JPS60103026A - Manufacture of rare earth metallic oxide - Google Patents

Manufacture of rare earth metallic oxide

Info

Publication number
JPS60103026A
JPS60103026A JP58208323A JP20832383A JPS60103026A JP S60103026 A JPS60103026 A JP S60103026A JP 58208323 A JP58208323 A JP 58208323A JP 20832383 A JP20832383 A JP 20832383A JP S60103026 A JPS60103026 A JP S60103026A
Authority
JP
Japan
Prior art keywords
rare earth
oxalic acid
soln
added
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208323A
Other languages
Japanese (ja)
Inventor
Masaru Kobayashi
賢 小林
Ryoichi Mitsui
三井 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58208323A priority Critical patent/JPS60103026A/en
Publication of JPS60103026A publication Critical patent/JPS60103026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture rare earth metallic oxides in a high yield by adding sulfuric acid to a soln. of rare earth metallic sulfates or a recycled alkali oxalate soln., slowly adding the latter soln. to the former soln., and adding fresh oxalic acid. CONSTITUTION:Oxalic acid is added to a soln. of rare earth metallic sulfates such as a soln. of about 1.0-1.3pH prepd. by thermally decomposing ore contg. rare earth metals with concd. sulfuric acid and by carrying out leaching with water to separate thorium etc., and the resulting rare earth metallic oxalates are separated and treated with alkali to form rare earth metallic hydroxides and alkali oxalate. They are separated from each other, and the alkali oxalate is replenished with fresh oxalic acid and recycled to the next oxalating stage. At this time, sulfuric acid is added to a soln. of rare earth metallic sulfates or the alkali oxalate soln., the latter soln, is slowly added to the former soln. so as to prevent a local pH rise, and finally fresh oxalic acid is added. Rare earth metallic oxides are manufactured in a high yield.

Description

【発明の詳細な説明】 本発明は希土類酸化物の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing rare earth oxides.

現在、希土類元素の性質、応石゛分野の研究は著しい発
展をとげ、その用途としては、合金、原子炉材料、光学
ガラス用、ガラス研磨材、触媒、磁性材料、電子材料な
ど幅広い分野に利用されている。
Currently, research in the field of rare earth elements and their properties has made remarkable progress, and they are used in a wide range of fields, including alloys, nuclear reactor materials, optical glass, glass abrasives, catalysts, magnetic materials, and electronic materials. ing.

また、近年の希土類元素の分離技術、高純度品精製技術
の研究、発達に伴い、今後共々、希土類の利用分野、需
要及び生産は、成長するものと予想される。
Furthermore, with the recent research and development of rare earth element separation technology and high purity product refining technology, it is expected that the field of application, demand and production of rare earth elements will continue to grow in the future.

希土類酸化物は希土類元素十数種類の混合物で分離N製
され各方面に利用される前の原料となるものである。希
土類酸化物の製造は、希土類の原鉱石であるゼメタイム
。モナザイト、バストネサイト等を従来公知のとうシ、
濃硫酸で加熱分解し水でリーチングして希土類の硫酸溶
液と不溶性残’lfEと妬分離する。この希土類の硫酸
溶液にアルカリを加えて、希土類の塩を得る方法もある
が、この場合、希土類の(lIre酸溶液中に存在する
リン、酸根のために水酸化希土どならずに希土類のリン
酸塩となる割合が高い。そこで、希土類の硫′酸溶液に
蓚酸を加え、蓚酸化希土の結晶として分取した彼、焼成
して希土類酸化物を得る方法が考えられるが、蓚酸は本
工程中、比較的高価なため、蓚酸化赤土の結晶を、その
まま焼成して希土類酸化物を得る方法は、コスト的に不
利である。そこで更に、蓚酸化赤土をアルカリで処理し
、水酸化赤土と蓚酸のアルカリ塩とに分取し、水酸化赤
土は焼成して希土類酸化物を得、蓚酸のアルカリ塩は、
次の希土類の硫酸塩溶液を蓚酸塩化する工程にもどし、
前工程で損失した分の蓚酸を補充して蓚酸塩化する、リ
サイクル法が考えられている。
Rare earth oxides are made from a mixture of more than ten types of rare earth elements, and are made into a raw material before being used in various fields. Rare earth oxides are manufactured using Zemetime, a rare earth ore. Monazite, bastnasite, etc. are conventionally known as
The rare earth sulfuric acid solution and the insoluble residue are separated by heating and decomposing with concentrated sulfuric acid and leaching with water. There is also a method of obtaining rare earth salts by adding alkali to this rare earth sulfuric acid solution, but in this case, due to the phosphorus and acid groups present in the rare earth (lIre acid solution), rare earth salts can be obtained without hydrating rare earth. Therefore, oxalic acid is added to a sulfuric acid solution of rare earths, and the rare earth oxide crystals are collected. Because this process is relatively expensive, it is disadvantageous in terms of cost to obtain rare earth oxides by firing the crystals of the oxidized red clay as is.Therefore, we further treat the oxidized red clay with an alkali and oxidize it by hydration. The red clay and the alkali salt of oxalic acid are separated, and the hydroxide red clay is calcined to obtain rare earth oxides, and the alkali salt of oxalic acid is
Return the rare earth sulfate solution to the oxalate process,
A recycling method is being considered in which the oxalic acid lost in the previous process is replenished and converted into oxalate.

