JPS60100039A - Zero adjustor for automatically recording heat analysis - Google Patents

Zero adjustor for automatically recording heat analysis

Info

Publication number
JPS60100039A
JPS60100039A JP20738783A JP20738783A JPS60100039A JP S60100039 A JPS60100039 A JP S60100039A JP 20738783 A JP20738783 A JP 20738783A JP 20738783 A JP20738783 A JP 20738783A JP S60100039 A JPS60100039 A JP S60100039A
Authority
JP
Japan
Prior art keywords
sample
temperature
amplifier
temperature difference
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20738783A
Other languages
Japanese (ja)
Inventor
Hideo Oota
太田 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGAKU KEISOKU KK
Original Assignee
RIGAKU KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGAKU KEISOKU KK filed Critical RIGAKU KEISOKU KK
Priority to JP20738783A priority Critical patent/JPS60100039A/en
Publication of JPS60100039A publication Critical patent/JPS60100039A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • G01N25/4866Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method

Abstract

PURPOSE:To enable an automatically recording analysis with a high accuracy by compensating for the temperature difference between the standard sample and a sample immediately after the change in the furnace temperature starts with a servo mechanism only while the temperature changes sharply to prevent missing of observation record due to changes in the zero point. CONSTITUTION:A sample 2 and the standard sample 3 are arranged side by side in a furnace 1 whose temperature rises or lowers linearly and contacts 4 and 5 of a differential thermocouple are bonded on the samples 2 and 3. The temperature difference between the samples 2 and 3 is computed with a differential amplifier 8 through these contacts 4 and 5 and the temperature of the sample 2 via an amplifier 13 is measured with an automatic recorder 10 with the base line based on the temperature difference as zero to perform an analysis on the sample 2. In this case, with a switch 20 closed as controlled with a timer 21, a potentiometer 16 is controlled through a servo motor 19 to allow a servo compensation for the temperature difference while the furnace temperature changes sharply after the start of rise or the like thereof and the amplifier 8 is fixed to the compensated value after the temperature difference is stabilized. This prevents missing of record at the observation part due to variations in the base line thereby enabling a automatically recording analysis with a high accuracy.

Description

【発明の詳細な説明】 示差熱分析あるーは走査型示差熱量計等においては、試
料およびこの試料(−近い熱伝導率および熱容量の標準
試料すなわち参照温度点とに示差熱電対の2つの接点の
各々を添差し、これらを炉に 1− 入れて孜、の温度を連続的に上昇または下降させること
により、示差熱電対の出力の自動記録を行う。
DETAILED DESCRIPTION OF THE INVENTION In differential thermal analysis, scanning type differential calorimeter, etc., two junctions of a differential thermocouple are connected to a sample and this sample (a standard sample with close thermal conductivity and heat capacity, that is, a reference temperature point). Automatic recording of the output of the differential thermocouple is performed by placing each of these in a furnace and continuously raising or lowering the temperature of the thermocouple.

このような自動記録熱分析において、試料と標準試料と
の熱容量等を正確に一致させることは事実上不可能であ
る。従って炉の温度を一定の速度で上昇または下降する
状態においては、試料に熱的特性の変化がない限り、示
差熱電対がその温度変化の速度C:対応した一定の出方
を送出するから、この出力レベルをベースラインとして
示差温度の記録を行うことができる。しかし昇温ま72
:は降温を開始した直後におφては示差熱電対の出方に
大きな変動を生じて、特に高感度の測定装置におりては
この変動分だけで自動記録針のベースラインがオーバー
スケールを生じて、測定が不可能になる。このため従来
は試料に極めて近い熱特性の標準試料を用−る必要があ
って、その秤量等に多大の労力を要した。本発明はこの
ような欠点を除去して、特に高精度の分析を容易に行−
得るようにしたものである。
In such automatic recording thermal analysis, it is virtually impossible to accurately match the heat capacity, etc. of a sample and a standard sample. Therefore, when the temperature of the furnace is raised or lowered at a constant rate, unless there is a change in the thermal properties of the sample, the differential thermocouple will send out a constant output corresponding to the rate of temperature change C: Differential temperature can be recorded using this output level as a baseline. However, the temperature rises 72
Immediately after the temperature starts to decrease, large fluctuations occur in the direction of the differential thermocouple, and especially in highly sensitive measurement equipment, this fluctuation alone can cause the baseline of the automatic recording needle to overscale. occurs, making measurement impossible. For this reason, conventionally it has been necessary to use a standard sample with thermal properties very similar to those of the sample, which requires a great deal of effort in weighing and the like. The present invention eliminates these drawbacks and facilitates particularly high-precision analysis.
This is what I did to get it.

