JPS6010154A - Sample holding method and sample holder for analysis of metal surface - Google Patents

Sample holding method and sample holder for analysis of metal surface

Info

Publication number
JPS6010154A
JPS6010154A JP11698483A JP11698483A JPS6010154A JP S6010154 A JPS6010154 A JP S6010154A JP 11698483 A JP11698483 A JP 11698483A JP 11698483 A JP11698483 A JP 11698483A JP S6010154 A JPS6010154 A JP S6010154A
Authority
JP
Japan
Prior art keywords
sample
container
metal plate
glow discharge
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11698483A
Other languages
Japanese (ja)
Inventor
Takashi Otsubo
孝至 大坪
Kenichi Takimoto
滝本 憲一
Tsunetoshi Asai
浅井 恒敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11698483A priority Critical patent/JPS6010154A/en
Publication of JPS6010154A publication Critical patent/JPS6010154A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To prevent a short-circuit, by a method wherein a container having an opening part provided to the central part of the smooth surface thereof is brought into close contact with the back surface side of a sample metal plate to be analyzed and discharge is performed in such a state that the container is evacuated to allow the sample metal plate to be sucked to the aforementioned opening part. CONSTITUTION:A sample metal plate 13 is contacted with the opening part 15 provided to a vacuum container 14 in a pierced state and an O-ring 16 is provided to the opening part 15 in order to bring the sample metal plate 13 into close contact with said opening part 15 and to keep air-tightness. In the next step, discharge is performed in such a state that the vacuum container 14 is evacuated to allow the sample metal plate 13 to be sucked to the aforementioned opening part 15. By this constitution, in analyzing the surface film of the thin sample metal plate by a glow discharge light emitting spectroscopic analytical apparatus, measurement can be performed without a short-circuit while an electrode interval is properly kept.

Description

【発明の詳細な説明】 (利用分野) 本発明は金属試料板の表面層をグロー放電発光分光法に
より分析する際に分析面を平滑に保持することができる
、金属表面分析用試料保持方法およびその保持具に関す
るものである。
Detailed Description of the Invention (Field of Application) The present invention provides a method for holding a sample for metal surface analysis, which can hold the analysis surface smooth when analyzing the surface layer of a metal sample plate by glow discharge emission spectroscopy. The present invention relates to the holder.

(従来技術) 近年、金属材料に各種表面処理を行ない、耐食性など材
料の特性を向上させることが要求されてきている。表面
処理の良否は材料の表面層の状態に依存することから、
これに対応して材料研究の面からも、その表面層を解析
し、製造プロセス条件の設定に適正な情報を提供する必
要があることが認識されてきている。上記の表面層とは
厚さが数Aから約1μmの範囲で、材料の最表面に形成
している主として酸化皮膜(たとえば、鉄、マンガン、
けい素、アルミニウムなどの酸化物〕を指すものである
(Prior Art) In recent years, there has been a demand for various surface treatments on metal materials to improve the properties of the materials such as corrosion resistance. Since the quality of surface treatment depends on the condition of the surface layer of the material,
Correspondingly, from the perspective of materials research, it has been recognized that it is necessary to analyze the surface layer and provide appropriate information for setting manufacturing process conditions. The above-mentioned surface layer has a thickness ranging from several amps to about 1 μm, and is mainly an oxide film (for example, iron, manganese, etc.) formed on the outermost surface of the material.
refers to oxides of silicon, aluminum, etc.

現在、オングストロームからミクロン域の皮膜の状態や
組成などの表面分析を行なう装置は各種存在するが、金
属材料自身および表面処理を行なった後の皮膜の状態を
迅速に調べる方法としてグロー放電発光分光装置(Gl
ow −Discharge OpticalEmis
sion 5pectroscopy 、以下GDSと
略称する〕がある。G ]) Sは広範囲の皮膜の最表
面層からの深さ゛方向組成分布および皮膜の平均的組成
を迅速に調べることができるのが特徴である。まず、 
GDSに関して若干説明を行なう。
Currently, there are various types of equipment that can perform surface analysis such as the state and composition of films in the angstrom to micron range, but glow discharge emission spectroscopy is a method for quickly examining the state of the metal material itself and the film after surface treatment. (Gl
ow -Discharge OpticalEmis
sion 5 pectroscopy, hereinafter abbreviated as GDS]. G]) S is characterized by the ability to quickly investigate the composition distribution in the depth direction from the outermost surface layer of a wide range of coatings and the average composition of the coating. first,
Let me explain a little about GDS.

