JPS60100767A - Current measuring device of gas insulation opening and closing device - Google Patents

Current measuring device of gas insulation opening and closing device

Info

Publication number
JPS60100767A
JPS60100767A JP58208202A JP20820283A JPS60100767A JP S60100767 A JPS60100767 A JP S60100767A JP 58208202 A JP58208202 A JP 58208202A JP 20820283 A JP20820283 A JP 20820283A JP S60100767 A JPS60100767 A JP S60100767A
Authority
JP
Japan
Prior art keywords
container
busbar
bus
magneto
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208202A
Other languages
Japanese (ja)
Inventor
Shoji Harada
昌治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58208202A priority Critical patent/JPS60100767A/en
Publication of JPS60100767A publication Critical patent/JPS60100767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To measure precisely a current with a small-sized, lightweight device by detecting a current flowing through a bus conductor by a magnetooptic element provided at the lower part of a container which has small thermal influence. CONSTITUTION:The bus conductor 11 is arranged in the bus container 10 to constitute a bus 12. An electric shield 14 is provided near the lower internal surface of the bus container 10 across a support 13, and the bus container 10 and electric shield 14 are held at the same potential. Plural magnetooptic elements 16 are arranged in the space part A between the electric shield 14 and support 13. This magnetooptic element 16 is connected to a measuring device through an optical fiber cable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気光学素子を使用したガス絶縁開閉装置にお
ける電流測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a current measuring device in a gas-insulated switchgear using a magneto-optical element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年電力需要の増大に伴い、送′N!、電圧及び送電電
流は増加の一途をたどっている。然るにこのような現状
において、電力輸送経路中に設けられる変電所、開閉所
等の変流器とリレー室とを連絡するケーブルに対する電
磁障害の影響が大きくなりつつある。変流器は電流測定
用に用いられるものであり、従来の変流器は巻線型を採
用している。
In recent years, with the increase in demand for electricity, the demand for electricity has increased. , voltage and transmission current are constantly increasing. However, under these current circumstances, the influence of electromagnetic interference on cables that connect relay rooms and current transformers in substations, switchyards, etc. provided on power transmission routes is increasing. Current transformers are used to measure current, and conventional current transformers employ a wire-wound type.

この従来の巻線型変流器の構造を第1図を参照して説明
する。内部に絶縁ガスを充填した円筒形状の容器1と同
心的に母線導体2が絶縁スペーサ3を介して支持されて
いる。この絶縁スペーサ3と容器lの間には、変流器支
え4を固着するための取付板5が設けられている。さら
に、容器1には絶縁スペーサ3及び取付板5を介して円
筒形状の容器6を接続し、この容器6の内部には図示し
ない母線導体を設け、この母線導体は容器1内の母線導
体2と電気的に接続されている。変流器支え4は円筒形
状を成し容器1と同心的に配置するように一端面が取付
板5に固着されている。変流器支え4の外周に変流器7
が取付けられスタッド8で締付けられている。また、変
流器支え4の端部には電界集中緩和用のシールド9が取
付けられている。尚、変流器7は円筒形状(二巻口した
コイルを使用している。
The structure of this conventional wire-wound current transformer will be explained with reference to FIG. A bus conductor 2 is supported via an insulating spacer 3 concentrically with a cylindrical container 1 filled with an insulating gas. A mounting plate 5 for fixing the current transformer support 4 is provided between the insulating spacer 3 and the container l. Further, a cylindrical container 6 is connected to the container 1 via an insulating spacer 3 and a mounting plate 5, and a bus conductor (not shown) is provided inside the container 6. electrically connected to. The current transformer support 4 has a cylindrical shape, and one end surface is fixed to a mounting plate 5 so as to be arranged concentrically with the container 1. A current transformer 7 is installed on the outer periphery of the current transformer support 4.
is attached and tightened with stud 8. Further, a shield 9 for mitigating electric field concentration is attached to the end of the current transformer support 4. The current transformer 7 uses a cylindrical coil (two-turn coil).

以上のような構成において、母線導体2に電流が流れる
と、母線導体2の軸線周りに磁界が発生する。この磁界
下に置かれた変流器7には電磁誘導により電流が流れ、
この電流を変流器7に接続されたケーブルを介して外部
の測定装置に流し電流測定が行なわれている。
In the above configuration, when a current flows through the bus conductor 2, a magnetic field is generated around the axis of the bus conductor 2. A current flows through the current transformer 7 placed under this magnetic field due to electromagnetic induction.
This current is passed through a cable connected to the current transformer 7 to an external measuring device and the current is measured.

