JPS6010264A - Electrophotographic method - Google Patents

Electrophotographic method

Info

Publication number
JPS6010264A
JPS6010264A JP11709083A JP11709083A JPS6010264A JP S6010264 A JPS6010264 A JP S6010264A JP 11709083 A JP11709083 A JP 11709083A JP 11709083 A JP11709083 A JP 11709083A JP S6010264 A JPS6010264 A JP S6010264A
Authority
JP
Japan
Prior art keywords
photosensitive layer
surface potential
charging
current
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11709083A
Other languages
Japanese (ja)
Inventor
Susumu Nakazawa
中沢 享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP11709083A priority Critical patent/JPS6010264A/en
Publication of JPS6010264A publication Critical patent/JPS6010264A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/02Sensitising, i.e. laying-down a uniform charge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To use a photosensitive layer consisting of an org. photoconductor and to maintain stably the surface potential of the 1st and succeeding cycles by performing main electrostatic charging and destaticization in specific flow-in current regions. CONSTITUTION:Destaticization by an AC corona discharge and main electrostatic charging by DC corona discharge are performed by using a photosensitive layer consisting of a perylene pigment charge generating layer/polyvinyl carbazole charge transfer layer, etc. The main electrostatic charging is performed in a flow-in current region to be satd. at 500-700V (embodiment -695V) and the destaticization in 40-90% (embodiment 52.6%) of the flow-in current of the main electrostatic charging. Then the decrease in the absolute value of the surface potential at the 1st cycle as in the example for comparison (-717V, 96.4%) is obviated and the specified stable potential is obtainable in each cycle.

Description

【発明の詳細な説明】 本発明は有機光導電体感光層を用いる電子写真方法に関
するもので、より詳細には、表面電位が常に安定してお
り、その結果として安定な画像形成を行い得る電子写真
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic method using an organic photoconductor photosensitive layer, and more specifically, the present invention relates to an electrophotographic method using an organic photoconductor photosensitive layer. Concerning photographic methods.

商業的な電子写真複写機においては、複写開始に際して
、先ず感光層の除電及びクリーニングを行い、次いで主
帯電、露光、トナー現像、転写及び除電クリーニングの
諸操作を必要回数反復するシステムが採用されている。
Commercial electrophotographic copying machines employ a system in which the photosensitive layer is first neutralized and cleaned before copying is started, and then main charging, exposure, toner development, transfer, and static elimination cleaning are repeated as many times as necessary. There is.

このように複写機停止時の感光層の汚れの影響を防止す
る複写開始時の除電クリーニング操作と複写終了時の除
電クリーニング操作とが行われることに関連して、この
タイプの電子写真複写機の感光体として、有機光導電体
感光層を用いると、成る種の欠点を生ずることが認めら
れた。即ち、複写1サイクル目の複写物の画像濃度が2
サイクル目以降の複写物の画像濃度よりも低くなるとい
う傾向が認められるのである。この理由は、正確には不
明であるが、有機光導電体感光層の場合には、無機光導
電体感光層の場合に比して、比較的寿命の長いキャリヤ
が形成され、複写終了時において既に除電された感光層
に対して更に除電用チャージが行われるため、この除電
用チャージの影響が顕著に生ずるためと思われる。
In this type of electrophotographic copying machine, the static elimination cleaning operation is performed at the start of copying and at the end of copying to prevent the influence of stains on the photosensitive layer when the copying machine is stopped. It has been found that the use of organic photoconductor photosensitive layers as photoreceptors causes certain drawbacks. That is, the image density of the copy in the first copying cycle is 2.
There is a tendency for the image density to be lower than the image density of copies after the cycle. The exact reason for this is unclear, but in the case of an organic photoconductor photosensitive layer, carriers with a relatively longer life are formed compared to the case of an inorganic photoconductor photosensitive layer, and at the end of copying, carriers are formed. This is thought to be because the charge for static elimination is further performed on the photosensitive layer that has already been neutralized, so that the influence of this charge for static elimination is significant.