GDSでは金属試料板の表面が、グロー放電管の陽極で
生じたアルゴンイオンにより衝撃され5表層から層状に
規則的に侵食される。試料表面から侵食された徽細粒子
は、グロー放電によって生じたプラズマ中lこ供給され
、原子状態で励起され、その構成元素の特性スペクトル
線を放射する。したがって、グロー放電のプラズマ光を
回折格子等で分光し、特性スペクトル線の強度を光増倍
管により測定することによって各層での組成を知ること
ができる。
In GDS, the surface of a metal sample plate is bombarded by argon ions generated at the anode of a glow discharge tube, and is regularly eroded in layers starting from the surface layer. The fine particles eroded from the sample surface are fed into the plasma generated by the glow discharge, are excited in an atomic state, and emit characteristic spectral lines of their constituent elements. Therefore, the composition of each layer can be determined by dividing the plasma light of the glow discharge using a diffraction grating or the like and measuring the intensity of the characteristic spectrum line using a photomultiplier tube.

上記放電管は第1図に示すようにダイオード型の構成て
、陽極1および水冷用導管7をもった陰極8は、それぞ
れ熱伝導性の良いCu−Co −Beの一部ブロックに
なっており、0.2mm厚のテフロン板4で互に絶縁さ
れている。試料5は水冷用導管7をもった押しつけ用板
6とともに支持具12で機械的に陰極ブロックに押しう
けられ5放電管をシールし外気と遮断すると同時に陰極
の一部を形成する。石英窓11をもった中空円柱状の陽
極管2は陰極ブロックを貫通し、試料5 (!: 0.
2 mmの間隔で対向している。2つの真空排気系3お
よび9で段排気し、ガス導入口10からアルゴンガスを
放電管中に入れアルゴン圧力を数Torrに保ち、両極
間に約1000Vの直流電圧をかけるとグロー放電が生
じる。
As shown in Fig. 1, the discharge tube has a diode-type configuration, and the anode 1 and the cathode 8 with the water cooling conduit 7 are each made of a partial block of Cu-Co-Be with good thermal conductivity. , are insulated from each other by a Teflon plate 4 having a thickness of 0.2 mm. The sample 5 is mechanically pressed against the cathode block by a support 12 together with a pressing plate 6 having a water cooling conduit 7, thereby sealing the discharge tube 5 and isolating it from the outside air, and at the same time forming part of the cathode. A hollow cylindrical anode tube 2 with a quartz window 11 penetrates the cathode block, and the sample 5 (!: 0.
They face each other with an interval of 2 mm. The tube is evacuated in stages by two evacuation systems 3 and 9, argon gas is introduced into the discharge tube through the gas inlet 10, the argon pressure is maintained at several Torr, and a DC voltage of about 1000 V is applied between the two electrodes to generate a glow discharge.

(問題点〕 さて、GDSにより金属試料板の表面を分析する場合、
試料の厚みが厚く充分な剛性をもっときは何ら問題を生
じないが、金属の組成、熱履歴。
(Problem) Now, when analyzing the surface of a metal sample plate using GDS,
If the sample is thick and has sufficient rigidity, no problems will occur, but the metal composition and thermal history may be affected.

厚み等により剛性が不足すると不都合が生ずる。Insufficient rigidity due to thickness etc. causes problems.

例えば、軟鋼板の厚みが約0.3 mm以下になると、
試料板のスパッタリングされる部分が電極(陽極〕側に
吸い込まれ、前記したように試料板a陽極との間隙は非
常に狭い(0,2am )ので短絡し、異常放電を起し
、正常な測定・が出来ない。そこで、本発明者らは0:
3間以下の金属材料を測定する場合につぎのいくつかの
試料保持方法を試みた。すなわち、 (1) 測定金属試料板に厚さ1mm以上の裏板をあて
、両者を接着剤で固定して補強し、陽極側への吸い込み
を防止する。同法では比較的長時間放電を行なうと、た
とえ冷却板を裏板の外側にあてても局部的に温度が上昇
し、接着剤部分で試料の剥離が起り陽極側へ吸い込まれ
てしまう。
For example, when the thickness of a mild steel plate is approximately 0.3 mm or less,
The part of the sample plate to be sputtered is sucked into the electrode (anode) side, and as mentioned above, since the gap between sample plate A and the anode is very narrow (0.2 am), a short circuit occurs, causing an abnormal discharge and preventing normal measurement.・ cannot be done. Therefore, the present inventors set 0:
The following several sample holding methods were tried when measuring metal materials with a diameter of 3 mm or less. That is, (1) A back plate with a thickness of 1 mm or more is placed on the metal sample plate to be measured, and both are fixed and reinforced with adhesive to prevent suction into the anode side. In this method, if the discharge is performed for a relatively long period of time, even if the cooling plate is applied to the outside of the back plate, the temperature will locally rise, causing the sample to peel off at the adhesive part and be sucked into the anode side.

