exchange of operating condition by supporting an internal-combustion engine through a vibration isolating rubber having constant spring constant, thereby assuring proper dynamic spring constant suitable for both partial cylinder operation and full-cylinder operation. CONSTITUTION:A part of multi-cylinders is operated or partial cylinder operation is executed (by means of independent controller) under idling and low speed light load operation where the internal-combustion engine is secured through bolts 3 while an open path 11 of vibration isolating rubber equipment 32 to be secured through bolts 4 will open toward the chassis frame to provided low dynamic spring constant. While full-cylinder operation is performed under load operation at the start and acceleration to close said path 11 thus to increase the dynamic spring constant of said vibration isolating rubber equipment and to increase the viscosity damping factor resulting in effective reduction of engine shake or rolling.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車等の車輌に用いられる気筒制御式内燃
機関を車体より支持する支持方法に係り、特に部分気筒
運転時と金気n運転時及び全気筒運転と部分気筒運転と
の運転状態の切換時の各々に於て内燃機関を防振上適切
に車体より支持りる支持方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a support method for supporting a cylinder-controlled internal combustion engine used in a vehicle such as an automobile from a vehicle body, and particularly relates to a support method for supporting a cylinder-controlled internal combustion engine used in a vehicle such as an automobile, particularly during partial cylinder operation, full-cylinder operation, and The present invention relates to a support method for appropriately supporting an internal combustion engine from a vehicle body in order to prevent vibrations when switching operating states between full cylinder operation and partial cylinder operation.

発明の背景 自動車等の車輌に用いられる内燃機関として、アイドル
運転乃至低負荷運転の如く機関負荷が小さい時には複数
個の気筒のうちの特定の気筒のみを用いた部分負荷運転
を行い、中乃至高負向運転の如く機関負荷が大きい時に
は前記複数個の気筒の全てを用いIj金気筒運転を行う
気筒fli制御ヱ(内燃機関のが従来にり知られている
BACKGROUND OF THE INVENTION As an internal combustion engine used in vehicles such as automobiles, when the engine load is small, such as during idling or low load operation, partial load operation is performed using only a specific cylinder out of a plurality of cylinders. When the engine load is large, such as during negative direction operation, cylinder fli control (for internal combustion engines) is conventionally known in which all of the plurality of cylinders are used to perform Ij cylinder operation.

上述の如き気筒制御式内燃機関に於ては、該内燃機関に
より励起される振動の周波数及び振動レベルが機関回転
数が同一であっても部分気筒運転時と全気筒運転時とで
異なり、このため内燃機関を車体より防振支持する防振
ゴム装置の最適特性が部分気筒運転時と全気筒運転時と
で異なり、部分気筒運転によるアイドル運転時にはアイ
ドル振動、騒音の原因になる低周波振動、小振幅振動が
有効に低減されるべく防振ゴム装置の動ばね定数が特に
小さいことが好ましく、これに対し全気筒運転による走
行運転時にはエンジンシェイクの如き大振幅振動を低減
すべく防振ゴム装置の動ばね定数及び減衰係数が大きい
ことが好ましい。
In the above-mentioned cylinder-controlled internal combustion engine, the frequency and vibration level of vibrations excited by the internal combustion engine differ between partial cylinder operation and full cylinder operation even if the engine speed is the same. Therefore, the optimal characteristics of the anti-vibration rubber device that supports the internal combustion engine from the vehicle body are different between partial-cylinder operation and full-cylinder operation, and during idle operation with partial cylinder operation, low-frequency vibrations that cause idle vibration and noise are generated. In order to effectively reduce small-amplitude vibrations, it is preferable that the dynamic spring constant of the vibration-isolating rubber device is particularly small.On the other hand, when driving with all cylinders operating, the vibration-isolating rubber device is used to reduce large-amplitude vibrations such as engine shake. It is preferable that the dynamic spring constant and damping coefficient of is large.