本発明によれば、上述した欠点が解消された有機先導電
体感光層を用いる電子写真方法が提供され、この方法に
よれば1サイクル目と2サイクル目以降とで、常に安定
した表面電位が維持され、その結果として安定な画像形
成が可能となる。
According to the present invention, there is provided an electrophotographic method using an organic leading conductor photosensitive layer which eliminates the above-mentioned drawbacks, and according to this method, a stable surface potential is always maintained in the first cycle and after the second cycle. As a result, stable image formation is possible.

即ち、本発明は、有機光導電体感光層に対して、交流コ
ロナ放電による除電及び直流コロナ放電による主帯電を
行った後、画像露光、トナー現像及びトナー転写を行な
い、これらの行程を反復して画像形成を行なう電子写真
方法において、主帯電を感光層表面電位が500乃至7
00ボルト(絶対値)で飽和する流れ込み電流域で行い
、除電を前記飽和流れ込み電流域よりも低く且つ主帯電
流れ込み電流値の40乃至90%の流れ込み電流値で行
うことを特徴とする電子写真法が提供される。
That is, in the present invention, the photosensitive layer of an organic photoconductor is subjected to charge removal by alternating current corona discharge and main charge by direct current corona discharge, and then subjected to image exposure, toner development, and toner transfer, and these steps are repeated. In the electrophotographic method in which images are formed using
An electrophotographic method characterized in that static electricity is removed in an inflow current range that saturates at 0.00 volts (absolute value), and that static electricity is removed at an inflow current value that is lower than the saturated inflow current range and is 40 to 90% of the main band current inflow current value. is provided.

本発明を添付図面に示す具体例に基づき以下に詳細に説
明する。
The present invention will be described in detail below based on specific examples shown in the accompanying drawings.

電子写真行程を説明するための第1図において、駆動回
転ドラム1の導電性基質2の表面には、有機光導電体感
光層6が設けられている。
In FIG. 1 for explaining the electrophotographic process, an organic photoconductor photosensitive layer 6 is provided on the surface of a conductive substrate 2 of a driving rotary drum 1. As shown in FIG.

このドラムト表面に沿って、主帯電用直流コロナチャー
ジャ4、画像露光用光学系5、トナー6を保持する現像
機構7、転写用コロナチャージャ8、除電用交流コロナ
チャージャ9、除電用光源10、及びトナークリーニン
グ機構11がこの順序で設けられて゛・る。
Along the drum surface, there are a main charging DC corona charger 4, an image exposure optical system 5, a developing mechanism 7 for holding toner 6, a transfer corona charger 8, a static elimination AC corona charger 9, a static elimination light source 10, and The toner cleaning mechanisms 11 are provided in this order.

複写開始に際しては、除電用チャージャ9、除電用光源
10及びトナークリーニング機構11を動作させ、感光
層60表面に付着して〜・るゴミ、汚れ等を除去する。
At the start of copying, the static elimination charger 9, the static elimination light source 10, and the toner cleaning mechanism 11 are operated to remove dust, dirt, etc. attached to the surface of the photosensitive layer 60.

次いで、主帯電用コロナチャージャ4により感光層3を
一定極性の電荷に帯電させると共に、光学系5を通して
画像露光し、原稿像に対応する静電像を形成させる。こ
の静電像と逆極性に帯電しているトナー6を使用し、現
像機構7により静電像に対応するトナー像を感光層3に
形成させる。
Next, the photosensitive layer 3 is charged to a constant polarity by the main charging corona charger 4, and imagewise exposed through the optical system 5 to form an electrostatic image corresponding to the original image. Using toner 6 charged to the opposite polarity to this electrostatic image, a toner image corresponding to the electrostatic image is formed on the photosensitive layer 3 by a developing mechanism 7.

このトナー像を有する感光層6の表面に複写紙12を供
給し、複写紙12の背面から、転写用コロナチャージャ
8により、静電像と同極性の電荷のチャージを行い、ト
ナー像を複写紙120表面に転写させる。トナー像の転
写された複写紙(感光層6から剥離し、定着機構(図示
せず)に送って、トナー像の定着された複写物とする。
A copy paper 12 is supplied to the surface of the photosensitive layer 6 having this toner image, and from the back side of the copy paper 12, a charge of the same polarity as the electrostatic image is charged by a transfer corona charger 8, and the toner image is transferred to the copy paper. 120 surface. The copy paper on which the toner image has been transferred is peeled off from the photosensitive layer 6 and sent to a fixing mechanism (not shown) to form a copy with the toner image fixed thereon.

