JPS6010163A - Flow communication type ion sensor - Google Patents

Flow communication type ion sensor

Info

Publication number
JPS6010163A
JPS6010163A JP58117059A JP11705983A JPS6010163A JP S6010163 A JPS6010163 A JP S6010163A JP 58117059 A JP58117059 A JP 58117059A JP 11705983 A JP11705983 A JP 11705983A JP S6010163 A JPS6010163 A JP S6010163A
Authority
JP
Japan
Prior art keywords
ion
layer
polyvinyl chloride
chloride resin
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117059A
Other languages
Japanese (ja)
Inventor
Tetsuya Katayama
潟山 哲哉
Kenichi Sugano
菅野 憲一
Masao Koyama
小山 昌夫
Toshio Takiguchi
瀧口 登志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58117059A priority Critical patent/JPS6010163A/en
Publication of JPS6010163A publication Critical patent/JPS6010163A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a long life sensor of which the ion responsive film is not delaminated, by forming a metal electrode, a halide-containing polyvinyl chloride resin layer and a laminated ion responsive film comprising a polyvinyl chloride resin containing ion responsive substances to the inner peripheral surface of the through-hole provided to an insulating board. CONSTITUTION:A through-hole with a diameter of 2.5mm. is formed to the center of an insulating board 11 made of an epoxy resin and a Ag-layer 13 having a lead wire connected thereto is provided to a part of the inner peripheral surface of said hole while a AgCl-layer 14 is formed to the surface of the Ag-layer 13 by an electrolytic process using said layer 13 as an anode. In the next step, a polyvinyl chloride resin film layer 15 containing KCl but not containing a plasticizer is formed so as to cover the layer and the insulating board 11. Subsequently, a polyvinyl chloride resin layer 16 containing a K<+>-selective substance and a plasticizer is formed on the layer 15 to obtain a K<+>-selective electrode 31. Similarily, a Na<+>-selective electrode 32, a Cl<->-selective electrode 33 and a reference electrode 35 are formed by using a polyvinyl chloride resin and the whole is received in a case through an insulating member (silicon rubber) 35 to obtain a flow communication type sensor. Each responsive film has good close adhesiveness and a long life sensor showing stable potential is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特定のイオン濃度を選択的に測定することが
出来るイオンセンサ体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ion sensor body that can selectively measure the concentration of a specific ion.

更に詳しくは、イオン感応膜の密着性か優れ、従って、
安定な電位を示し、長寿命である流通型イオンセンサ体
に関する。
More specifically, the adhesion of the ion-sensitive membrane is excellent, and therefore,
The present invention relates to a flow-through type ion sensor body that exhibits a stable potential and has a long life.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イオン選択性電極は従来より液中の特定のイオンの濃度
を選択的に定量出来るという特色があり、これまでも、
特定イオンの濃度のモニタ、水P4分析などの広い分野
において使用されてきた。
Ion-selective electrodes have traditionally had the feature of being able to selectively quantify the concentration of specific ions in a liquid;
It has been used in a wide range of fields such as monitoring the concentration of specific ions and analyzing water P4.

これは、例えば、陽イオン選択性電極の場合に対SLと
する1%イオンの活Ma+と陽イオン選択性電極が示す
電位Eとの間には、 E =F、 ’+ 2.303 (a’r7 z F 
)kIga −・(1)十 のように、また、陰イオン選択性電極の場合には対象と
する陰イオンの活量a−と陰イオン選択性電極が示す電
位との間には、 B=B ’ −2,303(RT/zF ) keg 
a−=121のように活量の対数と電位とが比例する関
係が成立しているので、電位のi)t!i定値から目的
とするイオンの活量が簡単に計Q、出来る。
For example, in the case of a cation-selective electrode, the difference between the active Ma+ of 1% ion as a counter SL and the potential E exhibited by the cation-selective electrode is E = F, '+ 2.303 (a 'r7 z F
) kIga - (1) As shown in 10, in the case of an anion-selective electrode, the relationship between the activity a- of the target anion and the potential shown by the anion-selective electrode is B= B'-2,303(RT/zF) keg
Since there is a relationship in which the logarithm of the activity is proportional to the potential, such as a-=121, i)t! of the potential is established. The activity of the target ion can be easily calculated from the i constant value.

尚、前記(11式および(2)式において、Rは気体定
数、Tは絶対温度、2はイオン価、Fはファラデ一定数
、Eoは系の標準電柵電位である。
In the above equations (11 and (2)), R is a gas constant, T is an absolute temperature, 2 is an ion valence, F is a Faraday constant, and Eo is a standard electric fence potential of the system.

