JPS60102903A - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane

Info

Publication number
JPS60102903A
JPS60102903A JP58211470A JP21147083A JPS60102903A JP S60102903 A JPS60102903 A JP S60102903A JP 58211470 A JP58211470 A JP 58211470A JP 21147083 A JP21147083 A JP 21147083A JP S60102903 A JPS60102903 A JP S60102903A
Authority
JP
Japan
Prior art keywords
support
molecular
membrane
vapor
composite semipermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211470A
Other languages
Japanese (ja)
Other versions
JPH0326097B2 (en
Inventor
Takehiro Yamamoto
健博 山本
Yoshihisa Fujii
義久 藤井
Kazuyuki Ozaki
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP58211470A priority Critical patent/JPS60102903A/en
Publication of JPS60102903A publication Critical patent/JPS60102903A/en
Publication of JPH0326097B2 publication Critical patent/JPH0326097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite permeable membrane having a thinly and uniformly formed active layer, good in water permeability and free from a membrane defect, by vapor depositing a high-molecular membrane onto a porous high-molecular support by ion plating. CONSTITUTION:As a porous high-molecular support, a film comprising polysulfone, polyvinylidene fluoride or aromatic polyamide and having pores with a pore size of about 20-30Angstrom formed to the film surface thereof is used. The high- molecular substance vapor deposited to the support is same to or different from the high-molecular one forming the support but a fluorine contained resin such as polyvinylidene fluoride is pref. This vapor deposition high-molecular substance is vapor deposited at high vapor deposition strength by high frequency ion plating. As mentioned above, the high-molecular membrane with a thickness of about 0.2-0.3mum is vapor deposited to the support to form a composite semipermeable membrane.

Description

【発明の詳細な説明】 本発明は、複合半透膜に関する。更に詳しくは、多孔質
高分子支持体上に高分子薄膜ヲ設けてなる複合半透膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite semipermeable membrane. More specifically, the present invention relates to a composite semipermeable membrane comprising a thin polymer film provided on a porous polymer support.

従来、逆浸透膜などとして有効に使用されている複合半
透膜は、大きく分けて以下の3つのタイプに類別される
Conventionally, composite semipermeable membranes that have been effectively used as reverse osmosis membranes and the like can be broadly classified into the following three types.

(1)重合体コーティング型 これは最も基本的なものであり、代表的なものとしてU
OP社のOTA複合膜などがある。
(1) Polymer coating type This is the most basic type, and the typical one is U.
Examples include OP's OTA composite membrane.

(2)重合体コーティング架橋型 MS−100膜といわれ、界面重合により複合膜を形成
させたもので、その代表例としてはUOP社のPA−1
00、FA−300、更にMS1社のMSSi2O3ど
が挙げられる。具体的には、上記PA −300でハ、
エビアミン−イソフタロイルクロリド橋かけ膜が形成さ
ノしている。
(2) It is called a polymer coating cross-linked MS-100 membrane, and a composite membrane is formed by interfacial polymerization.A representative example is UOP's PA-1.
00, FA-300, and MSSi2O3 from MS1. Specifically, in the above PA-300,
A shrimpamine-isophthaloyl chloride cross-linked film is formed.

(3)重合性単量体架橋型 MS −200膜と呼はれているものが、代表的なもの
である。
(3) A typical example is what is called a polymerizable monomer crosslinked MS-200 membrane.

これらの中、重合体コーティング架橋型および □重合
性単量体架橋型のものは、架橋反応を行わせるのに多く
の熱エネルギーを必要とし、従って省エネルギーという
点からみて問題がある。また、架橋反応時の熱処理条件
、コーティングきれる重合体の濃度あるいは重合性単量
体溶液の濃度などが膜性能に影響葡及はすので、その管
理が大変である。
Among these, the polymer coating crosslinking type and the polymerizable monomer crosslinking type require a large amount of thermal energy to carry out the crosslinking reaction, and are therefore problematic from the point of view of energy saving. In addition, the heat treatment conditions during the crosslinking reaction, the concentration of the polymer that can be coated, the concentration of the polymerizable monomer solution, etc. affect the membrane performance, so it is difficult to control them.

従って、これらの問題点を有する架碕型のものよりは重
合体コーティング型の方が製造面からみると望ましいが
、反面重合体コーティング型のものはそれの製法上活性
層となる高分子薄膜層の厚さが厚くなり、従って透水率
カニあまり良くないという難点がみられる。また、尚分
子薄膜層自体不拘−になり易く、ピンホールなとの膜欠
陥を生ずる危険性ががなり存在する。
Therefore, the polymer coating type is more desirable from a manufacturing perspective than the kasaki type, which has these problems, but on the other hand, the polymer coating type has a thin polymer film layer that becomes the active layer due to the manufacturing method. The problem is that the thickness is thicker and therefore the water permeability is not very good. In addition, the molecular thin film layer itself tends to become unstable, and there is a risk of film defects such as pinholes occurring.