トナー像転写後の感光層には、転写効率に対応して成る
量のトナーが残存している。このトナー粒子はその摩擦
帯電傾向に対応して未だ帯電している。この帯電電荷を
除去するために交流コロナチャージャ9からのコロナチ
ャージが行われ、更に感光層に残留する電荷を除くため
に、除電用光源10からの全面露光が行われる。このよ
うにして、トナーと感光層とのクーロン力を弱めた状態
で、クリーニング機構11によるトナーのクリーニング
が行われて以後、主帯電乃至クリーニングの操作を複写
枚数分繰り返したのち、−回目の複写プロセスが終了す
る。二回目以後の複写サイクルでは、このクリーニング
に引続いて主帯電以後の操作が繰返して行われる。
After the toner image has been transferred, toner remains in the photosensitive layer in an amount that corresponds to the transfer efficiency. The toner particles are still electrically charged, corresponding to their tendency to triboelectrically charge. Corona charging is performed from an AC corona charger 9 in order to remove this electrical charge, and furthermore, the entire surface is exposed to light from a light source 10 for removing charges in order to remove charges remaining in the photosensitive layer. In this way, the toner is cleaned by the cleaning mechanism 11 while the Coulomb force between the toner and the photosensitive layer is weakened. After that, the main charging and cleaning operations are repeated for the number of copies, and then the -th copy is made. Process terminates. In the second and subsequent copying cycles, following this cleaning, the operations after main charging are repeated.

しかしながら、二回目の複写サイクルでは、既に除電及
びクリーニングの行われた感光層に対して、交流コロナ
チャージが主帯電に先立って行われることになる。有機
光導電体感光層では無機光導電体に比して著しく2イア
タイムの長いキャリヤが帯電や露光によ4り発生し易い
ことは既に指摘した通りであるが、この主帯電に先立っ
て行われる1サイクル目の前帯電の影響が次の主帯電に
及ぼされ、主帯電時の感光層表面電位が、2サイクル目
以降の主帯電時のそれよりもかブより低くなる傾向が認
められる。
However, in the second copying cycle, AC corona charging is performed on the photosensitive layer, which has already been subjected to static elimination and cleaning, prior to main charging. As already pointed out, in the photosensitive layer of an organic photoconductor, carriers with a significantly longer 2-year time than in an inorganic photoconductor are likely to be generated due to charging and exposure. The influence of the pre-charging in the first cycle is exerted on the next main charging, and the surface potential of the photosensitive layer during the main charging tends to be lower than that during the main charging from the second cycle onward.

一例として、ペリレン系顔料電荷発生層/ポリビニルカ
ルバゾール電荷輸送層から成る複合感光層の場合、2ザ
イクル目以降の表面電位が約600ボルトであるのに対
して、1サイクル目の表面電位は約500ボルトに低下
することが認められる。
As an example, in the case of a composite photosensitive layer consisting of a perylene pigment charge generation layer/polyvinyl carbazole charge transport layer, the surface potential after the second cycle is approximately 600 volts, while the surface potential during the first cycle is approximately 500 volts. It is observed that the voltage decreases to volts.

本発明においては、主帯電と除電とを、以下に詳細に説
明する独立した特定の流れ込み電流域で行うことにより
、1サイクル目の表面電位を2サイクル目以降の表面電
位に迄向上させ、全サイクルにわたって表面電位を一定
化させ、常に安定した画像が得られるようにしたもので
ある。
In the present invention, main charging and static elimination are carried out in independent specific current flow ranges, which will be explained in detail below, to improve the surface potential in the first cycle to the surface potential in the second and subsequent cycles. The surface potential is kept constant throughout the cycle, so that stable images can always be obtained.

