JPS60101172A - Production of phosphor - Google Patents

Production of phosphor

Info

Publication number
JPS60101172A
JPS60101172A JP20742983A JP20742983A JPS60101172A JP S60101172 A JPS60101172 A JP S60101172A JP 20742983 A JP20742983 A JP 20742983A JP 20742983 A JP20742983 A JP 20742983A JP S60101172 A JPS60101172 A JP S60101172A
Authority
JP
Japan
Prior art keywords
phosphor
srs
brightness
afterglow
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20742983A
Other languages
Japanese (ja)
Inventor
Koichi Megumi
恵 弘一
Akira Yamamoto
明 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20742983A priority Critical patent/JPS60101172A/en
Publication of JPS60101172A publication Critical patent/JPS60101172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain a SrS:Eu phosphor which exhibits high brightness and has excellent aftergrow characteristics, by heat-treating a Eu-activated strontium sulfide (SrS:Eu) phosphor in an alkaline earth metal vapor under a specified vapor pressure. CONSTITUTION:A Eu-activated strontium sulfide (SrS:Eu) phosphor is heat- treated in an alkaline earth metal vapor under a vapor pressure of 0.02-10mm.Hg. Though 1/10 afterglow decay time of untreated SrS:Eu is 5ms, that of the treated SrS:Eu is shortened to 0.67ms at max. The brightness of the treated phosphor is improved by at most 35%. The afterglow time and the brightness are dependent on the heat treating temp. of Sr, A remarkable effect of improving the afterglow characteristics and the brightness can be obtd. in the temp. range of 500-900 deg.C (Sr vapor pressure: 0.02-10mm.Hg).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電界、紫外線又は陰極線励起性硫化ストロンチ
ウム(ELIEu付活光体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing an electric field, ultraviolet or cathode ray excitable strontium sulfide (ELIEu) activated photomaterial.

〔発明の背景〕[Background of the invention]

硫化ストロンチウム(srs)は発光母体として既知で
あり、例えばEu付活の場合、紫外線並びに陰極線刺激
で赤色発光(ピーク波長590nm)を示すことが知ら
れている(S、 P、 Kel ler 、 J。
Strontium sulfide (srs) is known as a luminescent host, and for example, when activated with Eu, it is known to exhibit red luminescence (peak wavelength 590 nm) when stimulated with ultraviolet light and cathode rays (S, P, Keller, J.

Chem、phys、 29180 、1958 ) 
。また、この蛍光体の製造法として、硫酸ストロンチウ
ムを出発原料とし、Hz或いはHx Sで焼成する方法
、炭酸ストロンチウムを出発原料とし、SとNH4Cl
を加えて中性雰囲気(Ar等)中で焼成する方法等等が
知られている。しかしこれらの方法で製造されたSrS
 : E Llは発光効率が低く、さらに残光の減衰時
間が長すぎるという欠点を持っている。周知の様に、残
光特性や輝度は蛍光材料の実用性を評価する極めて重要
な要素とされておシ、このためSr8:Euは未だ実用
化に至っていない。
Chem, phys, 29180, 1958)
. In addition, methods for producing this phosphor include a method in which strontium sulfate is used as a starting material and fired at Hz or HxS, and a method in which strontium carbonate is used as a starting material and S and NH4Cl
A method is known in which the carbon dioxide is added and fired in a neutral atmosphere (Ar, etc.). However, SrS produced by these methods
: E Ll has the disadvantages of low luminous efficiency and an excessively long afterglow decay time. As is well known, afterglow characteristics and brightness are extremely important factors for evaluating the practicality of fluorescent materials, and for this reason Sr8:Eu has not yet been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来法では達成し得ない、高輝度でかつ
残光特性の優れたSrS:Eu蛍光体を提供することに
ある。
An object of the present invention is to provide a SrS:Eu phosphor with high brightness and excellent afterglow properties, which cannot be achieved by conventional methods.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明になる製造法は、
従来の製造法で得たSrS:Eu蛍光体にSr金属蒸気
中で再び加熱処理を施した結果、この蛍光体の残光時間
が著しく低減しその上輝度も向上する効果を見い出し、
これを用いたものである。
In order to achieve the above object, the manufacturing method of the present invention is as follows:
As a result of subjecting the SrS:Eu phosphor obtained by the conventional manufacturing method to heat treatment again in Sr metal vapor, we found that the afterglow time of this phosphor was significantly reduced and its brightness was also improved.
This is what was used.