(2)測定金属試料板(ただし、強磁性体に限る)を強
力な磁石tこ吸着させて固定し、測定を行なう。この場
合は強力な磁石であっても金属試料板が薄くなればなる
ほど保磁力が弱まり、陽極側の吸引力の方が大きく短絡
が起り、正常な放電を行なうことができない。
(2) Measurement A metal sample plate (limited to ferromagnetic materials) is fixed by adsorption with a strong magnet, and measurement is performed. In this case, even with a strong magnet, the thinner the metal sample plate is, the weaker the coercive force becomes, and the attractive force on the anode side is greater, causing a short circuit and preventing normal discharge.

上記のように約0.3 mm以下の薄手金属試料板を対
象とした場合には測定が困難であった。
As mentioned above, it was difficult to measure when using a thin metal sample plate of approximately 0.3 mm or less.

(発明の構成〕 本発明は前述のようなGDSIこよる金属試料板の表面
分析を行なう際の問題点に鑑み、グロー放電管側の吸引
力と同じか、真空容器側がそれよりも高い吸引力になる
ようにして試料板を吸着させ、適正な電極の間隔を維持
して短絡を防止し、測定を可能ならしめる試料保持方法
および保持具を提供するものである。
(Structure of the Invention) In view of the above-mentioned problems when performing surface analysis of a metal sample plate due to GDSI, the present invention provides that the suction force on the vacuum vessel side is equal to or higher than the suction force on the glow discharge tube side. To provide a method and a holder for holding a sample, which allows a sample plate to be attracted to the sample plate, maintains an appropriate electrode spacing, prevents short circuits, and enables measurement.

以下、本発明について、さらに図面で詳細に説明する。Hereinafter, the present invention will be further explained in detail with reference to the drawings.

第2図、第3図、第4図は不発明記ついての説明図であ
る。
FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams of the non-inventive notes.

金属試料板13を真空容器14と貫通している開孔部1
5+こあてる。開孔部15は金属試料板13と密着し、
気密性を保つためtこOリング16を設置する。この開
孔部15は本発明の重要な点であるので、さらに詳しく
述べる。
An opening 1 passing through the metal sample plate 13 and the vacuum container 14
5+ Koiteru. The opening 15 is in close contact with the metal sample plate 13,
An O-ring 16 is installed to maintain airtightness. Since this opening 15 is an important point of the present invention, it will be described in more detail.

■ GDSグロー放電管(一般に放電径は13 mmφ
である)′あの真空度がたとえば、1〜3 Torrと
すると(一般(ここのような真空度で測定を行なう)、
真空容器14の開孔部15での真空度をそれより大きク
シ、グロー放電管【こ吸い込すれないようにする必要が
ある。すなわち5真空容器側の付着力f、とグロー放電
管側の吸着力f2とはつぎのような関係になる。
■ GDS glow discharge tube (generally discharge diameter is 13 mmφ
)' If the degree of vacuum is, for example, 1 to 3 Torr (generally (measurements are performed at this degree of vacuum),
It is necessary to make the degree of vacuum at the opening 15 of the vacuum container 14 greater than that, so that the glow discharge tube does not get sucked in. That is, the adhesion force f on the vacuum vessel side and the attraction force f2 on the glow discharge tube side have the following relationship.