本発明によれは先ず、主帯電を感光層表面電位が500
乃至700ボルト(絶対値)で飽和する流れ込み電流域
で行う。一般に、有機光導電体感光層の帯電においては
、感光層の厚みが増大するにつれて帯電電位もそれにつ
れて比例的に増大する傾向が認められる。また、第2図
に示すように、チャージャからの流れ込み電流を増大さ
せると、感光層の表面電位(絶対値)は初期においては
、この電流値の増大につれてほぼ比例的に増大するが、
この表面電位は成る位置から電流値の増大にかかわらず
一定値に飽和するようになる。この飽和表面電位は、同
種の感光層の場合その)N厚みと関連しており、この厚
みが小さくなると小さくなり、大きくなると大きくなる
傾向がある。
According to the present invention, first, the main charging is carried out when the surface potential of the photosensitive layer is 500.
This is carried out in the inflow current range that saturates between 700 volts (absolute value). Generally, when charging a photosensitive layer of an organic photoconductor, it is recognized that as the thickness of the photosensitive layer increases, the charging potential tends to increase proportionally. Furthermore, as shown in FIG. 2, when the current flowing in from the charger is increased, the surface potential (absolute value) of the photosensitive layer initially increases almost proportionally as the current value increases;
From this position, the surface potential becomes saturated to a constant value regardless of an increase in the current value. This saturated surface potential is related to the thickness of the same type of photosensitive layer, and tends to decrease as the thickness decreases and increases as the thickness increases.

本発明においては、この飽和表面電位を500乃至70
0ボルト(絶対値)に設定し、この飽和表面電位に対応
する流れ込み電流値で主帯電を行うものである。この飽
和表面電位を上記範囲に設定する理由は、この範囲より
も低すぎると十分な高濃度の画°像が得られず、一方こ
の範囲よりも高いと現像に際して、2成分系現像剤では
トナーのみならず、キャリヤ粒子も静電像に付着したり
、1成分系現像剤でも尾引きのある画像が形成される等
画質が形成されるためである。また、飽和表面電位に対
応する流れ込み電流値、即ち飽和流れ込み電流域(I8
) で判帯電を行うことにより、感光層の表面電位を適
正な現像が行われる一定の範囲に常に安定に維持し得る
と共に、1サイクル目の除電乃至前帯電による表面電位
低下を抑制することが可能となるものである。
In the present invention, this saturation surface potential is set at 500 to 70
It is set to 0 volts (absolute value), and main charging is performed with a flowing current value corresponding to this saturated surface potential. The reason why this saturated surface potential is set in the above range is that if it is too low than this range, an image with a sufficiently high density cannot be obtained, whereas if it is higher than this range, the toner will In addition, carrier particles may also adhere to the electrostatic image, and even with a one-component developer, image quality such as trailing may be formed. In addition, the inflow current value corresponding to the saturated surface potential, that is, the saturated inflow current region (I8
) By performing the format charging, it is possible to always stably maintain the surface potential of the photosensitive layer within a certain range in which proper development is performed, and also to suppress the decrease in surface potential due to static elimination in the first cycle or pre-charging. It is possible.

本発明においては、除電乃至前帯電を、前述した飽和流
れ込み電流域(I8)よりも低く、シかも主帯電流れ込
み電流値の40乃至90%の流れ込み電流値<1.)で
行うことも極めて重要である。
In the present invention, static elimination or pre-charging is lower than the above-mentioned saturation inflow current range (I8), and the inflow current value of 40 to 90% of the main band current inflow current value is less than 1. ) is also extremely important.