このように、イオン選択性電極を用いれば電位を測定す
るだけで広い濃度範囲でのイオン濃度の定量が可能とな
る1、また、イオン選択性電極を用い、電極部を小型に
すれば少量のサンプルでの測定が1月能となる。このよ
うに、イオン選択性電極は便利なので、最近ではこれを
医療用、特に、血液中に存在するイオン、例えは、Na
” 、K+ 、C1−などの各桓イオンの定it≦:用
いる試みが盛んになっている。
In this way, if an ion-selective electrode is used, it is possible to quantify ion concentrations over a wide range of concentrations by simply measuring the potential. Measurement with samples will be the January performance. As such, ion-selective electrodes are convenient and have recently been used for medical purposes, especially for ions present in blood, such as Na.
Attempts to use the constant it≦ of each ion, such as ``, K+, C1-, etc., are becoming more popular.

また、x際に、前記イオン選択性電極を用b)だ分析装
置が多種類馬案されており、血液等の入療用の分析装置
として、その用途が広まりつつある。
In addition, various types of analyzers using the ion-selective electrode (b) have been proposed, and their use as analyzers for medical treatment of blood and the like is becoming widespread.

これらのイオン沼沢性電極のうち、最近、内部14L解
貴溶液がなく、金属に凶払、イオン感・応膜を形成した
部系な構造のイオン選択性電極が、特に、電極の製造、
取扱、保守等がBj@なため、注目を浴びている。
Among these ion-swampy electrodes, recently, ion-selective electrodes with a partial structure in which there is no internal 14L dislodging solution and an ion-sensitive/responsive membrane is formed on the metal have been developed, especially in the production of electrodes.
It is attracting attention because its handling and maintenance are BJ@.

また、被測定液中の複数の種類のイオンのそれぞれのi
亀度を連続的に測定する方法として、被測定液の流通路
に複数のイオン選択性電極を並設し、各々の電極からの
電気イμ号′1に解析する、所謂、フローセル方式が便
利であることが知られている。
In addition, each i of multiple types of ions in the liquid to be measured is
A convenient method for continuously measuring turbidity is the so-called flow cell method, in which multiple ion-selective electrodes are arranged in parallel in the flow path of the liquid to be measured, and the electricity from each electrode is analyzed in terms of μ'1. It is known that

更に、最近、上記内部X解質溶液を有しないイオン選択
性’NI!!!!w一体的−ニフローセル方式で結合せ
しめた8を通視イオンセンナ体が開発されている。
Furthermore, recently, the ion-selective 'NI! ! ! ! A see-through ion sensor body of 8 coupled in a monolithic niflow cell manner has been developed.

この流通型イオンセンサ体は、被測定液の流通り面が複
数のイオン選択1主電極の電極面によってhi成されて
いる7こめ、小型かつ多様能となり、しかも、イオン分
析に要する被6(す定液格が少量で足りるという利点を
イーしている。
This flow-type ion sensor body has a flow surface for the liquid to be measured that is formed by the electrode surfaces of the plurality of ion selection 1 main electrodes, making it compact and versatile. It has the advantage that only a small amount of constant liquid is required.

かかる市通型イン1ンセンプー休としては、金、銀%・
の責金j^のバイブをイオン1嶽応膜で被覆したものが
知られ−Cいる。
Such city-type inn 1senpu holidays include gold, silver%,
There is a known vibrator coated with an ion 1-layer film.

然しながら、貴金属のパイプから成る流通型イオンセン
サ体をよ、多Hの貝金属祠料を使用するもので高価であ
り、しかも、金属とイオン感応膜との曲の密着性が急く
、寿命か短いという欠点を有していた。
However, the flow-through type ion sensor body made of a precious metal pipe is expensive because it uses a multi-H shell metal abrasive, and the adhesiveness between the metal and the ion-sensitive membrane is rapid, resulting in a short lifespan. It had the following drawback.

このため、金)N4パイプの代りに、プラスチック板の
板面に被測W液が流通する貫通孔を設け、この貫通孔内
向の一部に金屑薄膜を被層させたもの!使用した電極が
提案されている。
For this reason, instead of the gold) N4 pipe, a through hole was provided on the surface of the plastic plate through which the W liquid to be measured flows, and a thin gold film was coated on the inward part of this through hole. The electrodes used are proposed.