本発明者らは、活性層たる高分子薄膜層を薄くかつ均一
に形成させ、それによって透水率が良好でかつ膜欠陥の
ないものを得る目的で種々検討の結果、イオンブレーテ
ィングによって高分子mPMを形成させるときわめて有
効であることを見出した。
The present inventors have conducted various studies with the aim of forming a thin and uniform polymer thin film layer, which is an active layer, and thereby having good water permeability and no membrane defects. It has been found that it is extremely effective to form a

従って、本発明は複合半透膜に係り、この複合半透膜は
、多孔質高分子支持体上に支持体を形成する高分子物質
と同種または異種の高分子薄膜をイオンブレーティング
により蒸着させてなる。
Therefore, the present invention relates to a composite semipermeable membrane, which is produced by depositing a polymeric thin film of the same type or different type as the polymeric substance forming the support on a porous polymeric support by ion blasting. It becomes.

多孔質高分子支持体としては、ポリスルホン、ポリフッ
化ビニリデン、芳香族ホリアミド、ポリプロピレン、ポ
リアクリロニトリル、ポリビニルアルコールなどの高分
子物質r1乾湿式法、溶融法などにより多孔質化した膜
状体が用いられる。
As the porous polymer support, a membrane-like body made porous by a polymer substance r1 such as polysulfone, polyvinylidene fluoride, aromatic holamide, polypropylene, polyacrylonitrile, or polyvinyl alcohol by a dry-wet method, a melting method, etc. is used. .

具体的には、例えは乾湿式法の場合には、所望濃度の高
分子物質溶液をスペーサーを用いてガラス板上に一定の
厚みにキャスティングし、それを乾燥させた後、ガラス
板と共に水などの凝固浴中に浸漬させることによりそれ
をゲル化させ、膜表面に約20〜30人程度の孔全形成
させた膜状物を得る方法によって、多孔質高分子支持体
がfs漬される。
Specifically, in the case of the wet-dry method, for example, a solution of a polymeric substance with a desired concentration is cast onto a glass plate to a certain thickness using a spacer, and after drying, water etc. are cast together with the glass plate. The porous polymer support is immersed in fs by a method of gelling it by immersing it in a coagulation bath to obtain a membrane-like material in which about 20 to 30 pores are completely formed on the membrane surface.

これらの支持体上に蒸着される高分子物質は、支持体を
形成する高分子物質と同種または異種のものであり、例
えはポリフッ化ビニリデン、ポリテトラフルオロエチレ
ンなどのフッ素系樹脂が好んで用いられる。これらの蒸
着高分子物質は、イオンブレーティング、好ましくは高
周波法イオンブレーティングにより、蒸気として蒸発し
た後途中でイオン化され、多孔質高分子支持体に向けて
加速されるので、大きな蒸着強度で(セロファンテープ
剥離試験で剥離せず)支持体上に蒸着される。勿論、こ
のような蒸着は、一般の真空蒸着でも可能であるが、蒸
着膜の強度や均一性などの点からはイオンブレーティン
グがはるかにすぐれてオリ、従ってピンホールなどの膜
欠陥が殆んト考えられない高分子薄膜層を支持体上に形
成させることができる。
The polymeric substances deposited on these supports may be the same or different from the polymeric substances forming the support, and for example, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene are preferably used. It will be done. These vapor-deposited polymeric materials are vaporized as a vapor by ion blating, preferably by radio-frequency ion brating, and then ionized midway through the process and accelerated toward the porous polymer support, so that they can be deposited with a high vapor deposition intensity ( No peeling in cellophane tape peel test) is deposited on the support. Of course, this kind of vapor deposition can be done by general vacuum vapor deposition, but ion blating is far superior in terms of the strength and uniformity of the deposited film, and therefore there are almost no film defects such as pinholes. Inconceivable polymeric thin film layers can be formed on the support.