即ち、との除電乃至前帯電の際の流れ込み電流(Ip)
が飽和流れ込み電流域(I8)にある場合には、この除
電乃至前帯電の影響により、主帯電による感光層の表面
電位が著しく低下する傾向がある。この傾向は除電また
は前帯電の流れ込み電流が主帯電流れ込み電流の90%
を越える場合にも同様に認められる。除電または前帯電
の流れ込み電流値は、トナー電荷除去の目的のためのも
のであるから、主帯電流れ込み電流値よりもかなり小さ
いものであってよいが、主帯電流れ込み電流値の40チ
よりも少ないときには、トナー電荷除去の目的に対して
不都合となる。
That is, the inflow current (Ip) during static elimination or pre-charging with
When is in the saturated inflow current region (I8), the surface potential of the photosensitive layer due to main charging tends to drop significantly due to the influence of this static elimination or pre-charging. This tendency shows that the inflow current for static elimination or pre-charging is 90% of the main charge current inflow current.
The same is allowed even if the amount exceeds. The inflow current value for static elimination or pre-charging is for the purpose of toner charge removal, so it may be considerably smaller than the main charge current inflow current value, but it is less than 40% of the main charge current inflow current value. Sometimes this is detrimental to the purpose of toner charge removal.

本発明において、主帯電及び除電乃至前帯電を上記の範
囲内で行うことにより、1サイクル目の表面電位を2サ
イクル目以降の表面電位とほぼ同じレベルに迄向上させ
得る理由は、正確には伺不明であるが次のように考えら
れる。即ち、上記範囲では、除電でライフタイムの比較
的長いキャリヤの発生が低い比率に抑制され、しかもこ
のようなライフタイムの長いキャリヤも、飽和流れ込み
電流での主帯電によって、表面電位の実質上の低下なし
に中和されるためと思われる。
In the present invention, the reason why the surface potential in the first cycle can be improved to almost the same level as the surface potential in the second and subsequent cycles by performing the main charging, static neutralization, and pre-charging within the above range is as follows. It is unclear, but it can be thought of as follows. In other words, in the above range, the generation of carriers with relatively long lifetimes is suppressed to a low ratio by static elimination, and even these carriers with long lifetimes are mainly charged by the saturation current, so that the surface potential is substantially reduced. This seems to be because it is neutralized without any deterioration.

本発明において、主帯電や除電乃至前帯電の際の感光層
への流れ込み電流値を直接測定することは困難である。
In the present invention, it is difficult to directly measure the value of current flowing into the photosensitive layer during main charging, neutralization, or pre-charging.

しかしながら、主帯電の際の流れ込み電流が飽和流れ込
み電流にあるか否かは、例えばチャージャへの印加電圧
を変えて電流を変化させ、この変化と感光層表面電位と
の関係を調べ、この変化にもかかわらず表面電位がほぼ
一定となっていることから、主帯電が飽和流れ込み電流
で行われていることを確認できる。同様にして除電乃至
前帯電の流れ込み電流値が飽和流れ込み電流よりも小さ
いことを確昭できる。
However, to determine whether the inflow current during main charging is the saturated inflow current, for example, by changing the applied voltage to the charger to change the current, and examining the relationship between this change and the surface potential of the photosensitive layer. However, since the surface potential remains almost constant, it can be confirmed that the main charging is performed by a saturated inflow current. In the same way, it can be confirmed that the inflow current value for static elimination or pre-charging is smaller than the saturation inflow current.

また、主帯電の流れ込み電流値と除電乃至前帯電の流れ
込み電流値との比率は、感光層表面に代えて金属表面を
位置させ、主帯電チャージャからの流れ込み電流と除電
乃至前帯電チャージがらの流れ込み電流とを実測し、両
者の比率を算出することにより容易にめ得る。
In addition, the ratio of the inflow current value for main charging and the inflow current value for static elimination or pre-charging is determined by positioning the metal surface instead of the photosensitive layer surface, and comparing the inflow current from the main charger with the inflow from static elimination or pre-charging. This can be easily determined by actually measuring the current and calculating the ratio between the two.

各チャージャの流れ込み電流は、それ自体公知の手段で
所望のレベルに設定し得る。例えばこの電流はチャージ
ャの印加電圧にほぼ比例するので、印加電圧の調節によ
りこれを所望のレベルに設定し得る。また、この電流は
コロナワイヤとg 光71Nとの距離を太き(すると小
さくなり、逆にすると逆になるので、これにより0周節
し得る。更に、この電流はコロナワイヤとシールドとの
距離を近づけると小さくなり、逆にすると逆になるので
これによっても調節し得る。
The sink current of each charger can be set to the desired level by means known per se. For example, since this current is approximately proportional to the applied voltage of the charger, it can be set to the desired level by adjusting the applied voltage. In addition, this current becomes smaller when the distance between the corona wire and the g-light 71N is increased (if the distance is increased), and vice versa, so that it can reach zero cycles. If you bring them closer together, they will become smaller, and if you move them in the opposite direction, you will get the opposite effect, so you can adjust this as well.