プラスチック板を用いる流通型イオンセンチ体にあって
は、金属材料の使用量が少ないので廉価となり、しかも
、イオン感応膜を金属面のみならず、金属部に隣接する
プラスチック面にも広げて被覆せしめることによって、
イオン感応膜の密君性の改善を期待することが出来る。
A flow-through type ion centimeter body using a plastic plate is inexpensive because it uses less metal material, and the ion-sensitive membrane can be spread and coated not only on the metal surface but also on the plastic surface adjacent to the metal part. By this,
It can be expected that the tightness of the ion-sensitive membrane will be improved.

このような目′的で、今日まで用いられてきたプラスチ
ック板は、アクリル樹脂、フェノール樹脂エポキシ樹脂
等であった。
The plastic plates that have been used to date for this purpose have been made of acrylic resin, phenolic resin, epoxy resin, and the like.

然しなから、これらプラスチック板とイオン感応膜基材
のポリ塩化ビニル樹脂膜との密均性は期待されたほど良
好ではなく、しはしは@離を起し、被測定液が金属板に
短絡することによって電位が不安定となり、イオンセン
チ体の寿命を著しく低下せしめるという問題があった。
However, the density uniformity between these plastic plates and the polyvinyl chloride resin film of the ion-sensitive membrane base material was not as good as expected, and separation occurred, causing the liquid to be measured to contact the metal plate. There was a problem in that the potential became unstable due to the short circuit, which significantly reduced the lifespan of the ion centimeter.

〔発明の目的〕[Purpose of the invention]

本発明は、イオン感応膜の密着性が優れ、従って、安定
な電位を示し、長寿命である流通型イオンセンチ体を提
供することを目的とする。
An object of the present invention is to provide a flow-through type ion centrifugal body that has excellent adhesion of an ion-sensitive membrane, exhibits a stable potential, and has a long life.

〔発明の概要〕[Summary of the invention]

本発明者らは上記目的を達成すべく、鋭意研究を重ねた
結果、絶縁材料からなる板に穿設された貫通孔を被測定
液の流通路とする流通型イオンセンサ体に於いて、可塑
剤の含有されないハロゲン化合物とポリ塩化ビニル系樹
脂からなる第1層を墜布した後に、少なくともイオン感
応物質を含有するポリ塩化ビニル系樹脂からなる第2層
を塗布した二J?nからなるイオン感応膜を形成すると
イオン感LIS膜の蓄着性が著しく改善される事実を見
い出し本発明を完成した。
In order to achieve the above object, the present inventors have conducted intensive research and have found that a flow-through type ion sensor body in which through-holes formed in a plate made of an insulating material serve as flow paths for a liquid to be measured, After applying the first layer consisting of a halogen compound and polyvinyl chloride resin containing no agent, a second layer consisting of a polyvinyl chloride resin containing at least an ion-sensitive substance was applied. The inventors have completed the present invention by discovering the fact that the accumulation of ion-sensitive LIS films is significantly improved when an ion-sensitive film made of n is formed.

即し、本発明の流通型イオンセンチ体は、プラスチック
等の絶縁材料からなる板に穿設された貫通孔に沿つ゛C
1該n通孔の内周面の少なくとも一部を形成するように
配設された棉電部拐と;該貫通孔の内面を形成する導電
部材表面および該導電部材表m】に1lJj接する絶縁
材料板表面の少なくとも一部を被覆したポリ塩化ビニル
系樹脂膜からなるイオン感応膜と;上記導電部材に接続
されたリード線とから成る複数のイオン選択性電極が;
電気絶縁部材を介して、それぞれの貫通孔が被測定液の
流通路を形成するべく相互に一体的に連結されている流
通型イオンセンチ体において、該イオン感応膜がハロゲ
ン化合物とポリ塩化ビニル系樹脂からなる第1層と少な
くともイオン感応物質を含有するポリ塩化ビニル系樹脂
からなる第2 Mとの積層体からなり該イオン感応物質
を含有するポリ塩化ビニル系樹脂層が被測定液の流通路
を形成すべく設けられた事を特徴とする。
That is, the flow-through type ion centimeter body of the present invention has the following characteristics:
1. A cotton conductor part arranged to form at least a part of the inner circumferential surface of the through hole; and an insulating member in contact with the surface of the conductive member forming the inner surface of the through hole and the surface of the conductive member. A plurality of ion-selective electrodes each comprising: an ion-sensitive membrane made of a polyvinyl chloride resin film covering at least a portion of the surface of the material plate; and a lead wire connected to the conductive member;
In a flow type ion centrifugal body in which through-holes are integrally connected to each other via an electrically insulating member to form a flow path for a liquid to be measured, the ion sensitive membrane is composed of a halogen compound and a polyvinyl chloride-based membrane. A layer consisting of a first layer made of resin and a second layer made of polyvinyl chloride resin containing at least an ion-sensitive substance, and the polyvinyl chloride resin layer containing the ion-sensitive substance serves as a flow path for the liquid to be measured. It is characterized by being provided to form a

なお本発明に用いるハロゲン化合物としては、通常アル
カリ金属のハロゲン化物を用いる隼が好ましく、実用上
KCtt 、 NaCx 、 KBr等が挙けられる。
As the halogen compound used in the present invention, alkali metal halides are generally preferred, and practical examples include KCtt, NaCx, KBr, and the like.