また上述の如き気筒制御式内燃機関に於ては、全気筒運
転と部分気筒運転との運転状態の切換時、特に急加速に
より部分気筒運転より全気筒運転への切換時に内燃機関
のトルク変動により内燃機関がローリング方向に大きく
揺動する、所謂しゃくりが生じ易い。このしゃくりを低
減づる1=めには防振ゴム装置の動ばね定数が大きく、
内燃機関のローリング方向の支持剛性が高いことが好ま
しい。
In addition, in the above-mentioned cylinder-controlled internal combustion engine, when switching between all-cylinder operation and partial-cylinder operation, especially when switching from partial-cylinder operation to all-cylinder operation due to sudden acceleration, torque fluctuations in the internal combustion engine The internal combustion engine is susceptible to large swings in the rolling direction, a so-called jerk. In order to reduce this jerk, the dynamic spring constant of the vibration isolating rubber device is large.
It is preferable that the supporting rigidity of the internal combustion engine in the rolling direction is high.

発明の目的 本発明は、気筒制御式内燃機関の車体J:りの支持に於
ける上述の如き要求に鑑み、運転状態に応じて気筒制御
式内燃機関を車体より防振上適切に支持する支持方法を
提供することを目的どしている。
Purpose of the Invention In view of the above-mentioned requirements for supporting the vehicle body of a cylinder-controlled internal combustion engine, the present invention provides a support that appropriately supports a cylinder-controlled internal combustion engine from the vehicle body in accordance with the operating state for vibration isolation. The purpose is to provide a method.

発明の構成 上述の如き目的は、本発明によれば、機関負荷が小さい
時には複数個の気筒のうちの特定の気筒のみを用いた部
分気筒運転を行い、機関負荷が大きい時には前記複数個
の気筒の全てを用いた全気筒運転を行う車輌内燃機関を
車体J:り支持t Z> 1i法にして、動ばね定数が
変化する防振ゴム装置によって内燃機関を車体より支持
し、部分気筒運転時には前記防振ゴム装置の動ばね定数
を小さくし、全気筒運転時には前記防振ゴム装置の勅は
ね定数を大きくする如き気筒制御式内燃機関の支持方法
によって達成される。
According to the present invention, partial cylinder operation is performed using only a specific cylinder among a plurality of cylinders when the engine load is small, and when the engine load is large, the above-mentioned object is to The vehicle internal combustion engine is supported by the vehicle body in full cylinder operation using all of the cylinders. This is achieved by a method of supporting a cylinder-controlled internal combustion engine, which reduces the dynamic spring constant of the vibration-isolating rubber device and increases the spring constant of the vibration-isolating rubber device during full-cylinder operation.

発明の効果 本発明による内燃機関の支持方法によれば、部分気筒運
転時には防振ゴム装置の動ばね定数が小さいことにより
低周波、小振幅の振動の減衰が効果的に行われ、アイド
ル振動及び車室内19j音の低減がなされ、これに対し
全気筒運転時には防振ゴム装置の動ばね定数が大きいこ
とによりエンジンシェイクの如き大振幅振動低減が効果
的に行われる。
Effects of the Invention According to the method for supporting an internal combustion engine according to the present invention, during partial cylinder operation, low frequency and small amplitude vibrations are effectively damped due to the small dynamic spring constant of the vibration isolating rubber device, and idle vibrations and The noise inside the vehicle interior 19j is reduced, and on the other hand, during full-cylinder operation, the dynamic spring constant of the anti-vibration rubber device is large, so that large-amplitude vibrations such as engine shake are effectively reduced.

本発明の他の一つの特徴によれば、全気筒運転と部分気
筒運転との運転状態の切換時には防振ゴム装置のうち内
燃機関の1コーリング運動を支持りる防振ゴム装置の動
ばね定数が人さくなっていてよく、これにJ:り内燃機
関のローリング方向の支持剛性が高くなり、前記運転状
態の切換時に内燃機関がローリング方向に大きく揺動り
る、所謂しゃくりの低減がなされる。
According to another feature of the present invention, the dynamic spring constant of the vibration isolating rubber device that supports one calling motion of the internal combustion engine among the vibration isolating rubber devices when switching the operating state between full cylinder operation and partial cylinder operation is provided. In addition, the support rigidity of the internal combustion engine in the rolling direction is increased, and so-called shakiri, in which the internal combustion engine swings greatly in the rolling direction when switching the operating state, is reduced. .

実施例の説明 以下に添付の図を参照して本発明を実施例について詳細
に説明づる。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments with reference to the accompanying drawings.