第1図は本発明実施例の回路構成を示した図で、垂直に
配置した円III伏の電気Fl内l二試料2および標準
試料3′ft並置して、それらに示差熱電対の接点番お
よび5をそれぞれ添着しである。すなわち標準試料3が
参照温度点となるもので、入力抵抗6.?−i、’9シ
てこの示差熱電対の両端を差動演算増幅器8の入力端に
接続し、かつ該増幅器には帰還抵抗9を設けて、その出
力を2人力自動記録計10ζニ一方の入力として加えで
ある。また接点番を試料2に添着した熱電対の両端を、
入力抵抗11゜18を介して演算増幅器13の入力端(
二接続し、仁の増幅器直重帰還抵抗141iH設けて、
その出力全前記記録計10(−他方の入力として加えで
ある。
FIG. 1 is a diagram showing the circuit configuration of an embodiment of the present invention, in which two samples 2 and a standard sample 3'ft are juxtaposed in a vertically arranged circle III-shaped electric Fl, and the contact numbers of differential thermocouples are placed on them. and 5 are attached respectively. That is, the standard sample 3 is the reference temperature point, and the input resistance 6. ? -i,'9 The ends of the differential thermocouple of the lever are connected to the input terminal of a differential operational amplifier 8, and the amplifier is provided with a feedback resistor 9, and its output is sent to one of the two manual automatic recorders 10ζ. Add as input. Also, connect both ends of the thermocouple with contact numbers attached to sample 2.
The input terminal of the operational amplifier 13 (
Connect the two, and provide the amplifier direct feedback resistor 141iH,
Its output is all the recorder 10 (- plus as input to the other).

従って炉1の温度を例えば室温から一定の速度で上昇さ
せると、試料2の温度が増幅器13で増幅さtて記録計
10(=記録されると同時に試料gと標準試料3との間
の温度差が増幅器8で増幅されて同一記録針に記録され
る。第2図の曲線PFi記録された試料2の温度で横軸
−が時間、縦軸Tが温度である。
Therefore, when the temperature of the furnace 1 is raised from, for example, room temperature at a constant rate, the temperature of the sample 2 is amplified by the amplifier 13, and the temperature of the sample 2 is amplified by the recorder 10 (= the temperature between the sample g and the standard sample 3 is simultaneously recorded). The difference is amplified by an amplifier 8 and recorded on the same recording needle.The curve PFi in FIG. 2 shows the recorded temperature of the sample 2, where the horizontal axis - is time and the vertical axis T is temperature.

また前記差動演算増幅器8の一方の入力端に入力抵抗1
5を介して可変ポテンショメータ16の摺動子1ワ、す
なわち出力端を接続しである0このポテンショメータ1
6は中性点を接地したもので、上記増幅器8の出力をサ
ーボ増幅器1Bで増幅して、摺動子17ヲ駆動するサー
ボモータ19(=加えると共に増幅器18と毫−タ19
との間にスイッチgoを設けて、このスイッチを例えば
タイマー+11で開放するようC二しである。
In addition, an input resistor 1 is connected to one input terminal of the differential operational amplifier 8.
Connect the slider 1 of variable potentiometer 16 through 5, that is, the output end of this potentiometer 1.
Reference numeral 6 has a neutral point grounded, and the output of the amplifier 8 is amplified by a servo amplifier 1B to drive a servo motor 19 (= in addition to the amplifier 18 and the motor 19) which drives the slider 17.
A switch ``go'' is provided between ``C2'' and ``C2'' so that this switch is opened by a timer +11, for example.