次に、本発明のイオンセンチ体を図面を参Ji<j L
Next, referring to the drawings, the ion centimeter body of the present invention is expressed as Ji<j L
.

ながら説明する。I will explain.

第1図は、本発明に係るナトリウムイオン選択性電極の
一態様の断面概念図である。
FIG. 1 is a conceptual cross-sectional view of one embodiment of a sodium ion selective electrode according to the present invention.

図中、エポキシ樹脂板11の中心部には貫通孔12が穿
設されており、貫通孔12に沿って被着された銀13は
該貫通孔12の内周面の一部を形成している。この銀1
3の該表面は塩化銀層14で覆われている。塩化銀層1
4とエポキシ樹脂層11とからなる貫通孔12の内周面
は塩化カリウムを含有するポリ塩化ビニル系樹脂からな
るn+ を層15を設けた上に、さらにイオン感応物質
のモネンシンと可塑剤のオルトニトロフェニルオクチル
エーテルとを含有するポリ塩化ビニル系樹脂から成るh
+2tv1eを設けたイオン感応膜を設けた二j雨で被
覆され、h通孔12内を流れる被測定液のイオン濃度測
定面を形成している。
In the figure, a through hole 12 is bored in the center of the epoxy resin plate 11, and the silver 13 deposited along the through hole 12 forms part of the inner peripheral surface of the through hole 12. There is. This silver 1
The surface of No. 3 is covered with a silver chloride layer 14. Silver chloride layer 1
4 and an epoxy resin layer 11, the inner peripheral surface of the through hole 12 is coated with an n+ layer 15 made of polyvinyl chloride resin containing potassium chloride, and further coated with an ion-sensitive substance monensin and a plasticizer ortho. consisting of polyvinyl chloride resin containing nitrophenyl octyl ether
+2tv1e is coated with an ion-sensitive membrane provided with an ion-sensitive membrane, forming a surface for measuring the ion concentration of the liquid to be measured flowing through the h through hole 12.

第2図は、本発明の好適態様に於いて用いられるJt4
1合電極の一態様のWrifI概念因である。
FIG. 2 shows Jt4 used in a preferred embodiment of the present invention.
This is the WrifI concept of one embodiment of the single-coupling electrode.

図中、エポキシ4IIU脂板21の中心部には負通孔2
2が穿設されており、貫通孔22に沿って被着された銀
23は該貫通孔の内周面の一部を形成している。この銀
23の該表面は塩化銀層24で覆われている。塩化銀層
24とエポキシ樹脂板21とからなる貫通孔22の内周
面は塩化カリウムを含むポリ塩化ビニル系樹脂膜25で
被覆され、このポリ塩化ビニル系樹脂膜25はシリコー
ン系高分子の保護119−26によって保護されている
In the figure, there is a negative through hole 2 in the center of the epoxy 4IIU fat plate 21.
2 is bored, and the silver 23 deposited along the through hole 22 forms a part of the inner peripheral surface of the through hole. The surface of this silver 23 is covered with a silver chloride layer 24. The inner circumferential surface of the through hole 22 consisting of the silver chloride layer 24 and the epoxy resin plate 21 is covered with a polyvinyl chloride resin film 25 containing potassium chloride, and this polyvinyl chloride resin film 25 protects the silicone polymer. 119-26.

fA3図は本発明のイオンセンチ体の一態様の断面図を
示す概念図である。図中、符号31,32゜33および
34はそれぞれナトリウム、カリウム、塩素イオン選択
性電極および照合電極を表す。
Figure fA3 is a conceptual diagram showing a cross-sectional view of one embodiment of the ion centimeter of the present invention. In the figure, numerals 31, 32, 33 and 34 represent sodium, potassium and chloride ion selective electrodes and reference electrodes, respectively.

これらイオン選択性電極31,32,33および照合電
極34は電気絶縁部材35を介して、それぞれの貫通孔
が被測定液の流通路を形成するべく相互に一体的に連結
されている。
These ion-selective electrodes 31, 32, 33 and reference electrode 34 are integrally connected to each other via an electrically insulating member 35 so that their respective through holes form a flow path for the liquid to be measured.