このように、希土類の原鉱石から希土類酸化物を製造す
るには、数多くの反応、分離等の工程を経るため、各工
程における僅かな損失でも叢終収率を犬きく低下させる
。各工程で数%ずつ収率が低下した場合、最終収率は士
数係の低下となり、数%の希土類の収率変動で、製造コ
ストに大きく影響を与える希土類の製造においては大問
題であり、各工程における収率向上が切望されている。
As described above, in order to produce rare earth oxides from raw rare earth ores, a large number of steps such as reactions and separations are required, and even a small loss in each step significantly reduces the final yield. If the yield decreases by a few percent in each process, the final yield will drop by a factor of 1, which is a big problem in the production of rare earths, where even a few percent change in the yield of rare earths can greatly affect the production cost. There is a strong desire to improve the yield in each step.

本発明者等は、蓚酸のアルカリ塩をリサイクルして蓚酸
化赤土を得る工程について検討した結果、希土類の硫酸
塩溶液まだは、蓚酸のアルカリ塩に硫酸を加え、蓚酸の
アルカリ塩及び補充する蓚酸の添加速度、添加順序全工
夫することで、蓚酸化赤土の収率が向上することを発見
し、一本発明に達□しだ。
As a result of studying the process of recycling an alkali salt of oxalic acid to obtain oxalic acid red clay, the present inventors found that a rare earth sulfate solution is not yet available. It was discovered that the yield of oxidized red clay could be improved by changing the addition rate and order of addition, and the present invention was achieved.

すなわち、希土類の硫酸塩溶液に蓚酸を添加し分離して
得られた蓚酸化赤土をアルカリで処理し水酸化赤土と蓚
酸の゛アルカリ塩とに分離し、蓚酸のアルカリ塩を新/
こな蓚酸を補充して、次の蓚酸化工程にリサイクル使用
する方法において、事前に希土類の硫酸浴液あるいは、
11名酸のアルカリ塩浴液に硫酸を添加し7た後、局部
的!1HJm昇がないよう徐々に蓚酸のアルカリ塩溶液
を希土類の硫酸溶液に加え、最後に補充分の新たな蓚酸
を加えることを特徴とする希土類酸化物の製造方法に存
する。
That is, oxalic acid red clay obtained by adding and separating oxalic acid to a rare earth sulfate solution is treated with an alkali to separate it into hydroxide red clay and an alkali salt of oxalic acid.
In the method of replenishing oxalic acid and recycling it for the next oxidation process, a rare earth sulfuric acid bath solution or
After adding sulfuric acid to the alkaline salt bath solution of 11 acids, localized! The method for producing a rare earth oxide is characterized in that an alkali salt solution of oxalic acid is gradually added to a sulfuric acid solution of a rare earth metal so as not to increase the temperature by 1 HJm, and finally a new amount of oxalic acid is added to make up for it.