ところで、従来の巻線型変流器は母線導体電流により住
じる磁路を円周方向全周にわたって積分できるため測定
精度は良い反面、巻線の組立作業に多くの時間と労力を
要するので、巻線の製造コストが高くなり且つ大形で重
くなるという欠点があった。また変流器7と測定装置を
接続するケーブルは磁界の影響を受け易く、強電場に於
ける精密測定が難しいという問題があった。
By the way, conventional wire-wound current transformers have good measurement accuracy because they can integrate the magnetic path occupied by the bus conductor current over the entire circumference, but on the other hand, it takes a lot of time and effort to assemble the windings. The disadvantages are that the manufacturing cost of the winding wire is high, and the winding wire is large and heavy. Furthermore, the cable connecting the current transformer 7 and the measuring device is susceptible to the influence of magnetic fields, making it difficult to perform precise measurements in strong electric fields.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を除去し、小形軽量で且つ信頼性の高
いガス絶縁開閉装置における電流測定装置を提供するこ
とを目的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks and provide a current measuring device for a gas-insulated switchgear that is small, lightweight, and highly reliable.

上記目的を達成するために、本発明においては、電流の
大きさに応じて発生する磁界中に磁気光学素子を配置し
、この磁気光学素子に光シアイバーケーブルを接続し、
磁気光学素子の磁界による偏光現象を利用して電流の測
定を行なうようにしている。
In order to achieve the above object, in the present invention, a magneto-optical element is arranged in a magnetic field generated depending on the magnitude of a current, an optical shear fiber cable is connected to this magneto-optical element,
The current is measured using the polarization phenomenon caused by the magnetic field of the magneto-optical element.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図及び第3図を参照して説明す
る。内部に例えばSF、等の絶縁ガスを充填しほぼ水平
配置した円筒状の母線容器10内に図示しない絶縁スペ
ーサによってこの母線容器と同心的に絶縁支持される円
筒状の母線導体11を配置して母線12が構成される。
An embodiment of the present invention will be described with reference to FIGS. 2 and 3. A cylindrical busbar conductor 11 is arranged in a cylindrical busbar container 10 which is filled with an insulating gas such as SF and arranged almost horizontally, and is insulated and supported concentrically with the busbar container by an insulating spacer (not shown). A bus bar 12 is configured.

母線容器10の図中下部内面近傍には、支持物13を介
して電気シールド14を設ける。支持物13は金属製を
使用して、母線容器10の電位と電気シールド14の電
位が同電位になるようにしている。これにより電気シー
ルド14と母線容器内面間には空間邦人が形成される。
An electric shield 14 is provided near the inner surface of the lower part of the busbar container 10 in the figure with a support 13 interposed therebetween. The support 13 is made of metal so that the potential of the busbar container 10 and the potential of the electric shield 14 are the same. As a result, a space is formed between the electric shield 14 and the inner surface of the busbar container.

電気シールド14は複数個の孔J5を有する板状構成と
し、母線容器10と同心的に配置する。また、電気シー
ルド14の母線12の軸線方向端部及び母線容器100
周方向端部には丸みをつけて折曲げ、その先端が母線容
器10に近接するようにする。電気シールド14の孔1
5は前記端部を除く部分に母線12の軸線と平行に設け
ている。さらに、電気シールド14と支持物13の間の
前記空間部Aには複数個の磁気光学素子16を配置する
。この磁気光学素子16は、図示しない光フアイバーケ
ーブルを介して測定装置に接続される。ところで、母線
12を横置きとする場合−・、母線容器10の上部菫間
は川、線導体11を流れる電流によるジュール熱の為、
絶縁ガス温度が上昇する。また、ガス絶縁開閉装置を屋
外に配置した場合にも、直射日光により母線容器10内
の上部望間の絶縁ガス湿度が上昇する。一方、磁気光学
素子16は温度による影響を受け易く、0°C〜80℃
の温度変化に対して±1〜2チの測定誤差を生じる。
The electric shield 14 has a plate-like configuration having a plurality of holes J5, and is arranged concentrically with the busbar container 10. In addition, the axial end of the bus bar 12 of the electric shield 14 and the bus bar container 100
The circumferential end portion is rounded and bent so that its tip is close to the busbar container 10. Hole 1 of electrical shield 14
5 is provided parallel to the axis of the generatrix 12 in a portion other than the end portion. Further, a plurality of magneto-optical elements 16 are arranged in the space A between the electric shield 14 and the support 13. This magneto-optical element 16 is connected to a measuring device via an optical fiber cable (not shown). By the way, when the busbar 12 is placed horizontally, the upper part of the busbar container 10 is heated by Joule heat due to the current flowing through the wire conductor 11.
Insulating gas temperature increases. Further, even when the gas insulated switchgear is placed outdoors, the humidity of the insulating gas in the upper lounge in the busbar container 10 increases due to direct sunlight. On the other hand, the magneto-optical element 16 is easily affected by temperature, and is 0°C to 80°C.
A measurement error of ±1 to 2 inches occurs due to temperature changes.

