JPS60103033A - Manufacture of zirconia-base hyperfine powder - Google Patents

Manufacture of zirconia-base hyperfine powder

Info

Publication number
JPS60103033A
JPS60103033A JP58203722A JP20372283A JPS60103033A JP S60103033 A JPS60103033 A JP S60103033A JP 58203722 A JP58203722 A JP 58203722A JP 20372283 A JP20372283 A JP 20372283A JP S60103033 A JPS60103033 A JP S60103033A
Authority
JP
Japan
Prior art keywords
powder
autoclave
zirconium salt
soln
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58203722A
Other languages
Japanese (ja)
Other versions
JPH0232216B2 (en
Inventor
Shigeyuki Somiya
宗宮 重行
Masahiro Yoshimura
昌弘 吉村
Keiichi Minegishi
峯岸 敬一
Kiyoshi Hasegawa
清 長谷川
Kazumichi Hishinuma
菱沼 一充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP58203722A priority Critical patent/JPS60103033A/en
Publication of JPS60103033A publication Critical patent/JPS60103033A/en
Publication of JPH0232216B2 publication Critical patent/JPH0232216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To manufacture the titled hyperfine powder having high crystallizability at a relatively low temp. in a short time by adding a nitrogen compound which generates ammonia by decomposition to an aqueous soln. contg. a zirconium salt and by treating the soln. in an autoclave. CONSTITUTION:A compound which generates ammonia by decomposition such as urea or cyanate is added to an aqueous soln. of a zirconium salt such as zirconium oxychloride or an aqueous soln. contg. a zirconium salt and a salt of a desired metal such as Mg, Ca or Y which provides high toughness or stability, and the soln. is treated in an autoclave to manufacture the titled hyperfine powder having a uniform particle size and causing no coagulation. Since unlike a conventional slow reaction a rapid reaction is carried out by the autoclave treatment with the nitrogen compound which generates ammonia by decomposition, the titled hyperfine powder having high crystallizability can be synthesized at a relatively low temp. in a short time, thus, the manufacturing cost can be reduced.

Description

【発明の詳細な説明】 本発明は、高強度高靭性セラミックス用原料として注目
されているジルコニア系超微粉末の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrafine zirconia powder, which is attracting attention as a raw material for high-strength, high-toughness ceramics.

ジルコニアは高融点で耐食性にもすぐれているため、従
来から製鉄用の耐火材料として盛んに使われてきたが、
さらに、近年、新しい特性をもった高強度高靭性ジルコ
ニアが開発され、今後も大きく発展していくエンジニア
リングセラミックスの一つとして期待されている。
Zirconia has a high melting point and excellent corrosion resistance, so it has been widely used as a refractory material for steel manufacturing.
Furthermore, in recent years, high-strength, high-toughness zirconia with new properties has been developed, and it is expected to become one of the engineering ceramics that will continue to develop significantly in the future.

周知のように、高強度高靭性ジルコニアを得るためには
、X)ルコニアセラミックスの微NuI Mat造を的
確に制1111することが重要であり、そのためには微
細で献果がなく均一な粒子径奮もったジルコニア系超微
粉末が心安とされているしたがって、ジルコニア系超微
粉末の製造に関しては多くの(tlf死がなされ、仲ま
でに、ジルコニア粉全機械的に微細化する方法−XO,
ジルコニウム塩と金属垣τ含む溶液にアンモニアなどを
加えて共沈物?得てこれ全仮焼させる方法などが侠討さ
れている。
As is well known, in order to obtain high-strength, high-toughness zirconia, it is important to accurately control the fine NuI Mat structure of luconia ceramics. Ultrafine zirconia powder is considered to be safe.Therefore, in the production of ultrafine zirconia powder, many methods (tlf death) have been carried out, and by the time there was a method for completely mechanically refining zirconia powder - ,
Co-precipitation by adding ammonia etc. to a solution containing zirconium salt and metal fence τ? The method of completely calcining it is being debated.

いった問題点がめった。I ran into a few problems.

そこで本発明者等は1棟々実験すF究の結果。Therefore, the inventors of the present invention conducted an F-research experiment on each building.

ジルコニウム塩水溶液又はジルコニウム塩と79r望の
金属の塩、例えばマグネシウム、カルシウム、イツトリ
ウム等の高靭性を発揮させたり。
Aqueous zirconium salt solutions or zirconium salts and salts of desired metals, such as magnesium, calcium, yttrium, etc., exhibit high toughness.

安定化させたりする蛍属の塩を含む水溶液に。In an aqueous solution containing a salt of fluorophore to stabilize it.