/、=S、X(760−V、)、 f2=S2X(76
0−V2)f1≧12 fl:真空容器側付着力 、f2ニゲロー放放電管側蓋
力S1+82:実効開孔面積 1 v、 l v2:真
空度しかし、金属試料板をグロー放電管に設定する前に
、逆に真空容器側に吸い込まれて変形しては適正な電極
間距離が得られないため、一つの大きな孔ではなく複数
の孔をあけた形状とし、開孔領域はグロー放電管と同一
径にするか、それより大きい径にして吸い込みによる変
形を防止する。
/, =S,X(760-V,), f2=S2X(76
0-V2) f1≧12 fl: Adhesive force on the vacuum vessel side, f2 Lid force on the Nigero discharge tube side S1+82: Effective opening area 1 v, l v2: Degree of vacuum However, before setting the metal sample plate to the glow discharge tube. However, if the electrodes were sucked into the vacuum vessel and deformed, it would not be possible to obtain an appropriate distance between the electrodes, so the shape was made with multiple holes instead of one large hole, and the opening area was the same as that of the glow discharge tube. diameter or a larger diameter to prevent deformation due to suction.

■ 開孔部での金属試料板13面が凹凸にならないよう
に平滑にする必要がある。すなわち、同試料板が平滑で
なければグロー放電管との気密性が保てず、グロー放電
が起らない。さらに、真空容器14と金属試料板13と
の気密性を保持するために、開孔部15の外周にOリン
グ16をもうけた。この0リングは開孔部15の平滑面
と同一面になるように溝の加工を行なう必要がある。つ
まり、0リングが平滑面より上に出ていると、同部分と
開孔部間に段差ができて、金属試料板13にしわが生じ
たり、気密性が保てなくなるからである。
- The surface of the metal sample plate 13 at the opening must be smooth so that it does not become uneven. That is, unless the sample plate is smooth, airtightness with the glow discharge tube cannot be maintained, and glow discharge will not occur. Further, in order to maintain airtightness between the vacuum container 14 and the metal sample plate 13, an O-ring 16 was provided around the outer periphery of the opening 15. It is necessary to process a groove in this O-ring so that it is flush with the smooth surface of the opening 15. In other words, if the O-ring protrudes above the smooth surface, a step will be created between the O-ring and the opening, causing wrinkles in the metal sample plate 13 and making it impossible to maintain airtightness.

排気用管17を介して3方バルブ18を開けて真空ポン
プ19により真空容器14内を排気する。冷却容器銀は
、真空容器14を用いて測定中にグロー放電管s その冷却のため設けたものである。これは一体ものでな
く、前記GDSのように冷却板を真空容器14に接触さ
せる方式でもよいが、上記方式の方が冷却効果がよく、
しかも操作が簡単である。冷却用管21を介して2方バ
ルブ22を開けて水を常時流しておく。通常は水道水を
用いるが、冷却温度はなるべく低い方がよく、水板外の
冷媒でもよい。真空容器14と冷却容器側を固定するた
めに固定具器を両者の間に入れ、それぞれが気密性を保
てるように固定用01Jング24を両面に設置する。さ
らtこ、固定具Z3をボルト6を用いて固定する。
The three-way valve 18 is opened via the evacuation pipe 17, and the inside of the vacuum container 14 is evacuated by the vacuum pump 19. The cooling container silver is provided for cooling the glow discharge tube s during measurement using the vacuum container 14. This is not an integral part, and a method in which the cooling plate is brought into contact with the vacuum vessel 14 as in the above-mentioned GDS may also be used, but the above method has a better cooling effect,
Moreover, it is easy to operate. A two-way valve 22 is opened to allow water to constantly flow through the cooling pipe 21. Usually, tap water is used, but the cooling temperature should be as low as possible, and a refrigerant outside the water plate may also be used. In order to fix the vacuum container 14 and the cooling container side, a fixing device is inserted between the two, and fixing 01J rings 24 are installed on both sides so that each can maintain airtightness. Next, fix the fixture Z3 using the bolt 6.

なお、上記で述べた排気用管17,3方バルブ18、真
空ポンプ19.冷却用管21,2方ノクルブ22を除い
た真空容器14からボルト25マでを構成するものを本
発明の保持具本体と表現する。
Note that the exhaust pipe 17, three-way valve 18, vacuum pump 19. The structure consisting of the vacuum vessel 14 excluding the cooling tube 21 and the two-way knob 22 and the bolt 25 is referred to as the holder main body of the present invention.

以上が本発明に関する詳細な説明であるが、さらに実施
例にもとすいて具体的に述べる。
The above is a detailed description of the present invention, and further details will be given with reference to examples.