この為、温度による磁気光学素子16への影響を考慮し
て、磁気光学素子16は母線12軸断面の垂線を中心と
して下方はぼ45°以内(=配置するのが好ましい。
Therefore, in consideration of the influence of temperature on the magneto-optical element 16, it is preferable that the magneto-optical element 16 be placed within approximately 45 degrees (==) below the perpendicular line of the generatrix 12 axis cross section.

次に、本実施例の構成1′=おける作用を説明する。Next, the operation in configuration 1'= of this embodiment will be explained.

母線導体11を流れる電流によるジュール熱発生の為に
、母線導体11近傍の絶縁ガスの温度は上昇し対流によ
り母線容器10の上部空間に高温絶縁ガスが淀む。しか
し、母線容器10の下部空間の絶縁ガス温度の変化は上
部に対し少ない。また、母線容器10が直射日光を受け
る場合にも同様に母線容器10の上部空間の絶縁ガス温
度は上昇するが、下部空間の絶縁ガスの温度上昇は極め
て少ない。
Due to Joule heat generation due to the current flowing through the bus conductor 11, the temperature of the insulating gas near the bus conductor 11 rises, and the high temperature insulating gas stagnates in the upper space of the bus container 10 due to convection. However, the change in the insulating gas temperature in the lower space of the busbar container 10 is smaller than that in the upper part. Furthermore, when the bus bar container 10 is exposed to direct sunlight, the temperature of the insulating gas in the upper space of the bus bar container 10 similarly increases, but the temperature increase of the insulating gas in the lower space is extremely small.

一方、母線容器10内に微小金属異物が存在する場合、
この金属異物は飛びばねの、挙動を繰り返しながら比較
的電位傾度の高い電気シールド14に集められ、一度電
気シールド14と母線容器10間に入り込むと前記挙動
を停止する。
On the other hand, if there are minute metal foreign objects in the bus bar container 10,
This metallic foreign material is collected on the electrical shield 14 having a relatively high potential gradient while repeating the behavior of the flying spring, and once it enters between the electrical shield 14 and the busbar container 10, it stops its behavior.

本実施例においては、磁気光学素子16を母線容器10
の下部空間に配置したので、磁気光学素子16が母線の
温度上昇よる影響を受けにくいので温度依存性を有する
磁気光学素子工6についても高精度の測定が可能となる
。また、磁気光学素子16を孔l5を有する電気シール
ド14で覆っているので、磁気光学素子16及び光フア
イバーケーブルへの電界集中が緩和される。さらに、金
属異物の飛びはねによる母線12の絶縁破壊という事故
を防止することができる。
In this embodiment, the magneto-optical element 16 is connected to the busbar container 10.
Since the magneto-optical element 16 is disposed in the lower space of the magneto-optical element 16, it is less susceptible to the temperature rise of the generatrix, so that even the magneto-optical element 6, which has temperature dependence, can be measured with high precision. Further, since the magneto-optical element 16 is covered with the electric shield 14 having the hole l5, electric field concentration on the magneto-optical element 16 and the optical fiber cable is alleviated. Furthermore, it is possible to prevent an accident of dielectric breakdown of the bus bar 12 due to flying metal foreign matter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、母線導体に流れる
電流の大きさを熱的影響の少ない容器下部に設けた磁気
光学素子を使用して検出するとともにこの磁気光学素子
を電気シールドで包囲して配置したので小形軽量で且つ
精密な電流測定が可することができる。
As explained above, according to the present invention, the magnitude of the current flowing in the bus conductor is detected using a magneto-optical element provided at the bottom of the container where there is little thermal influence, and the magneto-optical element is surrounded by an electric shield. Since it is arranged in such a way that it is small and lightweight, it is possible to perform accurate current measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス絶縁開閉装置の変流器の断面図、第
2図は本発明による電流測定装置の一実施例を示す断面
図、第3図は第2図のnt −m矢視方向から見た断面
図である。 10・・母線容器、11・・・母線導体、12・・母線
、14・・・電気シールド、15・・・孔、1G・・・
磁気光学素子。
Fig. 1 is a cross-sectional view of a current transformer of a conventional gas-insulated switchgear, Fig. 2 is a cross-sectional view showing an embodiment of a current measuring device according to the present invention, and Fig. 3 is a view taken from the nt-m arrow in Fig. 2. It is a sectional view seen from the direction. 10... Bus bar container, 11... Bus bar conductor, 12... Bus bar, 14... Electrical shield, 15... Hole, 1G...
Magneto-optical element.