本発明方法は、全ての有機光導電体感光層に等しく適用
できるが、導電性基質上に、電荷発生層その上に電荷輸
送層を設けた機能分離型の有機感光層に適用した場合に
rp芋に優れた作用効果が発現される。電荷発生層とし
ては、ペリレン系顔料、キナクリドン系顔料、ピラント
ロン系顔料、フタロシアニン系顔料、ジスアゾ系顔料、
トリスアゾ系顔料等の光導電性有機顔料を、蒸着膜の形
で或いは樹脂分散物として施したものが使用され、一方
電荷輸送層としては、ポリビニルカルバゾールの如き電
荷輸送性樹脂や、ヒドラゾン系誘導体、ピラゾリン型誘
導体等の低分子電荷輸送物質を樹脂中に分散させたもの
等が使用される。
The method of the present invention is equally applicable to all organic photoconductor photosensitive layers, but when applied to a functionally separated organic photosensitive layer in which a charge-generating layer and a charge transport layer are provided on a conductive substrate, the rp Excellent effects are expressed in potatoes. As the charge generation layer, perylene pigments, quinacridone pigments, pyranthrone pigments, phthalocyanine pigments, disazo pigments,
A photoconductive organic pigment such as a trisazo pigment applied in the form of a vapor deposited film or as a resin dispersion is used, while a charge transporting layer such as a charge transporting resin such as polyvinylcarbazole, a hydrazone derivative, A resin in which a low-molecular charge transporting substance such as a pyrazoline type derivative is dispersed is used.

現像は、顕屯性トナーと磁性キャリヤとから成。The developer consists of a visible toner and a magnetic carrier.

る2成分系現像剤や、磁性トナーから成る1成分系現像
剤を用い磁気ブラシ現像で行われるが、勿論これ以外の
現像手段を用いても何等差支えない。
Although magnetic brush development is performed using a two-component developer made of magnetic toner or a one-component developer made of magnetic toner, it is of course possible to use other developing means.

トナークリーニングは、ファブラシ’Pブレードを用い
る機械的クリーニング以外に、磁気ブラシによる電磁気
的クリーニングを用いて行うことができ、後者の場合に
は、現像用磁気ブラシをクリーニングに併用することが
でき、2回転で1複写サイクルとなるようにすることも
できる。
Toner cleaning can be performed using electromagnetic cleaning using a magnetic brush in addition to mechanical cleaning using a Fabrush 'P blade. In the latter case, a developing magnetic brush can also be used for cleaning, and 2. It is also possible to make one copy cycle per rotation.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例 (1)感光体の製造 (α) 電荷発生層の作製 クロルダイアンブルー 10重量部 メタノール 80重量部 ブタノール 20重量部 上記、秤量薬品をステンレス製ボールミルに入れ毎分6
00回転速さで12時間分散及び顔料の粉砕を行ない塗
布液を作製した。次に、60μ厚のアルミニウム箔を準
備し、前記塗布液をブレードコーターにより塗布し、1
00℃で1時間の熱処理を行ない、乾燥後の厚みが2μ
の電荷発生層を作成した。
Example (1) Production of photoreceptor (α) Preparation of charge generation layer Chlordiane blue 10 parts by weight Methanol 80 parts by weight Butanol 20 parts by weight The above weighed chemicals were placed in a stainless steel ball mill and heated at 6 min.
A coating liquid was prepared by dispersing and pulverizing the pigment at a rotation speed of 0.00 rpm for 12 hours. Next, an aluminum foil with a thickness of 60 μm was prepared, and the coating solution was applied using a blade coater.
After heat treatment at 00℃ for 1 hour, the thickness after drying is 2μ.
A charge generation layer was prepared.