第1図は本発明による支持方法を適用される気筒制御式
車輌用内燃機関の一つの実施例を示しCいる。第1図に
示された内燃機関30は図にtま示されていないが複数
個の気筒、例えば4個の気筒を有しており、該複数個の
気筒の各々に各気筒んに設けられた燃料噴射弁31より
燃お1を個別にIl【!J射供給されるようになってい
る。燃お1噴射弁31は後述づる制す11装置が出力覆
る電気的な制御信号に基いて作動し、特定の運転域に於
ては例えば1番気筒と4番気筒のもののみ作動して1番
気筒と4番気筒のみが作動した部分気筒運転を実現し、
他の運転域に於ては全ての気筒のものが作動し−(全気
筒が作動した全気筒運転を実現するようになっている。
FIG. 1 shows one embodiment of a cylinder-controlled vehicular internal combustion engine to which the support method according to the present invention is applied. Although not shown in the figure, the internal combustion engine 30 shown in FIG. 1 has a plurality of cylinders, for example, four cylinders, and each cylinder is provided with a The fuel 1 is individually injected from the fuel injection valve 31. It is designed to be supplied with J-shot. The fuel 1 injection valve 31 operates based on an electrical control signal that controls the output of a control device 11, which will be described later. Achieves partial cylinder operation in which only the cylinder and No. 4 cylinder operate,
In other operating ranges, all cylinders are activated to achieve an all-cylinder operation in which all cylinders are activated.

内燃機関30は複数個の防振ゴム装置にJ、っC図示さ
れていない車体より弾性的に支持されてJ3す、第1図
に於ては内燃機関30の11−リング運動を支持づ゛べ
く配置された防振ゴム装置32のみが示されている。
The internal combustion engine 30 is elastically supported by a plurality of anti-vibration rubber devices from the vehicle body (not shown), and in FIG. Only the anti-vibration rubber device 32 is shown.

防振ゴム装置32は動はね定数及び減衰係v1.を変化
する所謂可変制御式のものであり、該防振ゴム装置の一
例が第2図及び第3図に示されている。
The vibration isolating rubber device 32 has a dynamic spring constant and a damping coefficient v1. An example of this vibration isolating rubber device is shown in FIGS. 2 and 3.

第2図及び第3図に示された防振ゴム装置32は、内燃
機関30の外壁に固定されたブラケット33にポル1へ
31によって固定される枠体1どボルト4によって図示
されいない11体に固定される枠体2とを有している。
The vibration isolating rubber device 32 shown in FIGS. 2 and 3 consists of 11 parts (not shown), which are fixed to a bracket 33 fixed to the outer wall of the internal combustion engine 30 by a frame 1 and a bolt 4 fixed to a pole 1 by a bolt 4. It has a frame body 2 fixed to.

枠体1は一つのカップ状部材により構成されているのに
対し、枠体2は筒状部材2aと前記筒状部材の一端を閉
じる端蓋部材2bと筒状部jrA 2 a内の中間部に
これを横切って設けられた仕切板2Cとの組立体により
構成されている。枠体1は枠体2の筒状部+42aの一
方の開口端部にこれと同心に配設されており、枠体1と
筒状部材2aとは該両者間に設けられたゴム或いはゴム
類似品よりなるゴム状弾性体の環状壁要素5にJ:り互
いに接続されている。仕切板2cはその一方の側に、即
ち図にて上方に、枠体1、筒状部材2a及び環状壁要素
5と共働して室空間6を郭定して45す、またその他方
の側に、即ち図にて下方に筒状部材2a及び端蓋部材2
bと共働してもう一つの室空間を郭定しており、該室空
間は外周縁部を枠体2より支持され1=ゴム或いはゴム
類似品よりなるダイヤフラム7によって更に二つの室空
間8と9どに区分されている。
While the frame 1 is composed of one cup-shaped member, the frame 2 is composed of a cylindrical member 2a, an end cover member 2b that closes one end of the cylindrical member, and an intermediate portion within the cylindrical portion jrA 2 a. and a partition plate 2C provided across the partition plate. The frame 1 is arranged concentrically at one open end of the cylindrical part +42a of the frame 2, and the frame 1 and the cylindrical member 2a are made of rubber or rubber-like material provided between them. They are connected to each other by annular wall elements 5 made of rubber-like elastic material. The partition plate 2c cooperates with the frame 1, the cylindrical member 2a and the annular wall element 5 to delimit a chamber space 6 on one side, i.e. upwardly in the figure, and on the other side. The cylindrical member 2a and the end cover member 2 are placed on the side, that is, downward in the figure.
b defines another chamber space, the outer peripheral edge of which is supported by the frame 2, and a diaphragm 7 made of rubber or a rubber-like product forms two further chamber spaces 8. It is divided into 9 categories.