次に発明の詳細な説明をする。希土類の硫酸浴液tま従
来公知の方法により、希土類の原鉱石を濃硫酸で加熱分
解し、水でリーグ;ングし、j・リウム等を分離して得
られる。このときの希土類の硫酸浴液のpHは1.0〜
1.3程度である。リサイクル使用される蓚酸のアルカ
リ塩は、前サイクルの蓚酸化赤土をアルカリで処理する
際に、水酸化赤土及び、蓚酸のブルカIJ J盆の回収
率を向−1ニするため、1.2理論当量倍前後のアルカ
リが使用され、よってpH1,2以上の強アルカリ性溶
液となっている。
Next, a detailed explanation of the invention will be given. Rare earth sulfuric acid bath solution can be obtained by heating and decomposing raw rare earth ores with concentrated sulfuric acid, leaching with water, and separating j.lium and the like using a conventionally known method. At this time, the pH of the rare earth sulfuric acid bath solution is 1.0 ~
It is about 1.3. The alkali salt of oxalic acid that is recycled is used to improve the recovery rate of hydroxide red clay and oxalic acid burqa IJJ tray when treating the oxal oxide red clay from the previous cycle with alkali. Approximately twice the equivalent amount of alkali is used, resulting in a strongly alkaline solution with a pH of 1.2 or higher.

まだ補充する蓚酸は、蓚酸化赤土の収率を向上するだめ
、通常理論当量の1.3倍前後必要とするので、リサイ
クルされる蓚酸のアルカリ塩との差の分、通常0.3〜
0.4理論当量倍使用さ此る。これらによって希土類の
硫酸溶液を蓚酸化するわけであるが、本発明では事前に
希土類の硫酸溶液才だは、イ6酸のアルカリ塩溶液に硫
酸を加えておき、希土類の硫酸溶液に徐々に蓚酸のアル
カリ塩に;液を加え、最後に41キ酸を加えるという操
作をとることが重要である。
The amount of oxalic acid to be replenished is normally required to be around 1.3 times the theoretical equivalent in order to improve the yield of oxidized red clay.
0.4 times the theoretical equivalent was used. These methods are used to oxidize a rare earth sulfuric acid solution, but in the present invention, sulfuric acid is added to the rare earth sulfuric acid solution in advance, or to an alkali salt solution of oxalic acid, and oxalic acid is gradually added to the rare earth sulfuric acid solution. It is important to add the liquid to the alkali salt of the chlorine, and finally add the 41-carboxylic acid.

例えば、攪拌付反応器に希土類の硫酸溶液を仕込み、こ
れに硫酸を加える。(または、蓚酸のアルカリ塩溶液に
加える)硫酸の添加量は、全蓚酸を加えた後、蓚酸化赤
土のスラリー液のpHが1.5以下となる量を加える。
For example, a sulfuric acid solution of a rare earth element is placed in a stirred reactor, and sulfuric acid is added to the solution. The amount of sulfuric acid added (or added to the alkaline salt solution of oxalic acid) is such that the pH of the slurry of oxalic oxidized red clay becomes 1.5 or less after all the oxalic acid is added.

次に希土類の硫酸溶液を攪拌しながら、局部的pH上昇
がないように徐々に蓚酸のアルカリ塩溶液を加え、蓚酸
化赤土の沈殿生成を確認した後に、補充分の蓚酸を加え
る。蓚酸のアルカリ塩の添加速度は反応器の(1f拌状
況等によって決まるものであるが、例えば、200p。
Next, while stirring the rare earth sulfuric acid solution, an alkali salt solution of oxalic acid is gradually added so as not to increase the local pH, and after confirming the formation of a precipitate of oxidized red clay, a supplementary amount of oxalic acid is added. The rate of addition of the alkali salt of oxalic acid is determined by the stirring conditions of the reactor (1f), for example, 200p.