従来法とは異なり分解するとアンモニアを発生−する窒
素?含む化合物(例えば尿素やシアン酸塩など)を添加
し、これ全オートクレーブ処理することにより微細で凝
集がなく均一な粒子径をもったジルコ;ア系超微粉末の
製造に成功したものである。
Unlike conventional methods, nitrogen generates ammonia when decomposed? By adding compounds (for example, urea, cyanate, etc.) and treating the entire product in an autoclave, we succeeded in producing Zirco-based ultrafine powder with a uniform particle size without agglomeration.

この方法なよ従来法の如く5反応τゆつくりとイテなわ
ぜるのではなく1分;拝するとアンモニアを%生ずる蟹
素化合物τ使用し、オートクレーブ処理により息速反応
させるため、結晶性の良いジルコニア系微粉末が比較的
低温で、しかも短時間で合成でき、従って装定コストの
低減が可能となり、その工業的価値は極めて太きいもの
である。
In this method, instead of 5 reactions τ as in the conventional method, which are heated slowly for 1 minute, a crab compound τ that produces % ammonia is used, and the reaction is performed at a breath rate by autoclaving, so it has good crystallinity. Zirconia fine powder can be synthesized at a relatively low temperature and in a short time, making it possible to reduce installation costs, and its industrial value is extremely great.

以下本発明の実施例について説明するが本発明はここに
例示した実施例のみに限定されるもので轄ないことは勿
論である。
Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to the examples illustrated here.

実施例1 純水1.000 tnl中にオキシ塩化ジルコニウム3
22t?含むfが液に尿素702を加えて溶解させて5
合成用原料溶液を作り、この合成用原料浴液750酎を
、同谷積1000m#のオートクレーブ処理装置g(高
温高圧容器)を用いて下記の条件でオートクレーブ処理
した。
Example 1 Zirconium oxychloride 3 in 1.000 tnl of pure water
22 tons? Containing f is 5 by adding urea 702 to the solution and dissolving it.
A raw material solution for synthesis was prepared, and 750 liters of this raw material bath liquid for synthesis was subjected to autoclave treatment under the following conditions using an autoclave processing apparatus G (high temperature and high pressure vessel) having a volume of 1000 m#.

オートクレーブ処理条件 充てん率 75チ 温 J仄 250℃ 処理時間 12時間 上口己の処理によって出来だ沈殿物を遠心分離機と超晋
波分散mk用いて脱水と水洗と忙繰り返した後、水金エ
タノールで置換し、120℃で12時間乾シj¥1式せ
てジルコニア微粉末751を得た。
Autoclave processing conditions Filling rate: 75°C Temperature: 250°C Processing time: 12 hours The precipitate produced by Kamiguchi's treatment was repeatedly dehydrated and washed using a centrifugal separator and Super Shinba Dispersion MK, and then washed with water and ethanol. The mixture was replaced with 120° C. and dried for 12 hours to obtain zirconia fine powder 751.

このようにして得られた粉末はX巌回折によれば非常に
結晶性のよい正方型ジルコニアで。
According to X-Iwao diffraction, the powder thus obtained is square zirconia with very good crystallinity.

シュシー法で測定した平均結晶子径は8nI11と極め
て微細なものであった。
The average crystallite diameter measured by the Schucy method was 8nI11, which was extremely fine.

さらに、透過型電子幽微鏡観察に上り粒子径も均一で#
X粟も少ないことを確認した。
Furthermore, the particle size was uniform when observed using a transmission electron spectroscope.
It was also confirmed that there was little amount of X millet.

実施例2 純水1000祷中にオキシ塩化ジルコニウム307vと
塩化イツトリウム189に含む水溶液に尿素7(1’を
加えて溶解させて合成用ル(料溶液を作り、これをオー
トクレーブ処理AAIii、にて下記条件でオートクレ
ーブ処理した。
Example 2 Urea 7 (1') was added and dissolved in an aqueous solution containing 307 v of zirconium oxychloride and 189 yttrium chloride in 1,000 liters of pure water to create a synthetic solution, which was then autoclaved to perform the following reaction in AAIii. Autoclaved under the following conditions.

オートクレーブ処理条件 充てん率 80% 温 度 200’C 処理時間 24時間 上記の処理によって出来た沈)J!i物全夾施例1と同
様にして回収し、イツトリアk 3 mo1%固溶する
ジルコニア系微粉末73f?11−’lυた。得られた
粉末は結晶性の良い立方型ジルコニアで。
Autoclave treatment conditions Filling rate: 80% Temperature: 200'C Treatment time: 24 hours Precipitate formed by the above treatment) J! 73f of zirconia-based fine powder recovered in the same manner as in Example 1 and containing 1% of ittria k 3 mo as a solid solution. 11-'lυ. The obtained powder is cubic zirconia with good crystallinity.

平均結晶子径tilOn=と極めて微測で、粒子径は均
一で凝集も少なかった。
The average crystallite diameter tilOn was very small, and the particle diameter was uniform and there was little aggregation.