未処理のSrS:Euの1/1o残光減衰時間は約5 
rn Sであるが、Sr蒸気中で処理したS rs:E
uのそれは最大約0.67 m s迄短縮される。一方
輝度は最大35%の向上効果が見られた。残光時間及び
輝度はsrの加熱処理温度に依存する。この関係を示し
たのが第1図と第1表である。改善効果が最大となるの
は、残光時間・輝度のいずれも処理温度が750cの場
合であシ、これよシ低温側での変化は急激で、一方高温
側では緩慢である。
The 1/1o afterglow decay time of untreated SrS:Eu is approximately 5
rnS but Srs treated in Sr vapor:E
That of u is shortened to a maximum of about 0.67 m s. On the other hand, brightness was improved by up to 35%. The afterglow time and brightness depend on the heat treatment temperature of sr. This relationship is shown in FIG. 1 and Table 1. The improvement effect is greatest for both afterglow time and luminance when the processing temperature is 750°C; changes are rapid at lower temperatures, while changes are slower at higher temperatures.

しかし900C以上では蛍光体表面にsr金金属析出が
生じる様になり、輝度は低くなる。結局残光特性または
輝度の改善効果の著しい温度範囲は500C〜900c
(Sr蒸気圧0.O2mHg〜10++o++Hg)の
間であることがわかる。
However, at temperatures above 900C, sr gold metal precipitates on the surface of the phosphor, and the brightness decreases. After all, the temperature range where the afterglow characteristic or brightness is significantly improved is 500C to 900C.
It can be seen that the Sr vapor pressure is between 0.02 mHg and 10++o++Hg.

以上述べた効果は、srs結晶格子中存在するSr欠陥
がSr蒸気によって潰された結果生じるものと考えられ
る。したがってsrの代ゎシに同族元素であるCaやM
gを用いた場合も類似の効果が期待されるが、実際Ca
、Mg、13aいずれの場合も、上記に準する効果が見
られた。
It is believed that the above-mentioned effects are produced as a result of Sr defects existing in the srs crystal lattice being crushed by Sr vapor. Therefore, in place of sr, the homologous elements Ca and M
A similar effect is expected when using Ca, but in reality Ca
, Mg, and 13a, effects similar to those described above were observed.

第1表 (9KV−100mA励起) 〔発明の実施例〕 以下、本発明を実施例で詳しく説明する。Table 1 (9KV-100mA excitation) [Embodiments of the invention] Hereinafter, the present invention will be explained in detail with reference to Examples.

〈実施例1〉 高純度炭酸ストロンチウム(SrCOs)14.763
g高純度酸化ユーロピラム(Eu203)0.018 
gの均密な混合体をアルミナルツボに充填し、空気中1
200tl’で6時間焼成する。次に焼成体を充分に潰
してから石英ポートに収め、これを石英管中に入れH2
Sガスを流しながら1200Gで4時間焼成する。
<Example 1> High purity strontium carbonate (SrCOs) 14.763
g High purity europyram oxide (Eu203) 0.018
A homogeneous mixture of 1 g was filled into an alumina crucible, and 1
Bake at 200 tl' for 6 hours. Next, crush the fired body thoroughly, place it in a quartz port, and put it into a quartz tube at H2
Bake at 1200G for 4 hours while flowing S gas.

上記の製造工程を経たSrS:Eu (0,1%)蛍光
体粉末2.0gを長さ30crnの片封じ石英細管の底
部に入れる。次に高純度のsr金属小片を石英管入口付
近に配し、真空排気装置に接続し、真空度10−”l’
orrの真空下で石英細管を封止する。
2.0 g of the SrS:Eu (0.1%) phosphor powder that has undergone the above manufacturing process is placed in the bottom of a single-sealed quartz capillary with a length of 30 crn. Next, a small piece of high-purity SR metal was placed near the inlet of the quartz tube, connected to a vacuum exhaust system, and the vacuum level was 10-"l'.
Seal the quartz tubule under a vacuum of orr.

