JPS60100674A - Formation of nitride film - Google Patents

Formation of nitride film

Info

Publication number
JPS60100674A
JPS60100674A JP58207469A JP20746983A JPS60100674A JP S60100674 A JPS60100674 A JP S60100674A JP 58207469 A JP58207469 A JP 58207469A JP 20746983 A JP20746983 A JP 20746983A JP S60100674 A JPS60100674 A JP S60100674A
Authority
JP
Japan
Prior art keywords
semiconductor
film
tube
temp
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58207469A
Other languages
Japanese (ja)
Other versions
JPS6147906B2 (en
Inventor
Yoshitaka Furukawa
古川 吉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58207469A priority Critical patent/JPS60100674A/en
Publication of JPS60100674A publication Critical patent/JPS60100674A/en
Publication of JPS6147906B2 publication Critical patent/JPS6147906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable formation of a P3N5 film at a low temp. and to prevent deterioration of the performance of a semiconductor in the stage of forming the P3N5 film as a protective film by a chemical vapor deposition method on the surface of the semiconductor by using NF3 as a nitrogen source. CONSTITUTION:A compd. semiconductor 3 is installed in a quartz reaction tube 2 and an inert gas such as gaseous Ar is supplied into the tube 2 to expel air therefrom in the stage of forming a P3N5 film as a gate insulating film on InP of the compd. semiconductor by a chemical vapor deposition method. While the diluted PH3 is passed, the tube 2 is put into an electric furnace 1 and when the temp. of the tube 2 attains a stationary state, a gaseous mixture composed of 1% NF3 and 1% PH3 diluted with Ar is supplied by which the protective film of P3N5 is formed on the InP semiconductor 3 at a low temp. of 370-400 deg.C. Since the temp. is low, the InP compd. semiconductor is not damaged.

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタにおけるゲート絶縁膜
ちるいは土層体表面の保護膜弯に用いる窒化膜の形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a nitride film used as a gate insulating film or a protective film on the surface of a soil layer in a field effect transistor.

」で導体上の窒化膜形成の一例として、化合物半導体で
あるイン/ラム燐(InP)上にゲート絶縁膜としての
窒化膜(P、N、)膜を化学的気相堆積法(ケミカルベ
イバーデポジション)により形成する”M 合、Ofi
 来はアンモニア(NH3)とホスフィン(PH3)の
混合気体を使用し5てきだ。このアンモニアとホスフィ
ンの反応は900℃以上で始めて利用可能な程度となる
が、それはこの反応がアンモニアの分解で律速されてお
り、アンモニアが極めて安定な物質であることに起因し
ている。タングステン等を触媒として使用することによ
り、反応速度を900℃で数倍に高めることはできるが
、触媒を使用する場合においても900℃以上の高温か
不可欠であった。
As an example of forming a nitride film on a conductor, a nitride (P, N,) film was deposited as a gate insulating film on InP, a compound semiconductor, by chemical vapor deposition. “M” formed by position)
In the past, a mixture of ammonia (NH3) and phosphine (PH3) was used. This reaction between ammonia and phosphine becomes usable only at temperatures above 900°C, and this is because the rate of this reaction is determined by the decomposition of ammonia, and ammonia is an extremely stable substance. By using tungsten or the like as a catalyst, the reaction rate can be increased several times at 900°C, but even when a catalyst is used, a high temperature of 900°C or higher is essential.