Claims (1)

【特許請求の範囲】[Claims] 内部に絶縁ガスを充填し#丘ホ水平に配置した母線容器
、この母線容器内にこの容器と同心的に設けた母線導体
とで構成した母線と、前記母線容器内壁近傍に配置した
磁気光学素子と、この磁気光学素子を包囲するように配
置した孔を有する電気シールドとを備えて成り、前記磁
気光学素子は前記母線の熱的影響が少ない前記母線容器
内壁近傍に配置されていることを特徴とするガス絶縁開
閉装置における電流測定装置
A busbar consisting of a busbar container filled with an insulating gas and arranged horizontally, a busbar conductor provided concentrically with the busbar container inside the busbar container, and a magneto-optical element arranged near the inner wall of the busbar container. and an electric shield having a hole arranged so as to surround the magneto-optical element, and the magneto-optical element is arranged near the inner wall of the busbar container where the thermal influence of the busbar is small. Current measuring device for gas insulated switchgear
JP58208202A 1983-11-08 1983-11-08 Current measuring device of gas insulation opening and closing device Pending JPS60100767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208202A JPS60100767A (en) 1983-11-08 1983-11-08 Current measuring device of gas insulation opening and closing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208202A JPS60100767A (en) 1983-11-08 1983-11-08 Current measuring device of gas insulation opening and closing device

Publications (1)

Publication Number Publication Date
JPS60100767A true JPS60100767A (en) 1985-06-04

Family

ID=16552349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208202A Pending JPS60100767A (en) 1983-11-08 1983-11-08 Current measuring device of gas insulation opening and closing device

Country Status (1)

Country Link
JP (1) JPS60100767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190107U (en) * 1984-05-23 1985-12-17 関西電力株式会社 optical transformation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190107U (en) * 1984-05-23 1985-12-17 関西電力株式会社 optical transformation device
JPH0236140Y2 (en) * 1984-05-23 1990-10-02

Similar Documents

Publication Publication Date Title
Kojovic Rogowski coils suit relay protection and measurement~ of power systems\
US6184672B1 (en) Current sensor assembly with electrostatic shield
US6963195B1 (en) Apparatus for sensing current
CN104813175B (en) For the electric current and/or voltage sensing device of comprehensive purposes
US5252913A (en) Line sensor with corona shield
US10732206B2 (en) Current sensor and method of assembly
US2375591A (en) Electrical measuring apparatus
JP2017516276A (en) Electric jumper with sensor
EP2051084B1 (en) Electrical quantity measuring device for energy transport lines
US4935693A (en) Line secured current and voltage sensing apparatus
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
US6608481B1 (en) Pole of a circuit breaker with an integrated optical current sensor
JPS60100767A (en) Current measuring device of gas insulation opening and closing device
US2892167A (en) Tubular bar current transformer
KR102645010B1 (en) Current transformer modules for switchgear and corresponding switchgear
JP5461260B2 (en) Insulated spacer with built-in optical fiber
US2199247A (en) High frequency thermocouple ammeter
US11617269B2 (en) Current measuring device for an electric power protection system
JPS6194506A (en) Gas insulating electric device
CN209282026U (en) Outdoor three-phase electronic current mutual inductor
JP2673010B2 (en) Supporting insulator with optical CT
Minkner et al. Voltage Measurement
US2062163A (en) Resistance unit and mounting therefor
JPS60202365A (en) Gas-insulated electrical appliance
Keinath An automatic AC potentiometer and its application to the nondestructive testing of insulating equipment