次にこの石英細管を温度勾配をつけた反応炉に、蛍光体
側が高温、Sr金属側が低温になる様に配置する。温度
設定は高温部が1100p、低温部が750Cとなる様
にする。そのまま2時間保持後、炉外に取り出し急冷す
る。この様にして得られたSrS:Eu蛍光体はf3r
蒸気処理前の蛍光体に対し135−の高輝度を示し、さ
らに1/1.0残光減衰時間も5msから0.67m5
へと短縮された。
Next, this quartz tube is placed in a reaction furnace with a temperature gradient such that the phosphor side is at a high temperature and the Sr metal side is at a low temperature. The temperature settings are such that the high temperature part is 1100p and the low temperature part is 750C. After keeping it as it is for 2 hours, it is taken out of the furnace and rapidly cooled. The SrS:Eu phosphor obtained in this way is f3r
It shows a high brightness of 135- compared to the phosphor before steam treatment, and the 1/1.0 afterglow decay time also decreases from 5ms to 0.67m5.
It was shortened to .

〈実施例2〉 低温部<sr金属部分)のみ550Cでその他は実施例
1と全く同じ条件で得た蛍光体の輝度はSr蒸気処理前
の蛍光体の115%であった。また1/10減衰時間は
l m 5であった。
<Example 2> The brightness of the phosphor obtained under the same conditions as in Example 1 except that only the low temperature part <sr metal part) was 550 C was 115% of that of the phosphor before Sr vapor treatment. Further, the 1/10 decay time was 1 m 5.

〈実施例3〉 同様に、900 C(D場合は輝度110%、1/10
減衰時間0.85m5であった。
<Example 3> Similarly, 900 C (in case of D, brightness 110%, 1/10
The decay time was 0.85 m5.

〈実施例4〉 実施例1と同一条件下に於て金属片として3rの代わシ
にCaを用いた場合の輝度、1/10減衰時間はそれぞ
れ125%、0.75m5でおった。
<Example 4> Under the same conditions as in Example 1, when Ca was used instead of 3r as the metal piece, the brightness and 1/10 decay time were 125% and 0.75 m5, respectively.

以上述べた様に、SrS:Euの残光特性や輝度がSr
の加熱温度とともに変化するのは石英細管内の圧力が変
化するからである。管内の圧力はSr金属部の温度を一
定とした場合、Srの固体−蒸気の平衡蒸気圧と一致す
る。例えば550Cでは0.02閣Hg、750Uでは
1.1闘Hg。
As mentioned above, the afterglow characteristics and brightness of SrS:Eu are
This is because the pressure inside the quartz tube changes with the heating temperature. The pressure inside the tube matches the equilibrium vapor pressure of Sr solid-vapor when the temperature of the Sr metal part is constant. For example, 550C has 0.02 Hg, and 750U has 1.1 Hg.

900Cでは10m++IHgとなり蒸気圧は温度とと
もに単調に増加する。本実施例では、封管法を用いた雰
囲気制御の一方法を述べたが、Sr蒸気の供給源として
Srを含む化合物の分解反応を利用する方式、或いはS
r蒸気圧を一定にできる他の装置(開管法)を用いるこ
ともできる。そしてここで述べたと同様の効果が得られ
ることは本発明の原理から明らかである。
At 900C, it becomes 10m++IHg, and the vapor pressure increases monotonically with temperature. In this example, one method of atmosphere control using a sealed tube method was described, but a method using a decomposition reaction of a compound containing Sr as a source of Sr vapor, or
Other devices (open tube method) that can keep the vapor pressure constant can also be used. It is clear from the principle of the present invention that effects similar to those described here can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来の製造法で得られるよシも高い輝度
を有し、かつ残光特性の優れたsrs : Eu蛍光体
を得ることができる。また本製造法では、Srの蒸気圧
を選ぶことによシ輝度はもとよシ、残光特性も制御でき
るので、各種の用途に適合する8rS :E uを得る
ことが容易にできる。
According to the present invention, it is possible to obtain an srs:Eu phosphor that has higher luminance than that obtained by conventional manufacturing methods and has excellent afterglow characteristics. In addition, in this manufacturing method, not only the brightness but also the afterglow characteristics can be controlled by selecting the vapor pressure of Sr, so it is possible to easily obtain 8rS:Eu suitable for various uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1/10残光減衰時間とSr加熱温度との関係
を示した図である。 1・・・Sr蒸気処理前(従来法)の1710残光減衰
時間。2・・・Sr蒸気処理後の1/10残光減衰時間
とSr加熱温度の関係を示す曲線。 横軸上で矢印の付いた説明は、その温度に於けfJ+ 
図 6ど処理Aル(°す
FIG. 1 is a diagram showing the relationship between 1/10 afterglow decay time and Sr heating temperature. 1...1710 afterglow decay time before Sr vapor treatment (conventional method). 2...Curve showing the relationship between 1/10 afterglow decay time and Sr heating temperature after Sr vapor treatment. Explanations with arrows on the horizontal axis indicate fJ+ at that temperature.
Figure 6 Processing Al (°S)