更に、この流通型イオンセンチ体は、該貫通孔と連結す
る被測定液流入口36および被測定液流出口37ならび
該リード線38 、.38’ 、 38’を外部に導出
する電気信号出力口を有する外装39で囲続されている
。それぞれのイオン選択性電極のイオン感応部を形成す
るには例えは1次のような方法を用いることができる(
第1図を用いて説明する)。
Furthermore, this flow type ion centrifuge body has a liquid to be measured inlet 36 and a liquid to be measured outlet 37 connected to the through hole, and the lead wires 38, . 38', 38' are surrounded by an exterior 39 having an electrical signal output port for leading the signals to the outside. For example, the following method can be used to form the ion-sensitive part of each ion-selective electrode (
(Explained using FIG. 1).

先ず、ポリ塩化ビニル系樹脂と塩化カリウムとをテトラ
ヒドロフラン等の溶媒に溶解せしめた溶液およびポリ塩
化ビニル系樹脂とモネンシン、パリノマイシン、第4級
アンモニウム塩等のイオン選択物質とアジピン酸ジオク
チル、フタル酸ジオクチル、オルトニトロフェニルオク
チルエーテル等の可塑剤とをテトラヒドロフラン等の溶
媒に溶解せしめて、イオン感応膜形成溶液を得る。
First, a solution of a polyvinyl chloride resin and potassium chloride dissolved in a solvent such as tetrahydrofuran, a polyvinyl chloride resin, an ion selective substance such as monensin, palinomycin, or a quaternary ammonium salt, and dioctyl adipate or dioctyl phthalate are prepared. and a plasticizer such as orthonitrophenyl octyl ether are dissolved in a solvent such as tetrahydrofuran to obtain an ion-sensitive membrane forming solution.

次に、」1.A化カリウムを含有するポリ塩化ビニル糸
1’=J脂溶液をエポキシ樹脂板11の貫通孔12と塩
化省・L/M14の内周面に塗布し、乾燥した後、さら
にその上にイオン感応成形溶液を塗布し、乾燥せしめる
と、イオン感tri、、;膜層16が得られる。
Next, “1. A polyvinyl chloride thread 1'=J fat solution containing potassium A chloride is applied to the through hole 12 of the epoxy resin plate 11 and the inner peripheral surface of the chloride L/M 14, and after drying, an ion-sensitized solution is applied on top of it. When the molding solution is applied and dried, an ion-sensitive tri-film layer 16 is obtained.

本発明におい−Cは、エポキシ樹脂板11に可塑hすを
含有しないところのポリ塩化ビニル樹脂層15を司望剤
を含有するところのイオン感応膜16の下地11台とし
て波谷−1するのでその密層性は極めて良々1である。
In the present invention, C-C uses the polyvinyl chloride resin layer 15, which does not contain plasticizer, on the epoxy resin plate 11 as the base for the 11 ion-sensitive membranes 16, which contain a desiccant agent. The layer density is extremely good.

η−、jに、ボン塩化ビニル系樹脂層15は用塑剤を含
有していないので硬質側が形成され、il )2J、 
i’llを含有するポリ塩化ビニル系樹脂膜にみられる
ような石数性がほとんどなく、塩化銀層I4からのIl
uの11゛1りや剥離も生じない事と塩化銀層14とエ
ボギシ樹脂、仮の14通孔12の内周面に固着されてい
るポリ塩化ビニル系樹脂膜層の上に同伺質を基伺とする
イオン感応膜層1Gを被覆せしめるの′11で、その密
、fl性を一層尚めることになる。
Since the vinyl chloride resin layer 15 does not contain a plasticizer, a hard side is formed in η-, j, and il)2J,
There is almost no stone count property as seen in polyvinyl chloride resin films containing i'll, and I'll from the silver chloride layer I4.
The silver chloride layer 14, the epoxy resin, and the polyvinyl chloride resin film layer fixed to the inner peripheral surface of the temporary 14 through hole 12 are coated with the same material. By covering the ion-sensitive membrane layer 1G, its density and fluff properties are further improved.

〔発明の効果〕〔Effect of the invention〕

本5と明のイ」ンセンテ体はイオン感応膜の密着性が優
れ、従って、安定な電位を示し、長寿命であるという効
果を奏し、その工業的価値は極めて大である。
The present 5 and Ming's incent bodies have excellent adhesion to the ion-sensitive membrane, and therefore exhibit stable potential and long life, and have extremely great industrial value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の流通型イオンセンチ体を実施例に沿って
詳説する。
Hereinafter, the flow type ion centimeter of the present invention will be explained in detail along with examples.