の円筒形反応5で、攪拌ト吏の回転速度が100〜20
 Orpmの時、(f4Hのアルカリ塩浴液全量の5〜
20%/分の速度で65加した結果、局部的pH上昇も
なく高収率を得だ。
In the cylindrical reaction 5, the rotation speed of the stirrer is 100-20
At Orpm, (5 to 5 of the total amount of f4H alkali salt bath solution)
As a result of adding 65% at a rate of 20%/min, a high yield was obtained without any local pH increase.

ここで、事前に硫酸を添加しない場合、硫酸を添加して
も、急速に蓚酸のアルカリ塩浴液を加ぐ−だ場合、−ま
た、イ1′S酸化の最後に硫酸を加えた場合は、蓚酸の
アルノJり塩浴液中の過剰のアルカリが、一時期、系の
pHをと昇させ、反応速度の速い水酸化物あるいtよ、
−f:Jシに類するものが生成し、蓚酸化赤土の沈殿生
成を阻害し蓚酸化赤土の収率を低下させ、史に系のpl
(が中性附近まで上昇すれば、希土類の硫酸溶液中の不
純物が、蓚酸化赤土と共に共沈してしまう現象が観られ
た。
Here, if sulfuric acid is not added in advance, if sulfuric acid is added but the alkali salt bath of oxalic acid is rapidly added, or if sulfuric acid is added at the end of 1'S oxidation, , the excess alkali in the oxalic acid alnochloride bath solution temporarily raises the pH of the system, causing hydroxides and t, which have a fast reaction rate, to
-f: Something similar to J is generated, which inhibits the precipitation of the oxidized red clay, lowering the yield of the oxidized red clay, and causing the system's pl
A phenomenon was observed in which impurities in the rare earth sulfuric acid solution co-precipitated with the oxidized red clay when the oxidized red clay rose to near neutrality.

捷だ、補充分の蓚酸を最後に加えることは、蓚酸が溶解
する際の吸熱効果により、蓚酸化赤土のスラリー浴液を
冷却し、蓚酸化台土の俗解度を低下させ、その後の沢過
等の分離によって系外へ損失する蓚酸化合土量を減少す
る効果を有する。温度は低い方が良いが、特に限定する
ものではない。
However, adding supplemental oxalic acid at the end cools the slurry bath liquid of oxalic oxidized red clay due to the endothermic effect when oxalic acid dissolves, lowering the vulgarity of oxalic oxidizing soil, and reducing the subsequent swamp filtration. This has the effect of reducing the amount of oxalate compound lost to the outside of the system due to the separation of Although it is better to lower the temperature, there is no particular limitation.

このように、事前に、希土類の硫酸浴′tv、あるいは
、リサイクルされた蓚酸のアルカリ塩溶液に、硫酸を加
え、蓚酸のアルカリ塩溶液を徐々に希土類の硫酸溶液に
添加した後、新たな蓚酸を加える本発明の方法により、
過去に報告された方法に比べ、十数%の蓚酸化台土の収
率向上が達成される。
In this way, sulfuric acid is added in advance to a rare earth sulfuric acid bath or a recycled oxalic acid alkaline salt solution, and after gradually adding the oxalic acid alkaline salt solution to the rare earth sulfuric acid solution, fresh oxalic acid is added. By the method of the present invention, adding
Compared to previously reported methods, the yield of oxidized clay soil is improved by more than ten percent.