Claims (1)

【特許請求の範囲】[Claims] Eu付活硫化ストロンチウム(8r8 :Eu)蛍光体
の製造に於て、該蛍光体をアルカリ土類金属蒸気中で熱
処理し、その蒸気圧が0,02WHg〜10wHgの範
囲にあることを特徴とする蛍光体の製造方法。
In the production of Eu-activated strontium sulfide (8r8:Eu) phosphor, the phosphor is heat-treated in alkaline earth metal vapor, and the vapor pressure is in the range of 0.02 WHg to 10 wHg. Method of manufacturing phosphor.
JP20742983A 1983-11-07 1983-11-07 Production of phosphor Pending JPS60101172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20742983A JPS60101172A (en) 1983-11-07 1983-11-07 Production of phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20742983A JPS60101172A (en) 1983-11-07 1983-11-07 Production of phosphor

Publications (1)

Publication Number Publication Date
JPS60101172A true JPS60101172A (en) 1985-06-05

Family

ID=16539605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20742983A Pending JPS60101172A (en) 1983-11-07 1983-11-07 Production of phosphor

Country Status (1)

Country Link
JP (1) JPS60101172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226058A2 (en) * 1985-11-21 1987-06-24 Sharp Kabushiki Kaisha Thin film electroluminescent device
JP2002060747A (en) * 1999-09-27 2002-02-26 Lumileds Lighting Us Llc Tri-color white light led lamp
JP2009065194A (en) * 1996-06-26 2009-03-26 Siemens Ag Light-emitting semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226058A2 (en) * 1985-11-21 1987-06-24 Sharp Kabushiki Kaisha Thin film electroluminescent device
JP2009065194A (en) * 1996-06-26 2009-03-26 Siemens Ag Light-emitting semiconductor element
JP2002060747A (en) * 1999-09-27 2002-02-26 Lumileds Lighting Us Llc Tri-color white light led lamp

Similar Documents

Publication Publication Date Title
Bergstein et al. Manganese‐Activated Luminescence in SrAl12 O 19 and CaAl12 O 19
JPS58213080A (en) Luminescent screen and manufacture of luminescent aluminate
Cai et al. Luminescence properties of red-emitting Ca 2 Al 2 SiO 7: Eu 3+ nanoparticles prepared by sol-gel method
JPS5923353B2 (en) Televisum-attached active optical material with garnet crystal structure
CN107312538B (en) Synthetic method of high-nitrogen-content high-brightness nitrogen oxide fluorescent powder
CN113667472B (en) Bi3+Doped ultraviolet long-afterglow luminescent material and preparation method and application thereof
US4220551A (en) Novel blue light emitting luminophors
JP2661952B2 (en) Method for manufacturing phosphor
JPH0625356B2 (en) Light emitting screen and low pressure mercury vapor discharge lamp provided with the same
Peters Luminescent Properties of Thiogallate Phosphors: II. Ce3+‐Activated Phosphors for Flying Spot Scanner Applications
JPS63103841A (en) Manufacture of quartz glass activated by divalent europium
DE3014355C2 (en)
CN113528139A (en) Processing method for regulating and controlling morphology and particle size of sulfur oxide fluorescent powder through laser irradiation
US5096614A (en) Process for producing a terbium-activated gadolinium oxysulfide X-ray phosphor wherein the green/blue emission ratio is controlled
CN112694889A (en) Fe3+Gallate-doped near-infrared long-afterglow luminescent material and preparation method and application thereof
JP2008517092A (en) Long life and high color coordinate retention lamp
JPS60101172A (en) Production of phosphor
US4128498A (en) Chlorosilicate phosphor
JP3163284B2 (en) Luminescent substance with metaborate structure
CN109370588B (en) Nitride fluorescent powder for semiconductor luminescence, preparation method thereof and luminescent device
US6085971A (en) Luminescent meta-borate substances
KR20010026297A (en) New Silicates Phosphors for Lamp
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
CN108929681A (en) A kind of preparation method for the strontium aluminate luminous material that bivalent state is europium ion-doped
JPS61296085A (en) Production of fluorescent substance