(6) 電荷輸送N塗布液の作製 テトラヒドロフラン 80重量部 上記、秤量薬品を試薬ビンに入れ、毎分600回転速さ
で6時間溶解を行なった。
(6) Preparation of Charge Transport N Coating Solution Tetrahydrofuran 80 parts by weight The above weighed chemicals were placed in a reagent bottle and dissolved at a speed of 600 revolutions per minute for 6 hours.

(6) 感光体の作製 前記、(α)で作製した電荷発生層の上に、上記電荷輸
送層塗布液をブレードコーターにて塗布し、100℃で
1時間の熱処理を行ない、乾燥後の厚さが8μの電荷輸
送層を作製し、電荷発生層と電荷輸送層の合計の厚さが
10μの積層感光体を作製した。
(6) Preparation of photoreceptor The above charge transport layer coating solution was applied using a blade coater onto the charge generation layer prepared in step (α) above, heat treated at 100°C for 1 hour, and the thickness after drying was determined. A charge transport layer with a thickness of 8μ was prepared, and a laminated photoreceptor with a total thickness of the charge generation layer and charge transport layer of 10μ was prepared.

Oi) 感光体のテスト 前記中で作製した感光体を三田工業に、 K、 MPP
C複写機/)C−121に装着し、以下の使用条件によ
りテストを行なった。
Oi) Photoconductor test The photoconductor produced in the above was sent to Sanda Kogyo, K, MPP.
It was installed in the C-121 copying machine and tested under the following usage conditions.

D?)/Is’) X 100=’52.6 %但し、
複写機は現像部を除去し、現像剤が感光体ドラムに接触
する位置に表面電位計のプローブをセットして感光体表
面電位を測定した。その結果は表及び第6図に示すよう
に、1サイクル目から安定した表面電位が得られた。こ
の感光体は負帯電用であるため、表面電位はマイナス符
号で表わされている。
D? )/Is') X 100='52.6%However,
The developing section of the copying machine was removed, and the surface potential of the photoreceptor was measured by setting the probe of a surface electrometer at the position where the developer contacted the photoreceptor drum. As shown in the table and FIG. 6, a stable surface potential was obtained from the first cycle. Since this photoreceptor is for negative charging, the surface potential is represented by a minus sign.

また現像器を取り付は複写テストを行なったところ、1
サイクル目から画像乱れのない満足な画質のコピーが得
られ、以後10サイクル目にてもほとんど差は見られな
かった。
Also, when I installed the developer and did a copying test, I found 1.
Copies of satisfactory image quality without image disturbance were obtained from the 1st cycle, and almost no difference was observed even after the 10th cycle.

比較例 熱処理後の感光体の構成を電荷発生層の厚さ2μ、電荷
輸送層の厚さを16μに設定した以外は実施例とまった
く同様にして感光体を作製した。なお、感光体の構成が
実施例と異なるのは、画像形成に必要な表面電位(50
0ボルト乃至700ポルト)を比較例における流れ込み
電流域で得るためである0 次に、上記のように構成した比較例感光体を実施例と同
様に複写機に装着して、以下の条件でテストを行なった
Comparative Example A photoreceptor was prepared in exactly the same manner as in the example except that the structure of the photoreceptor after heat treatment was such that the charge generation layer had a thickness of 2 .mu.m and the charge transport layer had a thickness of 16 .mu.m. Note that the structure of the photoreceptor differs from the example in that the surface potential (50
0 volts to 700 ports) in the inflow current range of the comparative example.Next, the comparative example photoreceptor configured as above was installed in a copying machine in the same manner as in the example, and tested under the following conditions. I did it.

(Ip/Is ) X 100=96.4%感光体の表
面電位を測定したところ、表及び第6図に示すように1
サイクル目は、2サイクル目より70Vも低く、以後上
昇し、ようやく3サイクル目から安定した表面電位が得
られた。
(Ip/Is)
The surface potential in the 2nd cycle was 70 V lower than that in the 2nd cycle, and after that it rose, and finally a stable surface potential was obtained from the 3rd cycle.