実施例」6よび比較例 直径15鰭φ、厚さ3 mのエポキシ樹脂製円板の中心
に穿設された2、5龍φの貫通孔の内周面の一部にリー
ド線が接続された露出面積24−1厚さQ、l IIg
の銀層を被着せしめた後、この銀を陽極にして電解法に
よって銀層表面に塩化銀層を得た。
Example 6 and Comparative Example A lead wire was connected to a part of the inner peripheral surface of a 2.5-diameter through hole drilled in the center of an epoxy resin disk with a diameter of 15 fins and a thickness of 3 m. exposed area 24-1 thickness Q, l IIg
After depositing a silver layer, a silver chloride layer was obtained on the surface of the silver layer by electrolysis using this silver as an anode.

このようにして貫通孔内周面に銀を配設したエポキシ樹
脂製円板を4枚用意した。
In this way, four epoxy resin disks having silver arranged on the inner peripheral surface of the through hole were prepared.

一方、テトラヒドロフラン20gに、それぞれ、ポリ塩
化ビニル樹脂1g、オルトニトロフェニルオクチルエー
テル2g、モネンシン130gを溶解させてナトリウム
イオン感応膜形成溶液、ポリ塩化ビニル樹脂1.1g、
アジピン酸ジオクチル1.7g、カリウムテトラフェニ
ルボレート2〜、パリノマイシン10ダを溶解させてカ
リウムイオン感応膜形成浴液、ポリ塩化ビニル樹脂1.
5g。
On the other hand, in 20 g of tetrahydrofuran, 1 g of polyvinyl chloride resin, 2 g of orthonitrophenyl octyl ether, and 130 g of monensin were dissolved respectively to form a sodium ion-sensitive membrane forming solution, 1.1 g of polyvinyl chloride resin,
Dissolve 1.7 g of dioctyl adipate, 2 to 10 g of potassium tetraphenylborate, and 10 da of palinomycin to prepare a bath solution for forming a potassium ion-sensitive membrane, and 1.1 g of polyvinyl chloride resin.
5g.

メブールトリドデシルアンモニウムクロライド500■
を溶解させて塩素イオン感応膜形成溶液、およびそれら
のイオン感応膜の下地膜となる塩化カリウム3g、ポリ
塩化ビニル樹脂1gを溶解させた溶液を調製した。
Meburu tridodecylammonium chloride 500■
A solution for forming a chloride ion-sensitive membrane was prepared by dissolving 3 g of potassium chloride and 1 g of polyvinyl chloride resin, which will serve as a base film for the ion-sensitive membrane.

次に、イオン感応膜の下地膜用の溶液をそれぞれ上記4
枚のエポキシ樹脂製円板の貫通孔の円周面に少布し乾燥
し、j模厚150pmの塩化カリウムを含有するポリ塩
化ビニル樹脂層を形成した。
Next, add each of the above solutions for the base film of the ion-sensitive membrane.
A small amount of the mixture was applied to the circumferential surface of the through hole of two epoxy resin disks and dried to form a polyvinyl chloride resin layer containing potassium chloride with a thickness of 150 pm.

次いで、得られたナトリウム、カリウム、塩素の各イオ
ン感応1換形成溶液を、先ず3枚のエポキシ樹脂製円板
の貫通孔の下地層の上に塗布し、乾燥し、膜厚250μ
mのイオン感応膜を形成せしめ、本発明に係るイオン選
択性電極を得た。又、残りの1枚のエポキシ樹脂製円板
の下地層の上にシリコーンゴム膜(FL’I’V)を形
成し、照合電極とした。
Next, the obtained sodium, potassium, and chlorine ion-sensitive single conversion forming solutions were first applied on the base layer of the through holes of three epoxy resin disks, dried, and the film thickness was 250 μm.
An ion-sensitive membrane of m was formed to obtain an ion-selective electrode according to the present invention. Further, a silicone rubber film (FL'I'V) was formed on the base layer of the remaining epoxy resin disk to serve as a reference electrode.

これらイオン選択性電極と照合電極を、直径15nφ、
厚さ3Hのシリコーン・ゴム製円板の中ノ已・に2.5
鰭φの貫通孔が穿設された絶縁部材を介して、第3図に
示′すようにそれぞれの貫通孔が被lllす室液の流通
路を形成するべく相互に一体的に連結せしめ、本発明の
イオンセンチ体を得た。
These ion-selective electrodes and reference electrodes had a diameter of 15nφ.
2.5cm thick silicone/rubber disc with 3H thickness
As shown in FIG. 3, each through hole is integrally connected to each other via an insulating member in which a through hole of the fin φ is formed to form a flow path for the chamber fluid. The ionic centiform of the present invention was obtained.