この粉末を成形圧i t o n/crA で−軸成形
した後、1500℃で2hr焼結させたところ緻密な焼
結体が得られ、理論密度の98%まで焼結していた。
This powder was subjected to -axis molding at a molding pressure of i t o n /crA and then sintered at 1500° C. for 2 hours, resulting in a dense sintered body, which was sintered to 98% of its theoretical density.

また、焼結体破断面の電子顕微鏡観察から。Also, from electron microscopy observation of the fractured surface of the sintered body.

平均粒径は0.3 ttmと微細でがっ粒径もそろって
おり、4たX#3!回折結果から正方型固浴体のみから
構成されでいること全確認した。
The average particle size is 0.3 ttm, which is fine and has a uniform particle size, 4 x #3! The diffraction results confirmed that it was composed only of square solid baths.

以上説明したごとく1本発明によるジルコニア系微粉末
t、i微I411で凝集がなく均一な粒子径をもってい
るため焼結性が良く、高強就高靭性ジ用原料粉末など広
く適用できると考える。
As explained above, the zirconia fine powder t, i fine I411 according to the present invention has a uniform particle size without agglomeration, has good sinterability, and is considered to be widely applicable to high strength and high toughness raw material powder for steel.

なお、実M11例1にお−て得られた粉末は正方型置俗
体のみから構成されるものであシ、実施例2において(
Jられた粉末は立方型固冶採のみから構成されるもので
あるが、オートクレーブ処理して得た微粉末を公知の方
法で仮焼することにより実施例1に示すものからは単斜
型のものが、また実施例2に示すものからは鼻薄禰虫課
正方型のものが、簡単に得ること力ζできる。
It should be noted that the powder obtained in Example 1 of M11 was composed only of square-shaped objects, and in Example 2 (
The powder obtained in Example 1 is composed only of cubic-shaped powder, but by calcining the fine powder obtained by autoclaving using a known method, monoclinic-shaped powder can be obtained from the powder shown in Example 1. Also, from the material shown in Example 2, a square shaped material with a thin nose can be easily obtained.

これが第2の発明である。This is the second invention.

特許出願人 秩父セメント株式会ネ」二同 代理人 服
 部 修 − 手続補正書(自発〕 昭和59年4月5日 11″、11゛許庁長官 若 イり和 失敗1、事件の
表示 昭和58 年1侍 汁F m m203722 号2、
発明の名称 3、#1iTE’t’l−6者′ル”=う”糸超微粉末
0製危方法41件との関係 71.+−許出P1+人。
Patent applicant: Chichibu Cement Co., Ltd. Agent: Osamu Hattori - Procedural amendment (voluntary) April 5, 1980 11'', 11゛ Commissioner of the Office of the Chief Justice Waka Iriwa Failure 1, Indication of the case 1982 Year 1 Samurai Juice F m m203722 No. 2,
Title of the invention 3, #1 iTE't'l-6 person'ru"=u"Relationship with 41 hazardous methods for producing yarn ultrafine powder 0 71. +-Permission P1+ person.

 、 jl +京イ、!叶代[H財丸の内−丁目4番6
号m Z(fsat) 1−”二f二p’、=zイ%’
!r、HIsI’E秩父セメント株式会社 4、代理人 (1) 明細書第4頁19行の「正方型」を「年余F型
」と訂正致します。
, jl + Kyoi,! Kanoyo [H Zai Marunouchi-chome 4-6
No.m Z (fsat) 1-"2f2p',=zi%'
! r, HIsI'E Chichibu Cement Co., Ltd. 4, Agent (1) I would like to correct the "square type" on page 4, line 19 of the specification to "F-type".

(2)明細書第6頁14行〜15行の「正ブjへll−
1溶体の今から」を[王としてJ、ll糸) 1(ll
力・ら」と訂正致します。
(2) On page 6 of the specification, lines 14 to 15, “To the main block
1. From now on, the solution is [King J, ll yarn) 1 (ll
I would like to correct it as “power/ra”.

Claims (2)