(実施例) 皮膜の厚さが2000〜!300 OAの薄手冷延鋼板
の酸化皮膜の分析例について述べる。金属試料板13 
(30X 30 X 0.2各mm)を第2図および第
3図のように真空容器14に設置する。壕ず、保持具本
体の形状は30φ×35各閣で、材質は加工性、4電性
、熱伝導性を考慮して真ちゅうを用いた。真空容器14
の開孔部15の径は14謔φとし、その中に14解φの
貫通した穴を40個開け、開孔率を約40%とした。
(Example) The thickness of the film is 2000~! An example of analysis of the oxide film on a 300 OA thin cold-rolled steel sheet will be described. Metal sample plate 13
(30 x 30 x 0.2 mm each) is placed in the vacuum container 14 as shown in FIGS. 2 and 3. The shape of the trench and the holder body is 30φ x 35mm, and the material used is brass considering its workability, 4-electricity, and thermal conductivity. Vacuum container 14
The diameter of the opening 15 was 14 mm, and 40 through-holes with a diameter of 14 mm were drilled therein to give a hole area ratio of about 40%.

この平滑面は≠400で研磨した程度とし、0リング1
6は内径14 mmφ、肉厚2.2調のものを使用した
。つぎに、真空容器14内を第2図の排気用管17から
3方バルブ18を開け、ロータリーポンプ19で排気を
行ない、真空度を10−’ Torr (陽極管内近傍
)とし、金属試料板13を開孔部15に吸着固定をする
。第2図および第4図の冷却容器の冷却用管21を通し
て2方バルブ22を開けて水を流しく■θ−〕、容器全
体を冷却する。
This smooth surface should be polished to ≠400, and 0 ring 1
No. 6 used had an inner diameter of 14 mmφ and a wall thickness of 2.2 mm. Next, the three-way valve 18 is opened from the evacuation pipe 17 in FIG. is suctioned and fixed to the opening 15. The two-way valve 22 is opened and water is allowed to flow through the cooling pipe 21 of the cooling container shown in FIGS. 2 and 4 to cool the entire container.

つぎに保持具本体の真空容器14に固定されている金属
試料板13面とGDSの陰極面と密着させる。
Next, the surface of the metal sample plate 13 fixed to the vacuum container 14 of the holder main body is brought into close contact with the cathode surface of the GDS.

第4図の冷却容器切面の中心に第1図のGDSの支持具
12を押しつけて支持する。
The support 12 of the GDS shown in FIG. 1 is pressed against the center of the cross section of the cooling container shown in FIG. 4 to support it.

グロー放電の条件は印加電圧:約800V、印加電流ニ
ア5mA、定電流モードにより金属試料板13の最表面
から深さ方向へスパッタリングを行なう。
The glow discharge conditions are as follows: applied voltage: about 800 V, applied current: near 5 mA, and sputtering is performed from the outermost surface of the metal sample plate 13 in the depth direction in constant current mode.

以上の条件で表面皮膜から鉄マトリックス葦て鉄の強度
の推移を、従来の裏板接着剤方式および試料板のみとの
比較も含めて測定した。その結果を表1に示した。表か
られかるように、本発明は表面の鉄酸化皮膜から鉄マト
リックスに至る葦で鉄の強度が順次変化していく状態が
測定てきたが。
Under the above conditions, the change in strength of iron from the surface film to the iron matrix was measured, including comparisons with the conventional back plate adhesive method and with only the sample plate. The results are shown in Table 1. As can be seen from the table, the present invention has measured the state in which the strength of iron changes sequentially in reeds from the iron oxide film on the surface to the iron matrix.

試料板が吸引され変形するため従来法では放電が不安定
で、途中からグロー放電管の陽極と試料とが短絡し放電
不能となった。
In the conventional method, the discharge was unstable because the sample plate was attracted and deformed, and the anode of the glow discharge tube and the sample were short-circuited midway through, making discharge impossible.