一方、比較のため、塩化カリウムを含有するポリ塩化ビ
ニル樹脂膜層(イオン感応膜の下地l17i)がないイ
オン選択性電極(イオン感応膜を直接エポキシ樹脂製円
板の貫通孔に塗布したもの)を用いたこと以外は上記と
同一の方法C二よって比較用イオンセンサ体な作成した
On the other hand, for comparison, an ion-selective electrode without a polyvinyl chloride resin membrane layer containing potassium chloride (ion-sensitive membrane base l17i) (an ion-sensitive membrane was applied directly to the through-hole of an epoxy resin disk) A comparative ion sensor body was prepared by the same method C2 as above except that the same method as above was used.

次に、以上の様にして作成した本発明および比較用のイ
オンセンチ体の被測定液流通路よ二ナトリウム、カリウ
ム、塩素の各イオンを50m+nol/E含む溶液を連
続的に通し、寿命試験を行った。
Next, a solution containing 50 m+nol/E of each of disodium, potassium, and chlorine ions was continuously passed through the measurement liquid flow passage of the ion centimeter of the present invention and the comparison ion centimeter prepared as described above, and a life test was conducted. went.

その結果、本発明のイオンセンチ体は230日間連続測
定しても正常な測定値を示したカー、比較用のイオンセ
ンチ体は11日間以内でイオン感j、を膜が剥離し、イ
オン濃度の測定が不能となった。
As a result, the ion centimeter of the present invention showed normal measurement values even after continuous measurement for 230 days, while the comparative ion centimeter showed ion sensitivity and the membrane peeled off within 11 days, and the ion concentration decreased. Measurement became impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るナトリウムイオン選択性rq極
の一態様の1析面概念図である。 第2図は、木づこ明の好適態様に於いて用いられる照合
電極の−J′b様の晶面概念図である。 第3図は本発明のイオンセンチ体の一態様の断面を示ず
れ意図である。 11.21・・・エポキシ樹脂 12.22・・・貫通
孔13.23・・・銀板 14,24・・・塩化銀層1
5.25・・・KC!3含有ポリ塩化ビニル系樹脂膜層
(第1層) 16・・・ハロゲン化合物含有ポリ塩化ビニル樹脂層(
第211η) 26・・シリコン系高分子保護膜 31・・・ナトリウムイオン選択性電極32・・・カリ
ウムイオン選択性電極 33・・・塩素イオン遜択性電極 34・・・照合電極 35・・・シリコーンゴム鯛絶縁部材 26・・・被測定液流入口 37・・・被測定液出口3
8.38’ 、38’、38”’・・・′電極り一ド線
39・・・外装 代理人 弁理士 則 近 嵩 佑 (他1名)
FIG. 1 is a conceptual diagram of one aspect of the sodium ion selective rq electrode according to the present invention. FIG. 2 is a conceptual diagram of a -J'b-like crystal plane of a reference electrode used in a preferred embodiment of Akira Kizuko. FIG. 3 is intended to show a cross section of one embodiment of the ion centimeter of the present invention. 11.21...Epoxy resin 12.22...Through hole 13.23...Silver plate 14,24...Silver chloride layer 1
5.25...KC! 3-containing polyvinyl chloride resin film layer (first layer) 16...halogen compound-containing polyvinyl chloride resin layer (
211η) 26... Silicon-based polymer protective film 31... Sodium ion selective electrode 32... Potassium ion selective electrode 33... Chlorine ion selective electrode 34... Reference electrode 35... Silicone rubber sea bream insulation member 26...Measurement liquid inlet 37...Measurement liquid outlet 3
8. 38', 38', 38'''...'Electrode line 39...Exterior agent Patent attorney Noriyuki Takashi Chika (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁材料から成る板に穿設された貫通孔に沿って
、該貫通孔の内周面の少なくとも一部を形成するように
配設された導電部材と;該貫通孔の内面を形成する等電
部材表面および該導電部材表向に隣接する絶縁材料から
成る板表面の少なくとも一部を被拉したポリ塩化ビニル
系樹脂膜からなるイオン感応膜と;上記導電部材に接続
されたリード線とから成る複数のイオン選択性電極が;
電気絶縁部材を介して、それぞれの貫通孔が被測定液の
流通路を形成するべく相互に一体的に連結されている流
通型イオンセンサ体において、該イオン感応膜がハロゲ
ン化合物とポリ塩化ビニル系樹脂とからなる第1層と、
少なくともイオン感応物質を含有するポリ塩化ビニル系
樹脂からなる第2層との積層体からなり、該イオン感応
物質を含有するポリ塩化ビニル系樹脂層が被測定液の流
通路を形成すべく設けられた事を特徴とする流通型イオ
ンセンサ体。
(1) A conductive member disposed along a through hole drilled in a plate made of an insulating material so as to form at least a part of the inner circumferential surface of the through hole; forming the inner surface of the through hole; an ion-sensitive membrane made of a polyvinyl chloride resin film that covers at least a part of the surface of the isoelectric member and the surface of a plate made of an insulating material adjacent to the surface of the conductive member; a lead wire connected to the conductive member; a plurality of ion-selective electrodes comprising;
In a flow-type ion sensor body in which through-holes are integrally connected to each other via an electrically insulating member to form a flow path for a liquid to be measured, the ion-sensitive membrane is composed of a halogen compound and a polyvinyl chloride-based membrane. a first layer consisting of a resin;
The layer is made of a laminate including a second layer made of a polyvinyl chloride resin containing at least an ion-sensitive substance, and the polyvinyl chloride resin layer containing the ion-sensitive substance is provided to form a flow path for the liquid to be measured. A flow-through type ion sensor body characterized by the following.
(2) プラスチック板に穿設された貫通孔の内周面に
設けられた照合電極が上記複数のイオン選択性電極と共
に電気絶縁部材な介して、それぞれの貫通孔が被測定液
の流通路を形成するべく相互に一体的に連結されている
特許請求の範囲第1項記載の流通型イオンセンサ体。
(2) A reference electrode provided on the inner circumferential surface of the through-hole drilled in the plastic plate, together with the plurality of ion-selective electrodes, connects each through-hole to a flow path for the liquid to be measured through an electrically insulating member. A flow-through type ion sensor body according to claim 1, which is integrally connected to each other to form a flow-through ion sensor body.
JP58117059A 1983-06-30 1983-06-30 Flow communication type ion sensor Pending JPS6010163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117059A JPS6010163A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117059A JPS6010163A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Publications (1)