このような高分子物質の蒸着薄膜を形成させるイオンブ
レーティングは、例えば図示された態様に従って行なう
ことができる。即ち、イオンブレーティング装置として
は、日本真空■製EBV−6DHが用いられ、その基板
ホルダー1に多孔質高分子支持体を貼着し、蒸発源とし
て無rif ”A klルツボ2中にフッ素糸樹脂を収
容した後、装置内の圧力を10−’ 〜10−’ To
rrのオーダーに減圧し、カス人口3からアルゴンなど
の不活性ガスを10−’ Torrのオーダー迄導入す
る。その後、可変直流電源4を用いて200vの1d圧
を印加し、次に高周波電源5およびマツチングボックス
6により、高周波フィル7に13.56 MH,の高周
波を20Wの有゛効電力でかける。約3分間後、更にフ
ィラメント8に直流電源(KG−20M) 9より、I
Q mAの電流″’l:5 KVの電圧を約5分間かけ
て、イオンブレーティング゛を行なう。
Ion blasting to form such a deposited thin film of a polymeric substance can be performed, for example, according to the illustrated embodiment. That is, EBV-6DH manufactured by Japan Vacuum Corporation is used as the ion blating device, a porous polymer support is attached to the substrate holder 1, and a fluorine thread is placed in the non-rif "A kl crucible 2 as an evaporation source. After accommodating the resin, the pressure inside the device is increased to 10-' to 10-' To
The pressure is reduced to the order of 10 Torr, and an inert gas such as argon is introduced to the order of 10-' Torr. Thereafter, a 1d voltage of 200V is applied using the variable DC power supply 4, and then a high frequency of 13.56 MH is applied to the high frequency filter 7 with an effective power of 20W using the high frequency power supply 5 and the matching box 6. After about 3 minutes, connect DC power supply (KG-20M) 9 to filament 8.
Ion blating is performed by applying a current of Q mA and a voltage of 5 KV for about 5 minutes.

このようにして、多孔質高分子支持体上に厚さ約0.2
〜0.3μm程度の高分子薄膜を蒸着させた複合半透膜
は、活性層の厚さが薄いので透水率および性能の安定性
の点での著しい改善が達成きれており、従って逆浸透膜
その他の膜用途に有効に使用することができる。
In this way, a thickness of about 0.2
Composite semipermeable membranes in which a thin polymer film of ~0.3 μm is deposited have a thin active layer, so significant improvements in water permeability and performance stability have been achieved, and therefore reverse osmosis membranes It can be effectively used for other membrane applications.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例1 ポリスルホン(ト」産化学製品P−1700)を15重
鼠%台有するジメチルホルムアミド溶液を、スベーt 
−厚0.2 mmでガラス板上にキャストし、水を凝固
剤とする乾湿式法により、厚さ0.12flの多孔質高
分子支持体を製造した0 この多孔質ポリスルホン支持体を用い、図示された態僅
に従って・rオンブト・−テ・fングが行われた。蒸着
ざλする高分子物質としてはボリア′ノ化ビニリデン(
ペンウォルト社製品カイナー4600 )が用いられ、
不活性ガスとしてはアルゴンが7×10”” Torr
の圧力にt【る迄導入された。
Example 1 A dimethylformamide solution containing 15% of polysulfone (TOSAN CHEMICAL PRODUCTS P-1700) was added to
- A porous polymer support with a thickness of 0.12 fl was produced by casting on a glass plate with a thickness of 0.2 mm and using a dry-wet method using water as a coagulant. Using this porous polysulfone support, The procedure was carried out according to the illustrated conditions. The polymer material to be vapor-deposited is vinylidene boria'(
Pennwalt product Kynar 4600) was used,
As an inert gas, argon has a pressure of 7×10” Torr.
It was introduced to a pressure of t.

このようにして多孔質ポリスルホン支持体上にポリフッ
化ビニリデンの薄膜(厚さ0.3μm)を蒸着させた複
合半透膜は、これに2500 ppmの塩化ナトリウム
水溶液を操作[F、50′Tlで透過させたところ、透
水率についてFi、0.10 crIi/c11t−h
r・Kp/cmの値が、また排除率については92.1
%の値がそれぞれ得られた。
A composite semipermeable membrane in which a thin film (thickness: 0.3 μm) of polyvinylidene fluoride was deposited on a porous polysulfone support was prepared using a 2500 ppm aqueous sodium chloride solution [F, 50'Tl]. When it was permeated, the water permeability was Fi, 0.10 crIi/c11t-h
The value of r・Kp/cm and the rejection rate are 92.1.
% values were obtained for each.

実施例2 16例1において、ポリフッ化ビニリデン(ペンウォル
ト社製品力、イナー4600) 20ffiffi%お
よびポリエチレングリコール(関東化学製品PEG @
6000)2!rila%をそオLそれ含有するジメチ
ルホルムアミド溶?Ikから乾湿式法により製造された
多孔質ポリフッ化ビニリデン支持体(厚さo、io+m
)〃;用いられた。
Example 2 16 In Example 1, 20ffiffi% polyvinylidene fluoride (Penwalt Co., Ltd., Inar 4600) and polyethylene glycol (Kanto Kagaku PEG @
6000) 2! Dimethylformamide solution containing Rila%? Porous polyvinylidene fluoride support (thickness o, io+m
)〃; used.