上述の装置にお−で、第2図の時刻1.(=炉1の温度
を上昇し始めたものとすると、試料2の温度は例えけ前
記曲線Pのように変化するが、これと同時シニタイマー
Blf起動する。この場合、試料2と標準試料3との熱
容量および表面の輻射熱吸収特性が完全C二等しいもの
とすれば上記温度上昇によって試料2と標準試料3との
間に温度差を生じないから差動増幅器Bの出力は零に保
たれる。しかし通常は上記熱容量等を正確に等しくする
ことが困難であるために試料記と標準試料3との間に温
度差を生ずる。特(二項幅器8の利得を大きくして高精
度の測定を行う場合は増幅器8から大きな出力が送出さ
れるが、この出力は炉温の上昇または下降速度を一定と
すると成る時間の後(:は一定の値に達して安定する。
At time 1 in FIG. (=Assuming that the temperature of furnace 1 has started to rise, the temperature of sample 2 will change as shown in the curve P above, and at the same time, the sinitimer Blf will start. In this case, sample 2 and standard sample 3 If the heat capacity and surface radiant heat absorption characteristics are perfectly equal to C2, the above temperature rise will not cause a temperature difference between sample 2 and standard sample 3, so the output of differential amplifier B will be kept at zero. However, since it is usually difficult to exactly equalize the heat capacity, etc., a temperature difference occurs between the sample record and the standard sample 3. When performing measurements, a large output is sent out from the amplifier 8, but this output reaches a certain value and stabilizes after a certain period of time (:) when the rate of rise or fall of the furnace temperature is constant.

従って昇温等の開始時において、記録ペンを記録範@W
の中央部に配置するものとすると、例えば第2図の破線
Qで示したHwから逸脱する。
Therefore, at the start of temperature rise, etc., move the recording pen to the recording range @W.
If it is placed in the center of , it deviates from Hw shown by the broken line Q in FIG. 2, for example.

しかし@1図の装置は増幅器8の出力を更に増I1.i
器18で増幅してサーボモータ19(二加え、そのモー
タでポテンショメータ16の摺動子17effillE
llしである。このため増幅器8が出力を発生すると、
その出力シニ対応する電圧が上記摺動子17から送出さ
れて、入力抵抗1fi(二より上記増幅器の入力端に帰
還される0すなわち増幅器8の出力を相殺するような入
力が増幅器8に帰還されるから、該増幅器Bの出力はr
fに零の4ilを保持して、記録計10には時間軸にほ
ぼ平行な記録線Rが画かれる。
However, the device shown in Figure @1 further increases the output of amplifier 8 by I1. i
The motor is amplified by the servo motor 19 (in addition, the slider 17 of the potentiometer 16 is
I'm sorry. Therefore, when amplifier 8 generates an output,
A voltage corresponding to the output signal is sent out from the slider 17, and an input is fed back to the amplifier 8 through the input resistor 1fi (0, which cancels out the output of the amplifier 8). Therefore, the output of amplifier B is r
A recording line R approximately parallel to the time axis is drawn on the recorder 10 by keeping 4il of zero in f.