Publication Number Publication Date
JPS6010163A true JPS6010163A (en) 1985-01-19

Family

ID=14702406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117059A Pending JPS6010163A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Country Status (1)

Country Link
JP (1) JPS6010163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176846A (en) * 1985-02-01 1986-08-08 Toshiba Corp Ion sensor body
US6615796B2 (en) 2001-05-17 2003-09-09 Honda Giken Kogyo Kabushiki Kaisha Multi-cylinder engine
WO2022014095A1 (en) * 2020-07-16 2022-01-20 株式会社日立ハイテク Method for manufacturing ion sensor, and electrode body for ion sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176846A (en) * 1985-02-01 1986-08-08 Toshiba Corp Ion sensor body
US6615796B2 (en) 2001-05-17 2003-09-09 Honda Giken Kogyo Kabushiki Kaisha Multi-cylinder engine
WO2022014095A1 (en) * 2020-07-16 2022-01-20 株式会社日立ハイテク Method for manufacturing ion sensor, and electrode body for ion sensor

Similar Documents

Publication Publication Date Title
US4758325A (en) Ion selective electrode and flow type ion sensor using the same
US4214968A (en) Ion-selective electrode
US4555274A (en) Ion selective electrode and process of preparing the same
US4305802A (en) Compound chemically sensitive element
JP6494770B2 (en) Ion selective electrode, method for producing the same, and cartridge
JPS62500197A (en) ion selective electrode
GB1584788A (en) Ion-selective electrode
CN107957440B (en) Planar ammonia selective sensing electrode and method for fabricating the same
US4921591A (en) Ion sensors and their divided parts
US3846270A (en) Detector cell for coulometric analysis
JPS6010163A (en) Flow communication type ion sensor
JP2001514760A (en) Manufacturing method of wiring substrate with subminiature through hole
JP4184568B2 (en) Ion selective electrode
JPS61288149A (en) Amperometric measurement method and cell for said method
US6328866B1 (en) Ion sensor and ion sensor plate
US4466879A (en) Polarographic oxygen sensor
JPS5920850A (en) Chemical sensor with hydrophilic membrane
JPS6010164A (en) Flow communication type ion sensor
US4701252A (en) Dissolved gas and ion measuring electrode system
CA1116696A (en) Ion-selective electrode
JP3432570B2 (en) Flow cell type ion sensor
JPS6243557A (en) Solid electrode for electrochemical sensor
JPS6069546A (en) Electrode for ion sensor
JP2861149B2 (en) Reference electrode
JPS59119254A (en) Ion selective protective separating membrane and ion electrode using said membrane