以下実施例と比較例によ)本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

実施例 1 酸化台土換算で、13.1y/ILの希土類を含有する
希土類硫酸溶液10.ONを攪拌機付円筒容器に仕込み
、150rpmの回転数で攪拌し、濃硫酸30mgを加
える。次に、本文中の蓚酸のアルカリ塩溶液に相当する
、3tl)蓚酸ソーダ溶液(蓚酸化台土のアルカリ処理
の際、苛性ソーダ1.2理論当量倍使用し、すでに2回
リサイクル使用したもの)6.81 (希土類に対して
0.9理論当量倍)を0.7I!、7分の速度で冷加し
た。蓚酸化台土の沈殿生成を認めた後、蓚酸58y(希
土類に対して0.4理論当量倍)加えた。得られた蓚酸
化赤土スラリー溶液のpHは1..45(26℃)、蓚
酸化台土の収率は酸化台土換算で98.5%であった。
Example 1 Rare earth sulfuric acid solution containing 13.1y/IL of rare earth in terms of oxidized soil 10. Charge ON into a cylindrical container equipped with a stirrer, stir at a rotation speed of 150 rpm, and add 30 mg of concentrated sulfuric acid. Next, a 3 tl) sodium oxalate solution (corresponding to the alkaline salt solution of oxalic acid mentioned in the text) (1.2 times the theoretical equivalent of caustic soda was used during the alkali treatment of the oxal oxidation soil, and it had already been recycled twice) 6 .81 (0.9 theoretical equivalent times the rare earth) to 0.7I! , at a rate of 7 minutes. After the formation of a precipitate of oxalic acid oxidized soil was observed, 58y of oxalic acid (0.4 times the theoretical equivalent relative to the rare earth) was added. The pH of the obtained oxidized red clay slurry solution was 1. .. 45 (26° C.), and the yield of oxidized soil was 98.5% in terms of oxidized soil.

実施例 2 実施例1におい′(、濃硫酸を蓚酸ソーダ溶液の方に加
えた他、実Mli例1と同様にして行った結果、最純P
)I = 1.47 (26℃)、蓚酸化台土の収率9
8.3%であった。
Example 2 As a result of carrying out the same procedure as in Example 1 except that concentrated sulfuric acid was added to the sodium oxalate solution, the purest P
) I = 1.47 (26°C), yield of oxidized soil 9
It was 8.3%.

実施例 3 実施例1におい−U、 #硫酸の添加量を250 ml
とした他、実hfli91IIと同様にして行った結果
、最終+)H=0.80 (27℃)、収率98.3 
%であった。
Example 3 Example 1 Odor-U, #The amount of sulfuric acid added was 250 ml
In addition, as a result of conducting in the same manner as the actual hfli91II, the final +)H = 0.80 (27°C), yield 98.3
%Met.

比較例 1 実施例工の方法において、濃硫酸をいずれ゛にも添加せ
ず、また、鶴酸ソーダ溶液を一気に加えた他、実施例1
と同様に行った結果、最終pH=3.06(29℃)、
収率86.0%であった。
Comparative Example 1 In the method of Example 1, concentrated sulfuric acid was not added to any of the methods, and sodium truncate solution was added all at once.
The results were as follows: final pH = 3.06 (29°C),
The yield was 86.0%.

比較例 2 比較例1の方法において、蓚酸ソーダ浴液と蓚酸の添加
順序を逆にして行った結果、最終pH−3,02(30
℃)、収率85.7%であった。
Comparative Example 2 In the method of Comparative Example 1, the order of addition of the sodium oxalate bath solution and oxalic acid was reversed, and as a result, the final pH was -3.02 (30
℃), yield was 85.7%.

また、比較例1.2で生成した蓚酸化台土を分析した結
果、リン、鉄等の不純物を比較的多く含有していた。
Further, as a result of analyzing the oxidized soil produced in Comparative Example 1.2, it was found that it contained relatively large amounts of impurities such as phosphorus and iron.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 希土類の硫酸水溶液にリサイクルされた蓚酸のアルカリ
塩溶液及び、蓚酸を添加し、濾別して得られた蓚酸化希
土をアルカリで処理し、水酸化希土と蓚酸のアルカリ塩
とに分離し、水酸化希土は焼成して酸化希土とし、蓚酸
のアルカリ塩溶液は前記の蓚酸化工程にもどし、新たな
蓚酸を補充してリサイクルする方法において、事前に希
土類の硫酸溶液あるいは、蓚酸のアルカリ塩溶液に硫酸
を添加した後、局部的pH上昇がないよう徐々に蓚酸の
アルカリ塩溶液を希土類の硫酸溶液に加え最後に補充分
の新たな蓚酸を加えることを特徴とする希土類酸化物の
製造方法。
A recycled alkali salt solution of oxalic acid and oxalic acid are added to an aqueous solution of rare earth sulfuric acid, and the obtained oxalic acid rare earth is treated with an alkali to separate it into rare earth hydroxide and an alkali salt of oxalic acid. Rare earth oxide is fired to form rare earth oxide, and the alkali salt solution of oxalic acid is returned to the above-mentioned oxidation process, and new oxalic acid is replenished for recycling. After adding sulfuric acid to the solution, a solution of an alkaline salt of oxalic acid is gradually added to the sulfuric acid solution of the rare earth to prevent a local pH increase, and finally, a new supplementary amount of oxalic acid is added. .
JP58208323A 1983-11-08 1983-11-08 Manufacture of rare earth metallic oxide Pending JPS60103026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208323A JPS60103026A (en) 1983-11-08 1983-11-08 Manufacture of rare earth metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208323A JPS60103026A (en) 1983-11-08 1983-11-08 Manufacture of rare earth metallic oxide