従ってタイマーれの時限をm2図C二おける時点1、か
も曲線Qが安定する時点t1までの時間、例えば1分根
度に設定しておいて炉lの温度上昇または下降を開始L
sこれと同時にそのタイマーを起動すると、上記時点1
xにおいてタイマーglが起動し、スイッチ20が開放
する。このためサーボモータ19が停止して、その後は
ボテンシタメータ16の摺艶子17から、上記時点11
(=おける電圧が送出し続けられる。かつ時点−1(二
連すると炉1の温度が直線的シュ変化する限り、試料2
と標準試料3との間の湿度差は一部&:保たれて変化し
ないから記録−tilOt;を増幅器8の出力によって
水平な記録線8を画く。しかし炉1の温度かTttたF
iTマC:達したとき試料8の熱特性に変化が生じたも
のとすると、その時点り、I、にお−で記録線8に前述
のような屈曲部X、Yを生ずるから、この屈曲部すなわ
ち観測しようとする部分が記録面の中央(:確実に記録
されて、記録範囲wを逸脱するようなおそれが除かれる
Therefore, the time limit of the timer is set to point 1 in Figure C2, or the time until point t1 when the curve Q becomes stable, for example, 1 minute, and the temperature rise or fall of the furnace L is started.
sIf you start that timer at the same time, the above time point 1
At x, timer gl is activated and switch 20 is opened. For this reason, the servo motor 19 stops, and after that, from the slider 17 of the potentiometer 16,
The voltage at
Since the humidity difference between the sample 3 and the standard sample 3 is partially maintained and does not change, a horizontal recording line 8 is drawn by the output of the amplifier 8. However, the temperature of furnace 1 was TttF
If it is assumed that there is a change in the thermal properties of the sample 8 when it reaches iTmaC, then at that point, the curves X and Y as described above will be created in the recording line 8 at I and Ni. That is, the part to be observed is recorded reliably at the center of the recording surface, and there is no possibility that it will deviate from the recording range w.

上述のようζ二本発明の装置は試料とこれC二対する標
準試料のような基準温度点との間の温度差を、炉温の変
化が開始した直後の急激IS変化する期間だけサーボ機
構によって補償し、上記温度差が安定した時点でその補
償値を固定するものであるO従ってベースラインの変動
によって観測しようとする部分の記録が脱落するような
おそれが除かれて、特(−高精度の測定には極めて有効
である。なおサーボ機構の切り離しは、これを前述のよ
うC二タイマーで自動的に行うほか、手動操作によるこ
とも、また試料温度に応じて自動的に開閉すること等も
できる。
As mentioned above, the apparatus of the present invention uses a servo mechanism to adjust the temperature difference between the sample and a reference temperature point, such as a standard sample, by the servo mechanism only during the period of rapid IS change immediately after the furnace temperature starts to change. The compensation value is fixed at the point when the temperature difference becomes stable. Therefore, it eliminates the possibility that the recording of the part to be observed will be lost due to fluctuations in the baseline. It is extremely effective for the measurement of You can also do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成を示した図1第2因は本発
明の装置の作用を説明する線図である。 なお図において、lは炉、2Fi試料、3Fi標準試料
、4.Ilt Iri示差熱亀対の接点、10g自動記
録計、16はポテンショメータ、1)は摺動子、19は
サーボモータ、1alViタイマーであるロ ークー 律/ml
FIG. 1 shows the configuration of an embodiment of the present invention. The second factor is a diagram illustrating the operation of the apparatus of the present invention. In the figure, l indicates the furnace, 2Fi sample, 3Fi standard sample, 4. Contact point of Ilt Iri differential thermal turtle pair, 10g automatic recorder, 16 is potentiometer, 1) is slider, 19 is servo motor, 1alVi timer low-couple/ml

Claims (1)