仕切板2Cには円形断面の比較的大きい開放通路10と
三日月形断面の開放通路11とがnいに並列に設(プら
れており、この二つの開放通路は各々比較的大きい通路
断面積を有していて室空間Oと8とを互いに連通接続し
ている。即ち開放通路10と11は各々室空間6を室空
間6外の他の室空間8に開放している。
In the partition plate 2C, an open passage 10 having a relatively large circular cross section and an open passage 11 having a crescent-shaped cross section are arranged in parallel. The openings 10 and 11 each open the chamber space 6 to another chamber space 8 outside the chamber space 6.

室空間6と8及び開放通路10と11には適度の粘性を
有する液体が封入されている。
The chamber spaces 6 and 8 and the open passages 10 and 11 are filled with a liquid having a suitable viscosity.

開放通路10には可動絞り板12が設けられており、該
可動絞り板はその一方の板面が仕切板2Cにより開放通
路10の途中に設りられた段壁13に当接する位置と他
方の板面が仕切板2Cに取付けられた環状の押え板14
の一方の板面に当接する位置との間で図にて上下方向に
移動可能になって63す、段壁13または押え板14に
当接した状態の時にこれらと共動して開放通路10の途
中に絞り通路を郭定する絞り切欠′15を外周縁部に複
数個有している。可動絞り板12は前記封入液体の比重
にほぼ等しい比重を有する材料により構成され、防振ゴ
ム装置に振動が入力されていない時には、図示されてい
る如く、段壁13と押え板14の何れよりも離れた中間
位置にあって開放通路10を実質的に絞らないようにな
っている。
A movable aperture plate 12 is provided in the open passage 10, and the movable aperture plate has a position where one plate surface abuts a step wall 13 provided in the middle of the open passage 10 by a partition plate 2C, and a position where the other plate surface abuts a step wall 13 provided in the middle of the open passage 10. An annular press plate 14 whose plate surface is attached to the partition plate 2C
The open passage 10 is movable in the vertical direction as shown in the figure between the position where it abuts one of the plate surfaces of the A plurality of throttling notches '15 defining throttling passages are provided at the outer circumferential edge in the middle. The movable aperture plate 12 is made of a material having a specific gravity approximately equal to the specific gravity of the sealed liquid, and when no vibration is input to the vibration isolating rubber device, the movable aperture plate 12 is made of a material that has a specific gravity approximately equal to the specific gravity of the sealed liquid. The opening passageway 10 is also located at a distant intermediate position so as not to substantially restrict the open passageway 10.

開放通路11の途中は仕切板2Cより支持されたスライ
ド型の弁要素16が設置)られており、該弁要素は図に
て左右方向に移動することにより開放通路11を開閉す
るようになっている。弁要素16は枠体2の一側部に取
(=t i)られたソレノイド装置18に弁軸17によ
って駆動連結されている。
A slide-type valve element 16 supported by a partition plate 2C is installed in the middle of the open passage 11, and the valve element opens and closes the open passage 11 by moving left and right in the figure. There is. The valve element 16 is drivingly connected by a valve shaft 17 to a solenoid device 18 mounted on one side (=t i ) of the frame body 2 .

ソレノイド18は、ソレノイドケース1つに固定された
電磁コイル20と、弁軸17の端部に取付けられたコア
21と、戻しばね22とを含み、電磁コイル20に通電
が行われていない時には戻しばね22のばね力により弁
軸17と共に弁要素16を図で右方へ駆動して開放通路
11を間き、これに対し電磁コイル20に通電が行われ
ている時には戻しばね22のばね力に抗して]ア21を
磁気的に吸引し、弁軸17と共に弁要素16を図にて左
方へ駆動して開放通路11を閉じるようになっている。
The solenoid 18 includes an electromagnetic coil 20 fixed to one solenoid case, a core 21 attached to the end of the valve stem 17, and a return spring 22, and returns to its original state when the electromagnetic coil 20 is not energized. The spring force of the spring 22 drives the valve element 16 together with the valve stem 17 to the right in the figure to close the open passage 11; on the other hand, when the electromagnetic coil 20 is energized, the spring force of the return spring 22 drives the valve element 16 to the right in the figure. 21 is magnetically attracted to drive the valve element 16 together with the valve shaft 17 to the left in the figure, thereby closing the open passage 11.