このようにして高温領域で反応してできた窒化・うば、
480℃以上に保たれたインジウム燐の上に堆積し、絶
縁膜が形成される。堆積の際、高温領域からの輻射が直
接半導体表面にあたると光損傷により昇市i府性が劣化
すること、寸だ半導体基板温度を480℃以下とすると
膜中に燐かとりこ−よれ、膜質〃・経時変化を示すよう
になると同時にレーク・電流が増大し、ケート絶縁膜と
して使用できなくなることか知らhている。化合物半導
体を用いる電界効果形トランジスタの特性改善のだめに
は、可能な限り低い基板温度で良質のゲート絶縁膜を堆
積させることが望まれる。
In this way, nitridation and oxidation, which are produced by reaction in high temperature range,
An insulating film is formed by depositing on indium phosphorus kept at 480° C. or higher. During deposition, if radiation from a high-temperature region hits the semiconductor surface directly, the film quality will deteriorate due to optical damage, and if the semiconductor substrate temperature is lower than 480°C, phosphorus will be trapped in the film and deteriorate the film quality.・It is known that as soon as the film begins to show changes over time, the rake current increases, making it impossible to use it as a gate insulating film. In order to improve the characteristics of field-effect transistors using compound semiconductors, it is desirable to deposit a high-quality gate insulating film at the lowest possible substrate temperature.

本発明は、アンモニアによる窒化の際の高温反応に付随
した問題を解決するため、三弗化窒素(NF、)を用い
た化学的気相堆積法による窒化により反応の低温度化と
堆積温度の低温化を実現した窒化膜形成方法を提供する
ものである。
In order to solve the problems associated with the high temperature reaction during nitriding with ammonia, the present invention aims to lower the reaction temperature and reduce the deposition temperature by nitriding by chemical vapor deposition using nitrogen trifluoride (NF). The present invention provides a method for forming a nitride film that achieves lower temperatures.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

図は本発明を実施する装置の具体例であって、1は割形
電気炉、2は石英製反応管、3は半導体基板、4.4a
はテフロン製コネクタ、5.5aはテフロンチューブで
アシ、アルゴンで希釈した三弗化窒素(1%)とホスフ
ィン(1%)の混合ガスはチューブ5を通り反応管に供
給される。電気炉の温度分布は6または7のように設定
する。
The figure shows a specific example of an apparatus for carrying out the present invention, in which 1 is a split electric furnace, 2 is a quartz reaction tube, 3 is a semiconductor substrate, and 4.4a
5.5a is a Teflon connector, and 5.5a is a Teflon tube. A mixed gas of nitrogen trifluoride (1%) and phosphine (1%) diluted with argon is supplied to the reaction tube through tube 5. The temperature distribution of the electric furnace is set as 6 or 7.

本装置により窒化燐をInP上に堆積する場合、まず最
初にアルゴン等の不活性ガスで反応管2中の空気を追出
した後に、希釈したホスフィン(P H3)を流しなが
ら反応管2を割形電気炉lを開いて中に入れる。反応管
2の温度が定常状態に達したところで、希釈三弗化窒素
(NF’3)を流すと直ちに窒化燐の堆積がはじまる。
When depositing phosphorus nitride on InP using this device, first expel the air in the reaction tube 2 with an inert gas such as argon, and then split the reaction tube 2 while flowing diluted phosphine (PH3). Open the electric furnace and put it inside. When the temperature of the reaction tube 2 reaches a steady state, diluted nitrogen trifluoride (NF'3) is allowed to flow, and the deposition of phosphorus nitride begins immediately.

基板3の温度が500℃以下の場合には反応管2を電気
炉1に入れる前から三弗化窒素(NFS)とホスフィン
(PHs)の混合5ガスを流してもよく、また最初に三
弗化窒素(NF3)を流し、反応管2を電気炉1に入れ
てから後にホスフィン(PH3)を流してもよい。しか
しながら、基板3の温度が500℃以上の場合、まず最
初にホスフィン(PH’3)を流すことが必要である。
If the temperature of the substrate 3 is below 500°C, a mixed gas of nitrogen trifluoride (NFS) and phosphine (PHs) may be supplied before the reaction tube 2 is placed in the electric furnace 1, or a mixed gas of nitrogen trifluoride (NFS) and phosphine (PHs) may be supplied first. After the reaction tube 2 is placed in the electric furnace 1, phosphine (PH3) may be introduced. However, if the temperature of the substrate 3 is 500° C. or higher, it is necessary to flow phosphine (PH'3) first.