表 I GDS1こよる薄手冷延鋼板の最表面から深さ
方向の銖強度値 m:短絡によりブレーカ−が作動し放電停止単位二カウ
ント(Arb、 u0目) 以上実施例でも明らかになったように本発明によれば、
ダロー放電発光分光分析装置によって薄手金属試料板の
表面皮膜を分析するに当り、短絡することなく適正な電
極間隔を保って測定を行なうことができる。したがって
、本発明は金属材料および表面処理法の開発などに寄与
するところが大である。
Table I: Strength value (m) of a thin cold-rolled steel sheet in the depth direction from the outermost surface of a thin cold-rolled steel sheet based on GDS1: The breaker is activated due to a short circuit, and the discharge stop unit is two counts (Arb, u0). According to the invention,
When analyzing the surface film of a thin metal sample plate using the Darrow discharge emission spectrometer, it is possible to maintain an appropriate electrode spacing without causing short circuits. Therefore, the present invention greatly contributes to the development of metal materials and surface treatment methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGDSのグミ−放電管に関する説明図であり、
第2図は本発明の説明図、第3図は真空容器部および金
属試料板の設置方法の説明図、第4図は冷却容器部とグ
ロー放電管関係を示す説明図である。 l・・・陽極、2・・・陽極管、3,9・・・真空排気
系、4・・・テフロン板、5・・・試料、6・・・押し
つけ用板、7・・・水冷用導管、8・・・陰極、10・
・・ガス導入口、11・・・石英窓、12・・・支持具
、13・・・金属試料板、14・・・真空容器、15・
・・開孔部、16・・・0νン〆、17・・・排気用管
、18・・・3方バルブ、J9・・・真空ポンプ、加・
・・冷却容器、21・・・冷却用管、22・・・2方バ
ルブ、n・・・固定具、冴・・・固定用Oリング、5・
・・ボルト、26・・・グロー放電管。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名〕 手続補正書(自発) 昭和58年8り//日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第116984号 2、発明の名称 金属表面分析用試料保持方法および保持具3、補正をす
る者 ・11件との関係 出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 4、代 理 人 5、補正の対象 明細書の特許請求の範囲の欄 6、補正の内容 (1)明細書第1頁の特許請求の範囲の記載を以下の通
り補正する。 「(1)金属材料の表面層をグロー放電発光分光法によ
り分析するにあたり、分析する金属試料板の裏面側に、
平滑面の中央部に開孔部を設けた容器を密着させ、該容
器内を真空排気l前記開孔部に金属試料板を吸着させた
状態でグロー放電管に固定し放電させることを特徴とす
る金属表面分析用試料保持方法。
FIG. 1 is an explanatory diagram of the GDS gummy discharge tube,
FIG. 2 is an explanatory diagram of the present invention, FIG. 3 is an explanatory diagram of a method for installing a vacuum container section and a metal sample plate, and FIG. 4 is an explanatory diagram showing the relationship between a cooling container section and a glow discharge tube. l... Anode, 2... Anode tube, 3, 9... Vacuum exhaust system, 4... Teflon plate, 5... Sample, 6... Pressing plate, 7... Water cooling Conduit, 8... Cathode, 10.
...Gas inlet, 11...Quartz window, 12...Support, 13...Metal sample plate, 14...Vacuum container, 15...
・・Opening part, 16・0νn closing, 17・Exhaust pipe, 18・3-way valve, J9・Vacuum pump, addition・
...Cooling container, 21...Cooling pipe, 22...2-way valve, n...Fixing tool, Sae...Fixing O-ring, 5.
...Volt, 26...Glow discharge tube. Patent applicant Representative patent attorney Tomoyuki Yafuki (and 1 other person) Procedural amendment (voluntary) August 1980//Japanese Patent Office Commissioner Kazuo Wakasugi 1 Indication of case Patent Application No. 116984 1988 2 , Name of the invention Sample holding method and holder for metal surface analysis 3, Person making the amendment/Relationship with 11 cases Applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation 4, Agent 5, Claims column 6 of the specification subject to amendment, Contents of the amendment (1) The statement of claims on page 1 of the specification was changed to the following: Correct as expected. (1) When analyzing the surface layer of a metal material by glow discharge emission spectroscopy, on the back side of the metal sample plate to be analyzed,
A container having an opening in the center of a smooth surface is brought into close contact with the container, the inside of the container is evacuated, a metal sample plate is adsorbed to the opening, and the container is fixed to a glow discharge tube and a discharge is caused. A method for holding samples for metal surface analysis.