電磁コイル20に対する通電は後述覆る制御装置により
行われるようになっている。
The electromagnetic coil 20 is energized by a control device that will be described later.

第4図は燃料噴射弁31の作動及びソレノイド20に対
する通電を制御する制御装置の一実施例を示している。
FIG. 4 shows an embodiment of a control device that controls the operation of the fuel injection valve 31 and the supply of electricity to the solenoid 20.

この制御装置は一般的なマイク1」コンピュータ34を
含んでいる。マイクロコンピュータ34は、スロットル
開磨センサ35より内燃I幾関30のスロットル開度に
関する情報を、回転数セン9−36より内燃機関30の
クランク軸の回転数に関する情報を、吸気管負圧セン4
J−37、l、り内燃機関30の吸気管負圧に関する情
報を、車速センサ38より車速に関する情報を各々与え
られ、回転数センサ36により検出された機関回転数と
吸気管負圧センサ37により検出されIC吸気管負圧に
基いて燃料噴射量を決定し、それに阜く信号を燃料噴射
弁31の駆動駅間39へ出力りるようになっており、ま
た第5図に示されたフローチャートに従って全気筒運転
と部分気筒運転の切換制御とソレノイド20に対する通
電を制御ずべく前記各センサよりの情報に基いて駆動装
置39とソレノイド20の駆動装置30へ電気的な制御
信号を出力するようになっている。
The control unit includes a conventional microphone 1'' computer 34. The microcomputer 34 receives information regarding the throttle opening of the internal combustion engine 30 from the throttle opening sensor 35, information regarding the rotational speed of the crankshaft of the internal combustion engine 30 from the rotational speed sensor 9-36, and information regarding the rotational speed of the crankshaft of the internal combustion engine 30 from the rotational speed sensor 9-36.
J-37, l, information regarding the intake pipe negative pressure of the internal combustion engine 30 is provided by the vehicle speed sensor 38, and the engine rotation speed detected by the rotation speed sensor 36 and the intake pipe negative pressure sensor 37. The fuel injection amount is determined based on the detected IC intake pipe negative pressure, and a signal accordingly is output to the drive station 39 of the fuel injection valve 31, and the flowchart shown in FIG. Accordingly, an electrical control signal is output to the drive device 39 and the drive device 30 of the solenoid 20 based on the information from each sensor in order to control switching between full cylinder operation and partial cylinder operation and control energization to the solenoid 20. It has become.

次に第5図に示されたフローチャートを参照して本発明
にJ:る気筒制御式車輌用内燃機関の支持方法の実施例
について説明する。
Next, an embodiment of a method for supporting a cylinder-controlled vehicular internal combustion engine according to the present invention will be described with reference to the flowchart shown in FIG.

第5図に示されたフローヂV−トのルーチンは所定時間
毎或いは所定クランク各毎に繰返し実行されるものであ
り、最初のステップ1に於ては、内燃機関30が始動時
であるか否かの判別が行われる。始動時である時にはス
テップ2に進み、これに対し始動時でない時にはステッ
プ5へ進む。
The flowchart routine shown in FIG. 5 is repeatedly executed at predetermined time intervals or for each predetermined crankshaft, and in the first step 1, it is determined whether the internal combustion engine 30 is starting A determination is made. When it is time to start, the process proceeds to step 2, whereas when it is not time to start, the process proceeds to step 5.

ステップ2に於ては、フラッグFが1であるか否かの判
別が行われる。F=1である時にはりセラ]〜されるが
、F−1でない時にはステップ3へ進む。
In step 2, it is determined whether flag F is 1 or not. When F=1, the process proceeds to step 3. However, when F=1, the process proceeds to step 3.

ステップ3に於ては、ソレノイド20に対する通電が行
われ、弁要素16にJ:つて開放通路11が閉じられる
。ステップ3の次はスフツブ4へ進む。
In step 3, the solenoid 20 is energized, the valve element 16 is turned on, and the open passage 11 is closed. After step 3, proceed to step 4.