実施例と同様に複写テストを行なったところ、1サイク
ル目及び2サイクル目は3サイクル目以後に比べて画像
濃度の低いコピーしか得られなかった。
When a copying test was conducted in the same manner as in the example, only copies with lower image density were obtained in the first and second cycles than in the third and subsequent cycles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子写真プロセスを説明する靴略図、第2図は
ドラムへの流れ込み電流と感光体表面電位の関係を示す
図、第3図は、コピーサイクルによる表面電位の変化を
示す図である。 6・・・感光層 4・・・主帯電用チャージャ7・・・
現像機構 9・・・除電用チャージャ%許出願人 三田
工業株式会社 第1図 第2図
Figure 1 is a schematic diagram explaining the electrophotographic process, Figure 2 is a diagram showing the relationship between the current flowing into the drum and the surface potential of the photoreceptor, and Figure 3 is a diagram showing changes in surface potential due to copy cycles. . 6... Photosensitive layer 4... Main charging charger 7...
Developing mechanism 9... Charger for static elimination % Applicant Sanda Kogyo Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) 有機光導電体感光層に対して、交流コロナ放電
による除電及び直流コロナ放電による主帯電を行った後
、画像露光、トナー現像及びトナー転写を行ない、これ
らの行程を反復して画像形成を行なう電子写真方法にお
いて、 主帯電を感光層表面電位が500乃至700ボルト(絶
対値)で飽和する流れ込み電流域で行い、除電を前記飽
和流れ込み電流域よりも低く且つ主帯電流れ込み電流値
の40乃至90チの流れ込み電流値で行うことを特徴と
する電子写真法。
(1) After performing charge removal by AC corona discharge and main charging by DC corona discharge on the organic photoconductor photosensitive layer, image exposure, toner development, and toner transfer are performed, and these steps are repeated to form an image. In an electrophotographic method, main charging is carried out in an inflow current range where the surface potential of the photosensitive layer is saturated at 500 to 700 volts (absolute value), and charge removal is carried out in a flow current range lower than the saturation current range and 40 volts of the main band current inflow current value. An electrophotographic method characterized in that it is carried out with an inflow current value of 90 to 90 inches.
JP11709083A 1983-06-30 1983-06-30 Electrophotographic method Pending JPS6010264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11709083A JPS6010264A (en) 1983-06-30 1983-06-30 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11709083A JPS6010264A (en) 1983-06-30 1983-06-30 Electrophotographic method

Publications (1)

Publication Number Publication Date
JPS6010264A true JPS6010264A (en) 1985-01-19

Family

ID=14703142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11709083A Pending JPS6010264A (en) 1983-06-30 1983-06-30 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPS6010264A (en)

Similar Documents

Publication Publication Date Title
JP2009008834A (en) Image forming method
JP4371888B2 (en) Image forming apparatus
JPS58200273A (en) Electrophotographic device
EP0164252B1 (en) Electrophotographic process
CA2783033A1 (en) Electrostatic imaging member and methods for using the same
JPS6010264A (en) Electrophotographic method
EP0130830B1 (en) Electrophotographic process
JP2002123067A (en) Image forming method
JP5255772B2 (en) Image forming apparatus
JP4439669B2 (en) Image forming apparatus
JP3816856B2 (en) Image forming method
JP5325390B2 (en) Image forming apparatus and image forming method
JP5001666B2 (en) Image forming apparatus
JP2748975B2 (en) Electrophotographic photoreceptor
JP2005134901A (en) Electrophotographic printing machine
JPS6010265A (en) Electrophotographing method
JPH08234577A (en) Electrophotographic separator
JP2003043817A (en) Electrophotographic device and process cartridge
JP2589793B2 (en) Color electrophotographic equipment
JP3538389B2 (en) Image forming apparatus and image forming method
JPS5827178A (en) Magnetic brush cleaner
JP2000147967A (en) Method for image forming
JP2008209517A (en) Image forming apparatus and image forming method
JP2009008833A (en) Image forming method
JP2001183852A (en) Color image forming method and color image forming device