【特許請求の範囲】[Claims] 2つの接点の各々を試料と参照温度点と(二それぞれ添
着した示差熱電対の出力端および可変ボテンシ日メータ
の出力端を差動演算増幅器の入力端(=それぞれ入力抵
抗を介して接続し、かつ上記演算増幅器の出力端を記録
計並びにサーボ増幅器の入力端に接続して、前記可変ポ
テンショメータの摺動子の駆動モータを上記サーボ増幅
器の出力端に接続すると共C二数モータの入力回路を所
望の観測温度4囲において開放するためのスイッチを設
けたことを特徴とする自動記録熱分析の零点mm装置
Each of the two contacts is connected to the sample and the reference temperature point (the output end of the differential thermocouple attached to each and the output end of the variable potency date meter are connected to the input end of the differential operational amplifier (=each via an input resistor, and the output end of the operational amplifier is connected to the input end of a recorder and a servo amplifier, and the drive motor of the slider of the variable potentiometer is connected to the output end of the servo amplifier, and the input circuit of the C2 motor is connected to the output end of the servo amplifier. Zero-point mm device for automatic recording thermal analysis, characterized in that it is equipped with a switch for opening at four desired observation temperatures.
JP20738783A 1983-11-07 1983-11-07 Zero adjustor for automatically recording heat analysis Pending JPS60100039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20738783A JPS60100039A (en) 1983-11-07 1983-11-07 Zero adjustor for automatically recording heat analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20738783A JPS60100039A (en) 1983-11-07 1983-11-07 Zero adjustor for automatically recording heat analysis

Publications (1)

Publication Number Publication Date
JPS60100039A true JPS60100039A (en) 1985-06-03

Family

ID=16538890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20738783A Pending JPS60100039A (en) 1983-11-07 1983-11-07 Zero adjustor for automatically recording heat analysis

Country Status (1)

Country Link
JP (1) JPS60100039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355885U (en) * 1989-10-04 1991-05-29
US5064294A (en) * 1988-01-25 1991-11-12 Institut National De La Recherche Agronomique Process and apparatus for investigating and controlling changes of state of a liquid or gelled medium by differential thermal analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019960A (en) * 1973-06-26 1975-03-03
JPS59168349A (en) * 1983-03-16 1984-09-22 Shinku Riko Kk Saturation preventive circuit of amplifier in scanning-type differential calorimeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019960A (en) * 1973-06-26 1975-03-03
JPS59168349A (en) * 1983-03-16 1984-09-22 Shinku Riko Kk Saturation preventive circuit of amplifier in scanning-type differential calorimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064294A (en) * 1988-01-25 1991-11-12 Institut National De La Recherche Agronomique Process and apparatus for investigating and controlling changes of state of a liquid or gelled medium by differential thermal analysis
JPH0355885U (en) * 1989-10-04 1991-05-29

Similar Documents

Publication Publication Date Title
Beck A steady state method for the rapid measurement of the thermal conductivity of rocks
US3263484A (en) Differential microcalorimeter
JPS6215818B2 (en)
JPH0361843A (en) Method and apparatus for measuring heat conductivity of gas
US2878669A (en) Apparatus for determining thermal conductance and resistance
US2559789A (en) Dilatometer
US3527081A (en) Differential scanning calorimeter
JPS60100039A (en) Zero adjustor for automatically recording heat analysis
US3332153A (en) Temperature compensating system
Swinbank A sensitive vapour pressure recorder
JP2828211B2 (en) Thermal change measurement method
US3646436A (en) Apparatus and method for measuring electrical resistance employing constant output voltage technique
US4114421A (en) Apparatus for measuring the concentration of impurities within a substance
US3667294A (en) Apparatus for thermal analysis
JPH0372944B2 (en)
Henriques Jr Studies of Thermal Injury. VIII. Automatic Recording Caloric Applicator and Skin‐Tissue and Skin‐Surface Thermocouples
Arndt et al. Isochronal Differential Microcalorimeter
US3498113A (en) Method and apparatus for determining solute concentrations
JPS62148845A (en) Device for simultaneously measuring thermal and temperature conductivity of flat deformable material
Shaw et al. An apparatus to measure the thermal diffusivity of irradiated fuel specimens at temperatures up to 1200° C by the flash method
Noltingk et al. An electronic temperature controller
US2882719A (en) Apparatus for fluid analysis
JPH0136115Y2 (en)
JPS6381253A (en) Heat flux type differential scanning calorimeter of sample individual system
JPS6247076Y2 (en)