ステップ4に於ては、部分気筒運転より全気筒運転への
切換が行われる。これにより全ての気筒の燃料噴射弁3
1が作動し、金気筒による運転が行われる。またステッ
プ4於ては、フラッグFが1にされる。ステップ4の次
はリセットされる。
In step 4, a switch is made from partial cylinder operation to full cylinder operation. This allows the fuel injection valves 3 of all cylinders to
1 is activated and operation is performed using the gold cylinder. Also, in step 4, flag F is set to 1. The next step after step 4 is a reset.

ステップ5に於ては、アイドル運転時であるか否かの判
別が行われる。アイドル運転時である時にはステップ8
に進み、そうでない時にはステップ6へ進む。
In step 5, it is determined whether or not the vehicle is in idle operation. Step 8 when idle operation
If not, proceed to step 6.

ステップ6に於ては、加速運転時であるか否かの判別が
行われる。加速運転時である時にはステップ2へ進み、
これに対し加速運転時でない簡にはステップ7へ進む。
In step 6, it is determined whether or not the vehicle is in acceleration operation. If it is during acceleration operation, proceed to step 2,
On the other hand, if the vehicle is not in acceleration mode, the process proceeds to step 7.

ステップ7に於ては、低速低負荷運転時であるか否かの
判別が行われる。低速低負荷運転時である時にはステッ
プ8へ進み、低速低負荷運転時でない時にはステップ2
へ進む。
In step 7, it is determined whether or not the vehicle is operating at low speed and low load. If the operation is at low speed and low load, proceed to step 8; if the operation is not at low speed and low load, proceed to step 2.
Proceed to.

ステップ8に於ては、フラッグFが1であるか否かの判
別が行われる。F=1である時にはステップ9へ進み、
F=1でない時にはリセットされる。
In step 8, it is determined whether flag F is 1 or not. When F=1, proceed to step 9,
It is reset when F=1.

ステップ9に於゛Cは、全気筒運転より部分気筒運転へ
切換が行われる。この時には特定の気筒の燃料噴射弁3
1のみが作動し、特定の気筒のみを用いた部分気筒運転
が行われる。ステップ9の次はステップ10へ進む。
In step 9, a switch is made from full cylinder operation to partial cylinder operation. At this time, the fuel injector 3 of a specific cylinder
Only one cylinder is activated, and partial cylinder operation is performed using only a specific cylinder. After step 9, proceed to step 10.

ステップ10に於ては、ソレノイド20に対する通電が
停止され、開放通路11が開かれる。またステップ10
に於ては、フラッグFがOにされる。ステップ10に次
はリセツ1〜される。
In step 10, the power supply to the solenoid 20 is stopped and the open passage 11 is opened. Also step 10
In this case, flag F is set to O. Next, in step 10, reset 1~ is performed.

上述の如きルーチンが実行されることにより、アイドル
運転時及び低速低負荷運転時には部分気筒運転が実行さ
れ、この時には防振ゴム装置32の開放通路11が開か
れる。従ってこの時には防振ゴム装置32の動ばね定数
が低くなり、アイドル振動、騒音の低減が効果的に行わ
れ、これに対し始動時、加速運転時及び低速低負向以外
の負荷運転時には全気筒運転が行われ、これに伴ない開
放通路11が閉じられる。従って全気筒運転時には防振
ゴム装置32の動ばね定数が高く保たれ、また防振ゴム
装置32の粘性減衰係数が高くなり、エンジンシェイク
及びしゃくりが効果的に低減される。
By executing the routine as described above, partial cylinder operation is executed during idle operation and low speed and low load operation, and at this time, the open passage 11 of the vibration isolating rubber device 32 is opened. Therefore, at this time, the dynamic spring constant of the vibration isolating rubber device 32 becomes low, and idling vibration and noise are effectively reduced.On the other hand, during startup, acceleration operation, and load operation other than low speed and low negative direction, all cylinders are The operation is performed, and the open passage 11 is closed accordingly. Therefore, during all-cylinder operation, the dynamic spring constant of the vibration-proof rubber device 32 is kept high, and the viscous damping coefficient of the vibration-proof rubber device 32 is increased, so that engine shake and jerking are effectively reduced.

また、部分気筒運転と全気筒運転との運転状態の切換時
にはソレノイド20に通電が行われて弁要素16によっ
て開放通路11が閉じられ、防振ゴム装置32の動ばね
定数及び粘性減衰係数が^(されており、これにより上
述の如ぎ運転状態の切換時にトルク変動によって内燃機
関が大きく揺れ動くことが回避される。
Furthermore, when switching between the partial cylinder operation and the full cylinder operation, the solenoid 20 is energized, the open passage 11 is closed by the valve element 16, and the dynamic spring constant and viscous damping coefficient of the vibration isolating rubber device 32 are changed. (This prevents the internal combustion engine from fluctuating greatly due to torque fluctuations when switching operating conditions as described above.