【特許請求の範囲】[Claims] (1) ジルコニウム塩水溶液又はジルコニウム塩と所
望の金属の塩を含む水浴液に、分解するとアンモニア全
発生する窒素化合物全飽加し。 これをオートクレーブ処理すること全特徴とするジルコ
ニア系超微粉末の製造方法。
(1) A zirconium salt aqueous solution or a water bath solution containing a zirconium salt and a desired metal salt is completely saturated with nitrogen compounds that generate ammonia when decomposed. A method for producing ultrafine zirconia powder, which is characterized by autoclave treatment.
(2) ジルコニウム塩水溶液又はジルコニウム塩と所
望の釡属の塩を含む水溶液に、分がトするとアンモニア
全発生する窒素化合物全冷加し、これ全オートクレーブ
処理した後脱水乾燥させ、それを仮焼すること全特徴と
するジルコニア系超微粉末の製造方法。
(2) Add a zirconium salt aqueous solution or an aqueous solution containing a zirconium salt and a desired metal salt to a nitrogen compound that completely generates ammonia when the mixture is allowed to cool, completely autoclave it, dehydrate and dry it, and calcinate it. A method for producing ultrafine zirconia powder that has all the following characteristics.
JP58203722A 1983-11-01 1983-11-01 Manufacture of zirconia-base hyperfine powder Granted JPS60103033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58203722A JPS60103033A (en) 1983-11-01 1983-11-01 Manufacture of zirconia-base hyperfine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58203722A JPS60103033A (en) 1983-11-01 1983-11-01 Manufacture of zirconia-base hyperfine powder

Publications (2)

Publication Number Publication Date
JPS60103033A true JPS60103033A (en) 1985-06-07
JPH0232216B2 JPH0232216B2 (en) 1990-07-19

Family

ID=16478762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58203722A Granted JPS60103033A (en) 1983-11-01 1983-11-01 Manufacture of zirconia-base hyperfine powder

Country Status (1)

Country Link
JP (1) JPS60103033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260718A (en) * 1986-05-06 1987-11-13 Shigeyuki Somiya Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
EP0337472A2 (en) * 1988-04-14 1989-10-18 ISTITUTO GUIDO DONEGANI S.p.A. Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
WO1994004459A1 (en) * 1992-08-18 1994-03-03 Worcester Polytechnic Institute Preparation of nanophase solid state materials
US5466646A (en) * 1992-08-18 1995-11-14 Worcester Polytechnic Institute Process for the preparation of solid state materials and said materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260718A (en) * 1986-05-06 1987-11-13 Shigeyuki Somiya Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
DE3714911A1 (en) * 1986-05-06 1987-11-19 Soumiya Shigeyuki Process for preparing a slurry of an ultra-fine powder based on zirconium oxide/aluminium oxide
JPH031245B2 (en) * 1986-05-06 1991-01-10 Shigeyuki Somya
DE3714911C2 (en) * 1986-05-06 1994-08-25 Soumiya Shigeyuki A process for preparing a slurry of a zirconia-alumina based ultrafine powder
EP0337472A2 (en) * 1988-04-14 1989-10-18 ISTITUTO GUIDO DONEGANI S.p.A. Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
WO1994004459A1 (en) * 1992-08-18 1994-03-03 Worcester Polytechnic Institute Preparation of nanophase solid state materials
US5417956A (en) * 1992-08-18 1995-05-23 Worcester Polytechnic Institute Preparation of nanophase solid state materials
US5466646A (en) * 1992-08-18 1995-11-14 Worcester Polytechnic Institute Process for the preparation of solid state materials and said materials

Also Published As

Publication number Publication date
JPH0232216B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
US4619817A (en) Hydrothermal method for producing stabilized zirconia
JPH031245B2 (en)
CN102275987B (en) Nano/micro-scale sheet bismuthyl carbonate material and preparation method thereof
DE2325973A1 (en) COLD-SETTING REFRACTORY COMPOSITIONS
Song et al. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization
Zhao et al. Stability and phase transition of 5· 1· 7 phase in alkaline solutions
JPS60103033A (en) Manufacture of zirconia-base hyperfine powder
DE1592110A1 (en) Process for the production of yttrium oxide, aquasols
JPS61500834A (en) Manufacturing method of powder suitable for fritting
JPS63319298A (en) Aluminum borate whisker and production thereof
JPS60210508A (en) Manufacture of sinterable ceramic fine powder
Rongsawat et al. In situ combustion synthesis in air of calcium titanate powders using minerals as a calcium source
JP2002506787A (en) Method for synthesizing powdery composite ceramic of heat-resistant metal
Ignat’eva et al. Extraction of Ti Powder from Ti–MgO–Mg (–CaO) Cakes Produced by Magnesiothermic Reduction
KR960012722B1 (en) Process for preparing composite powder of zirconia-alumina
JP2591787B2 (en) Method for producing ruthenium oxide fine particles
US591355A (en) Henri moissan
JPS61122121A (en) Production of rare earth metal oxide powder
JP2003516293A (en) Solid synthesis method of alkali metal or alkaline earth metal ferrate and ferrate obtained by this method
JPH0651568B2 (en) Method for producing fine zirconium oxide powder
Li et al. Effect of atmosphere on the synthesis of potassium titanate
JPH044979B2 (en)
Lekanova et al. Particle-size effect on the rate of carbon reduction of TiO 2
Baba et al. Enrichment of a Nigerian Calcite Ore for Hydroxyapatite Production
Pookmanee et al. Low temperature hydrothermal synthesis of bismuth sodium titanate nanopowders