Publications (1)

Publication Number Publication Date
JPS60103026A true JPS60103026A (en) 1985-06-07

Family

ID=16554357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208323A Pending JPS60103026A (en) 1983-11-08 1983-11-08 Manufacture of rare earth metallic oxide

Country Status (1)

Country Link
JP (1) JPS60103026A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478543A (en) * 1993-06-21 1995-12-26 Santoku Metal Industry Co., Ltd. Compound oxide having oxygen absorbing and desorbing capability and method for preparing same
US5571492A (en) * 1994-06-20 1996-11-05 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability
US5580536A (en) * 1993-06-21 1996-12-03 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
US5582785A (en) * 1993-06-21 1996-12-10 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
US7648001B2 (en) 2005-09-13 2010-01-19 Kubota Corporation Speed shift arrangement for work vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478543A (en) * 1993-06-21 1995-12-26 Santoku Metal Industry Co., Ltd. Compound oxide having oxygen absorbing and desorbing capability and method for preparing same
US5580536A (en) * 1993-06-21 1996-12-03 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
US5582785A (en) * 1993-06-21 1996-12-10 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
US5571492A (en) * 1994-06-20 1996-11-05 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability
US7648001B2 (en) 2005-09-13 2010-01-19 Kubota Corporation Speed shift arrangement for work vehicle

Similar Documents

Publication Publication Date Title
US3104950A (en) Process for the separation of iron and titanium values by extraction and the subsequent preparation of anhydrous titanium dopxode
WO2016202271A1 (en) Method of recovering rare earth, aluminum and silicon from rare earth-containing aluminum-silicon scraps
JP4018138B2 (en) Long spherically agglomerated basic cobalt carbonate (II) and long spherically agglomerated cobalt hydroxide (II), their production and use
US4233063A (en) Process for producing cobalt powder
US2398493A (en) Production of magnesium chloride from serpentine
CN103966456B (en) A kind of method from silver separating residue of copper anode slime comprehensively recovering valuable metal
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
US4184868A (en) Method for producing extra fine cobalt metal powder
US4214895A (en) Method for producing cobalt metal powder
JPS60103026A (en) Manufacture of rare earth metallic oxide
CN1267640A (en) Preparation of high-purity superfine electron-level ferric oxide powder
EA014448B1 (en) Method for industrial purification of titanium feed
JPS61532A (en) Method for recovering samarium
JPS60166230A (en) Manufacture of manganese sulfate solution
US4908462A (en) Cobalt recovery method
US2384009A (en) Process for recovering magnesium salts
CA1048176A (en) Process for purifying aqueous solutions, of metal ions precipitating as arsenides, antimonides, tellurides, selenides, and tin and mercury alloys
US1504671A (en) Titanium compound
JPS61533A (en) Method for recovering samarium
US3705230A (en) Process for extracting molybdenum and rhenium from raw materials containing same
US2198527A (en) Purification of sand
US3963824A (en) Process for extracting chromium from chromium ores
CN1034592C (en) Method for producing cupric sulfate from lowgrade oxide copper ore
US2418073A (en) Ore treatment process
US2319887A (en) Hydrometallurgical process for the recovery of tin