以上に於ては、本発明を特定の実施例について詳細にu
2明したが、本発明は、これに限定されるものではなく
、本発明の範囲内にて種々の実施例が可能であることは
当業者にとって明らかであろう。
The present invention has been described in detail with respect to specific embodiments.
However, it will be obvious to those skilled in the art that the present invention is not limited thereto, and that various embodiments are possible within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ににる支持方法を適用される気量制御式
車輌用内燃機関の一つの実施例を示づ斜視図、第2図は
本発明による支持方法の実施に使用される防振ゴム装置
の一つの実施例を示す縦断面図、第3図は第2図の線I
II −11fに沿う断面図、第4図は本発明による支
持方法の実施に使用される制御装置の一例を示リブロッ
ク線図、第5図は本発明による支持方法の実施例を示す
フローヂャートである。 1.2・・・枠体、3.4・・・ボルト、5・・・環状
壁要素、6・・・室空間、7・・・ダイヤフラム、8.
9・・・室空間、10.11・・・開放通路912・・
・可動絞り板。 13・・・段壁、14・・・押え板、15・・・較り切
欠、16・・・弁要素、17・・・弁軸、18・・・ソ
レノイド装置。 19・・・ソレノイドケース、20・・・電磁コイル、
21・・・コア、22・・・戻しばね、30・・・内燃
機関、31・・・燃料噴射弁、32・・・防振ゴム装置
、33・・・ブラケッ1〜,34・・・マイク1」コン
ピュータ、35・・・スロットル開度センサ、36・・
・回転数セン→ノー、37・・・吸気管負圧センサ、3
8・・・車速センv、39.40・・・駆動装置 第1図 第 2 図 第 3 図 a
FIG. 1 is a perspective view showing one embodiment of a mass-controlled vehicular internal combustion engine to which the support method according to the present invention is applied, and FIG. A vertical cross-sectional view showing one embodiment of the swinging rubber device, FIG. 3 is taken along line I in FIG.
4 is a block diagram showing an example of a control device used to carry out the supporting method according to the present invention, and FIG. 5 is a flowchart showing an embodiment of the supporting method according to the present invention. be. 1.2... Frame body, 3.4... Bolt, 5... Annular wall element, 6... Chamber space, 7... Diaphragm, 8.
9...Room space, 10.11...Open passage 912...
・Movable aperture plate. DESCRIPTION OF SYMBOLS 13... Step wall, 14... Holding plate, 15... Comparison notch, 16... Valve element, 17... Valve stem, 18... Solenoid device. 19... Solenoid case, 20... Electromagnetic coil,
21... Core, 22... Return spring, 30... Internal combustion engine, 31... Fuel injection valve, 32... Vibration isolating rubber device, 33... Bracket 1-, 34... Microphone 1" Computer, 35... Throttle opening sensor, 36...
・Rotational speed sensor → No, 37...Intake pipe negative pressure sensor, 3
8... Vehicle speed sensor v, 39.40... Drive device Fig. 1 Fig. 2 Fig. 3 a

Claims (2)