さもないと、基板3は三弗化窒素(NFS)のためはげ
しく侵食される。
Otherwise, the substrate 3 will be severely attacked by nitrogen trifluoride (NFS).

このようにして6の温度分布の場合で1%希釈の三弗化
窒素及びホスフィンを使用した時、400℃まで堆積が
可能であり、7の温度分布において高温度領域を450
℃にした場合、基板3の温度370℃まで堆積が可能で
ある。
In this way, when using 1% diluted nitrogen trifluoride and phosphine in the case of temperature distribution 6, deposition up to 400°C is possible, and in the case of temperature distribution 7, the high temperature region can be increased to 450°C.
℃, deposition is possible up to the temperature of the substrate 3 of 370°C.

6の温度分布の場合、基板3の温度をさらに下げると極
度に堆積速度が遅くな91時間以内に1oooX程度の
膜厚を得ることができなくなる。
In the case of temperature distribution 6, if the temperature of the substrate 3 is further lowered, the deposition rate is extremely slow and a film thickness of about 100X cannot be obtained within 91 hours.

この場合、三弗化窒素(NFS)ならびにホスフィン(
PH3)の濃度を上げれば堆積速度を上げることができ
るが、あまり濃度を上げすぎると爆発する。
In this case, nitrogen trifluoride (NFS) and phosphine (
It is possible to increase the deposition rate by increasing the concentration of PH3), but if the concentration is increased too much, it will explode.

三弗化窒素(NF3)の使用により、反応温度下限は著
しく低くなるが、これは水素と弗素との結合力が極めて
強いためにホスフィン(PH3)の中の水素と三弗化窒
素の中の弗素が結合することにより、活性の窒素と燐が
生成し、それらが結合して窒化燐ができるためである。
The lower limit of reaction temperature is significantly lowered by using nitrogen trifluoride (NF3), but this is because the bonding force between hydrogen and fluorine is extremely strong. This is because the combination of fluorine produces active nitrogen and phosphorus, which combine to form phosphorus nitride.

従って、この反応により弗化水素が生じることとなり、
これが石英反応管2を侵すこととなる。しかしながら、
実際には石英反応管2の管壁にも窒化燐膜がつき、これ
が弗化水素に対して腐食されにくいので、一度絶縁膜で
管壁をコートしてしまえばあとは繰返し使用できる。
Therefore, this reaction produces hydrogen fluoride,
This will attack the quartz reaction tube 2. however,
In reality, a phosphorous nitride film is also attached to the tube wall of the quartz reaction tube 2, and this is not easily corroded by hydrogen fluoride, so that once the tube wall is coated with an insulating film, it can be used repeatedly.

以上は窒化燐膜の場合について述べたが、ホスフィン(
PH3)の代りにトリメチルアルミニウムあるいはトリ
エチルインジウムなどの有機金属を含む不活性ガスを用
いることにより、窒化アルミニウム、窒化インジウムの
膜を作ることができる。
The above is about the case of phosphorus nitride film, but phosphine (
By using an inert gas containing an organic metal such as trimethylaluminum or triethylindium instead of PH3), a film of aluminum nitride or indium nitride can be formed.

また、シランを用いれば窒化シリコン膜を得ることがで
きる。
Furthermore, a silicon nitride film can be obtained by using silane.

窒化燐はまた三弗化燐(F’ Fa)とアンモニア(N
H3)の反応でも得られる。この場合も弗化水素の結合
が強いことから低温化が可能であるが、三弗化燐は室温
に於て三弗化窒素より反応性に富むので、三弗化窒素の
方が配管、減圧弁の腐食の問題が少なく、取扱い易い利
点がおる。
Phosphorus nitride is also phosphorus trifluoride (F'Fa) and ammonia (N
It can also be obtained by the reaction H3). In this case as well, the strong bonds of hydrogen fluoride make it possible to lower the temperature, but phosphorus trifluoride is more reactive than nitrogen trifluoride at room temperature, so nitrogen trifluoride is more difficult to use in piping and depressurization. It has the advantage that there is less problem of valve corrosion and it is easy to handle.