実施例1と同様にして測定された透水率は0.08cd
6rt−hr−Kg7t、i テアり 、−4ft、排
除率は95.8%”rあった。
The water permeability measured in the same manner as in Example 1 was 0.08 cd.
6rt-hr-Kg7t, i tear, -4ft, rejection rate was 95.8%"r.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に用いられるイオンブレーティング装置
の概略図である0 (符号の説明) 1・・・・・・基板ホルダー 2・・・・・・ルツボ 3・・・・・・不活性ガス人口 4・・・・・・可変直流電源 5・・・・・・高周波電源 6・・・・・・マツチングボックス 7・・・・・・品絢波コイル 8・・・・・・フィラメント 9・・・・・・直流電源 代理人 弁理士 吉 1)俊 夫
The drawing is a schematic diagram of an ion blating apparatus used in the present invention. 0 (Explanation of symbols) 1... Substrate holder 2... Crucible 3... Inert gas Population 4...Variable DC power supply 5...High frequency power supply 6...Matching box 7...Ayanami coil 8...Filament 9 ...DC power supply agent Yoshi 1) Toshio

Claims (1)

【特許請求の範囲】 1、多孔質高分子支持体上に、支持体を形成する高分子
物質と同椋または異種の高分子薄膜をイオンブレーティ
ングにより蒸着させてなる複合半透膜。 2、高分子薄膜としてフッ素系樹脂薄膜を蒸着させた特
許請求の範囲第1項記載の複合半透膜。
[Scope of Claims] 1. A composite semipermeable membrane obtained by depositing a thin polymer film of the same or different type as the polymer material forming the support on a porous polymer support by ion blasting. 2. The composite semipermeable membrane according to claim 1, in which a fluororesin thin film is deposited as the polymer thin film.
JP58211470A 1983-11-10 1983-11-10 Composite semipermeable membrane Granted JPS60102903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211470A JPS60102903A (en) 1983-11-10 1983-11-10 Composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211470A JPS60102903A (en) 1983-11-10 1983-11-10 Composite semipermeable membrane

Publications (2)

Publication Number Publication Date
JPS60102903A true JPS60102903A (en) 1985-06-07
JPH0326097B2 JPH0326097B2 (en) 1991-04-09

Family

ID=16606470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211470A Granted JPS60102903A (en) 1983-11-10 1983-11-10 Composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JPS60102903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574957A2 (en) * 1989-04-14 1993-12-22 Membrane Products Kiryat Weizmann Ltd. Acrylonitrile- and polyvinylidene fluoride-derived membranes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574957A2 (en) * 1989-04-14 1993-12-22 Membrane Products Kiryat Weizmann Ltd. Acrylonitrile- and polyvinylidene fluoride-derived membranes
EP0574957A3 (en) * 1989-04-14 1994-01-12 Membrane Products Kiryat Weizmann Ltd. Acrylonitrile- and polyvinylidene fluoride-derived membranes

Also Published As

Publication number Publication date
JPH0326097B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
US4147745A (en) Process for producing semipermeable membranes
US4107049A (en) Process for producing semipermeable membranes
US3775308A (en) Method for preparation of composite semipermeable membrane
US4163725A (en) Process for preparing of semipermeable membranes
EP0513389B1 (en) Liquid-filtering film and filtering device using said film
US4840733A (en) Fine porous membrane and process for producing the same
EP0804961A1 (en) Porous fluorocarbon membrane, method of producing it and a cartridge filter based on it
KR101580702B1 (en) Composite separation membrane
US4265959A (en) Process for producing semipermeable membranes
KR900002095B1 (en) Production of porous membrane
CN108043248A (en) PVA-PVDF hollow fiber ultrafiltration membrane, preparation method, preparation device and application
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
US4268662A (en) Process for improving semipermeable membranes by treating with protic acids or inorganic salts
JPS5924845B2 (en) Method for manufacturing gas selective permeability composite membrane
JPS60102903A (en) Composite semipermeable membrane
Kiamehr Modification of a Highly Permeable Thin-Film-Based Nanofiltration Membrane (PVC) to Increase Efficiency and Separation by Air Plasma Treatment
JPH06169755A (en) Porous hollow filament membrane for cell culture
JPH055529B2 (en)
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH0359733B2 (en)
JPS6152175B2 (en)
JPS59203611A (en) Method for increasing salt permeability of polytetrafluoroethylene porous membrane
JP3290266B2 (en) Composite hollow fiber membrane
JPH0647059B2 (en) Liquid film
JPS58210805A (en) Production of semipermeable membrane