【特許請求の範囲】[Claims] (1)機関負荷が小さい時には複数個の気筒のうちの特
定の気筒のみを用いた部分気筒運転を行い、機関負荷が
大きい時には前記複数個の気筒の全てを用いた全気筒運
転を行う車輌用内燃機関を車体より支持する方法にして
、動ばね定数が変化づる防振ゴム装置によって内燃機関
を車体より支持し、部分気筒運転時には前記防振ゴム装
置の動ばね定数を小さくし、全気筒運転時には前記防振
ゴム装置の動ばね定数を大きくづることを特徴とづる気
筒制御式車輌用内燃機関の支持方法。
(1) For vehicles that perform partial cylinder operation using only a specific cylinder among multiple cylinders when the engine load is low, and perform full cylinder operation using all of the multiple cylinders when the engine load is large. The internal combustion engine is supported from the vehicle body by a vibration isolating rubber device with a variable dynamic spring constant, and during partial cylinder operation, the dynamic spring constant of the vibration isolating rubber device is reduced, allowing full cylinder operation. A method for supporting a cylinder-controlled internal combustion engine for a vehicle, characterized in that the dynamic spring constant of the vibration isolating rubber device is sometimes increased.
(2)機関負荷が小さい時には複数個の気筒のうちの特
定の気筒のみを用いた部分気筒運転を行い、機関負荷が
大きい時には前記複数個の気筒の全てを用いた全気筒運
転を行う車輌用内燃機関を車体より支持する方法にして
、動ばね定数が変化する防振ゴム装置によって内燃機関
を車体より支持し、部分気筒運転時には前記防振ゴム装
置の動ばね定数を小さくし、全気筒運転と部分気筒運転
との運転状態の切換時及び全気筒運転時には前記防振ゴ
ム装置の動ばね定数を大きくJることを特徴とJる気筒
制御式車輌用内燃機関の支持方法。
(2) For vehicles that perform partial cylinder operation using only a specific cylinder among the plurality of cylinders when the engine load is small, and perform full cylinder operation using all of the plurality of cylinders when the engine load is large. The internal combustion engine is supported from the vehicle body by a vibration isolating rubber device whose dynamic spring constant changes, and during partial cylinder operation, the dynamic spring constant of the vibration isolating rubber device is reduced, and full cylinder operation is performed. 1. A method for supporting a cylinder-controlled internal combustion engine for a vehicle, characterized in that the dynamic spring constant of the vibration isolating rubber device is increased when switching operating states between and partial cylinder operation and during full cylinder operation.
JP21207583A 1983-11-11 1983-11-11 Supporting method of internal-combustion engine for cylinder number control vehicle Pending JPS60104422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21207583A JPS60104422A (en) 1983-11-11 1983-11-11 Supporting method of internal-combustion engine for cylinder number control vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21207583A JPS60104422A (en) 1983-11-11 1983-11-11 Supporting method of internal-combustion engine for cylinder number control vehicle

Publications (1)

Publication Number Publication Date
JPS60104422A true JPS60104422A (en) 1985-06-08

Family

ID=16616446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21207583A Pending JPS60104422A (en) 1983-11-11 1983-11-11 Supporting method of internal-combustion engine for cylinder number control vehicle

Country Status (1)

Country Link
JP (1) JPS60104422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886252A (en) * 1988-02-24 1989-12-12 Daimler-Benz Aktiengesellschaft Hydraulically damping spring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975829A (en) * 1982-10-22 1984-04-28 Mazda Motor Corp Device for mounting engine for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975829A (en) * 1982-10-22 1984-04-28 Mazda Motor Corp Device for mounting engine for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886252A (en) * 1988-02-24 1989-12-12 Daimler-Benz Aktiengesellschaft Hydraulically damping spring device

Similar Documents

Publication Publication Date Title
JP3557837B2 (en) Fluid-filled vibration isolator
US5601280A (en) Liquid-sealed mounting device
JPH0245053B2 (en)
JPH0236984Y2 (en)
JPS61191424A (en) Damping device for power unit
US7923955B2 (en) Method and apparatus for controlling an active engine mount
JPS61136032A (en) Power unit mounting device
JP3244457B2 (en) Idle control method for internal combustion engine
JPS60116937A (en) Vibration-proof supporting method of internal- combustion engine for car
JPS60104422A (en) Supporting method of internal-combustion engine for cylinder number control vehicle
JPH04312229A (en) Liquid seal vibration isolating device
JPS60157540A (en) Vibration-damping supporting method of internal- combustion engine for vehicle
US7150257B2 (en) Vibration damping engine mount for internal combustion engine
JPS60185630A (en) Support method of cylindrical control type internal combustion engine for vehicle
JPS5940032A (en) Vibration isolator
JPS59144839A (en) Rubber vibration insulator
JPH09100878A (en) Fly wheel
JP3292100B2 (en) Idle control method for variable vibration isolator
JPS61191426A (en) Mounting device for power unit
JP2002019475A (en) Suspension of on-vehicle engine
JPH05306728A (en) Liquid-sealed vibration control device
JP3092571B2 (en) Variable vibration isolator
JPH0233896B2 (en) EKIFUNYUBOSHINSOCHI
JPH06278478A (en) Drive control device for active type vibration control device of internal combustion engine for various vehicles
JPH0611393Y2 (en) Vehicle anti-vibration device