以上説明したように、本発明によシ三弗化窒素を窒化剤
として窒化膜を化学的気相堆積すると、堆積温度の低温
化が実現でき、ゲート絶縁膜形成に応用した場合、良好
な界面特性が得られる利点がある。
As explained above, by chemical vapor deposition of a nitride film using nitrogen trifluoride as a nitriding agent according to the present invention, the deposition temperature can be lowered, and when applied to gate insulating film formation, a good interface can be achieved. It has the advantage of providing certain characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を窒化膜形成に適用した場合の装置例を示す
断面略図である。 1・・・割形電り炉、2・・・石英製反応管、3・・・
半導体基板、4,4a・・・テフロン製コネクタ、5.
5a・・・テフロンチューブ。 特許出願人 日本電信電話公社 代理人 白水常雄
The figure is a schematic cross-sectional view showing an example of an apparatus in which the present invention is applied to nitride film formation. 1... split electric furnace, 2... quartz reaction tube, 3...
Semiconductor board, 4, 4a...Teflon connector, 5.
5a...Teflon tube. Patent applicant Tsuneo Shiramizu, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 化学的気相堆積法により窒化膜を形成する際に窒素源と
して三弗化窒素を使用することを特徴とする窒化膜形成
方法。
A method for forming a nitride film, characterized in that nitrogen trifluoride is used as a nitrogen source when forming a nitride film by a chemical vapor deposition method.
JP58207469A 1983-11-07 1983-11-07 Formation of nitride film Granted JPS60100674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207469A JPS60100674A (en) 1983-11-07 1983-11-07 Formation of nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207469A JPS60100674A (en) 1983-11-07 1983-11-07 Formation of nitride film

Publications (2)

Publication Number Publication Date
JPS60100674A true JPS60100674A (en) 1985-06-04
JPS6147906B2 JPS6147906B2 (en) 1986-10-21

Family

ID=16540276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207469A Granted JPS60100674A (en) 1983-11-07 1983-11-07 Formation of nitride film

Country Status (1)

Country Link
JP (1) JPS60100674A (en)

Also Published As

Publication number Publication date
JPS6147906B2 (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US8415259B2 (en) Method of depositing dielectric film by modified PEALD method
US8173554B2 (en) Method of depositing dielectric film having Si-N bonds by modified peald method
US5512519A (en) Method of forming a silicon insulating layer in a semiconductor device
US5089441A (en) Low-temperature in-situ dry cleaning process for semiconductor wafers
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
KR900007686B1 (en) Vapor-phase growth process
JP2776726B2 (en) Method for manufacturing semiconductor device
TW200406503A (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
JPH04226025A (en) Method forming titanium silicide con- ducting layer on silicon wafer
JPH11279773A (en) Formation of film
US5045346A (en) Method of depositing fluorinated silicon nitride
JPH05279838A (en) Formation of silicon nitride film and semiconductor device
JPS60100674A (en) Formation of nitride film
JP3422345B2 (en) Method of forming tungsten film
JPS6262529A (en) Forming method for silicon nitride film
KR100305210B1 (en) Method for forming nitride film of semiconductor device
US6232234B1 (en) Method of reducing in film particle number in semiconductor manufacture
US20220389580A1 (en) Non-conformal plasma induced ald gapfill
JP3243816B2 (en) Method of forming insulating film
JPS60190564A (en) Preparation of silicon nitride
JP2977150B2 (en) Method for manufacturing silicon dioxide insulating film
JPH06181205A (en) Method of manufacturing semiconductor device
JPH1197439A (en) Semiconductor device and manufacture thereof
JPH04129223A (en) Manufacture of semiconductor device
JP3184042B2 (en) Method for manufacturing semiconductor device