Claims (2)

【特許請求の範囲】[Claims] (1)金属材料の表面層をグロー放電発光分光法により
分析するにあたり、分析する金属試料板の裏面側に、平
滑面の中央部に開孔部を設けた容器を密着させ、該容器
内を真空排気(前記開孔部に金属試料板を吸着させた状
態でグロー放電管に固定し放電させることを特徴とする
金属表面分析用試料保持方法。
(1) When analyzing the surface layer of a metal material by glow discharge emission spectroscopy, a container with an opening in the center of the smooth surface is tightly attached to the back side of the metal sample plate to be analyzed, and the inside of the container is A method for holding a sample for metal surface analysis, characterized by vacuum evacuation (a metal sample plate adsorbed to the opening is fixed to a glow discharge tube and discharged).
(2) 金属材料の表面層をグロー放電発光分光分析法
により分析する際に用いるところの、平滑面の中火部に
複数の孔をあけた試料吸着用開孔部と、該開孔部に連通
し試料吸着時に内部を真空にするための排気口と、試料
の温度上昇を防止するための冷却部とからなることを特
徴とする金屑表面分析用試料保持具。
(2) A sample adsorption aperture with a plurality of holes in the medium heat part of the smooth surface, which is used when analyzing the surface layer of a metal material by glow discharge optical emission spectroscopy, and A sample holder for surface analysis of gold scraps, characterized by comprising an exhaust port for creating a vacuum inside during communication and adsorption of a sample, and a cooling section for preventing a rise in temperature of the sample.
JP11698483A 1983-06-30 1983-06-30 Sample holding method and sample holder for analysis of metal surface Pending JPS6010154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11698483A JPS6010154A (en) 1983-06-30 1983-06-30 Sample holding method and sample holder for analysis of metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11698483A JPS6010154A (en) 1983-06-30 1983-06-30 Sample holding method and sample holder for analysis of metal surface

Publications (1)

Publication Number Publication Date
JPS6010154A true JPS6010154A (en) 1985-01-19

Family

ID=14700605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11698483A Pending JPS6010154A (en) 1983-06-30 1983-06-30 Sample holding method and sample holder for analysis of metal surface

Country Status (1)

Country Link
JP (1) JPS6010154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195746U (en) * 1986-05-31 1987-12-12
JPS63501825A (en) * 1985-11-20 1988-07-21 リーマン リミテッド ライアビリティー カンパニー Atomic absorber or fluorescent instrument with efficient micronization of solid samples and wide linear range
JPH04212045A (en) * 1990-03-19 1992-08-03 Kawasaki Steel Corp Method and device for glow discharge emission spectroanalysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501825A (en) * 1985-11-20 1988-07-21 リーマン リミテッド ライアビリティー カンパニー Atomic absorber or fluorescent instrument with efficient micronization of solid samples and wide linear range
JPS62195746U (en) * 1986-05-31 1987-12-12
JPH04212045A (en) * 1990-03-19 1992-08-03 Kawasaki Steel Corp Method and device for glow discharge emission spectroanalysis

Similar Documents

Publication Publication Date Title
US5226067A (en) Coating for preventing corrosion to beryllium x-ray windows and method of preparing
Steers et al. Charge-transfer excitation processes in the Grimm lamp
JPH0456420B2 (en)
EP0155700B1 (en) Apparatus for quantitative secondary ion mass spectrometry
JPS6010154A (en) Sample holding method and sample holder for analysis of metal surface
JP2008107203A (en) X-ray detector
JP3471200B2 (en) Target structure of sputtering equipment
EP0174374B1 (en) Glow discharge tube for analysis
JP3381407B2 (en) Plasma monitoring device and plasma monitoring method
EP0448061B1 (en) Glow discharge atomic emission spectroscopy and apparatus thereof
JP3731027B2 (en) Leakage detection method of vacuum vessel, film formation quality monitoring device, and continuous vacuum film formation device
JP3359983B2 (en) Glow discharge emission spectroscopy cathode plate
JP3345490B2 (en) Glow discharge emission spectrometer
JPH03255939A (en) Surface analysis of extremely thin sample
JPH1194744A (en) Sample holder for glow-discharge emission spectral analysis and glow-discharge emission spectral analyzer using the same
JP2005337951A (en) Glow discharge tube for glow discharge emission spectral analyzer and glow discharge emission spectral analyzer
JPH07225187A (en) Sample mounting device for glow-discharge emission spectroanalysis
JP2723457B2 (en) Glow discharge optical emission spectrometer and analysis method
JPS61277042A (en) Method and apparatus for quantitative analysis of composition of metal material
US5646726A (en) Atmospheric seal for glow discharge analytical instrument
JP2005030942A (en) Glow discharge emission spectral analyser
Liechtenstein et al. A study of very thin DLC foils as a gas barrier
JPH08193953A (en) Glow discharge emission spectroscopic analyzer
JP2001074660A (en) Glow discharge emission spectrum analyzer
Nicoll Directly Heated Hum‐Free Cathode for Cathode‐Ray Tubes