JPS5999507A - Unmanned traveling operation car - Google Patents

Unmanned traveling operation car

Info

Publication number
JPS5999507A
JPS5999507A JP57210032A JP21003282A JPS5999507A JP S5999507 A JPS5999507 A JP S5999507A JP 57210032 A JP57210032 A JP 57210032A JP 21003282 A JP21003282 A JP 21003282A JP S5999507 A JPS5999507 A JP S5999507A
Authority
JP
Japan
Prior art keywords
work
traveling
distance
work area
outer circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57210032A
Other languages
Japanese (ja)
Inventor
Katsumi Ito
勝美 伊藤
Shigeru Tanaka
滋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57210032A priority Critical patent/JPS5999507A/en
Publication of JPS5999507A publication Critical patent/JPS5999507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To facilitate teaching and to reduce the memory capacity of a device by generating work data on the inner circumference of a work area automatically on the basis of topographic information obtained by traveling on the outer circumference of the work area. CONSTITUTION:A car body 1 mounts an azimuth sensor 5 and a distance sensor 6. The teaching is carried out by traveling on the outer circumference of the work area. The traveling course of the outer circumference is sampled to calculate the rough shape of the work area. Then, the traveling course is calculated on the basis of the length of the outer circumference of the work area and the operation width of the car body 1. The data on the outer circumference consists of eight coordinates. Therefore, the amount of information to be stored is reduced. The car body 1 performs operation suitably to a passing point like a lawn mower, sprinkler truck, buldozer, etc.

Description

【発明の詳細な説明】 本発明は、ブルドーザ−1散水車、芝刈機等のように、
通過地点に対して作業を行う作業車であって、作業を伴
う走行の少な(古も一部を無人で行う作業車に関する。
[Detailed Description of the Invention] The present invention provides a bulldozer-1 water truck, lawn mower, etc.
This refers to a work vehicle that performs work at passing points, and that does not travel much with work (also relates to work vehicles that perform part of the work unmanned).

従来、この様な作業車としてティーチングプレイバック
制御方式が採用された作業車があるが、従来方式のもの
では、無人走行すべき全走行コースを予め作業車が人為
的に運転して走行し、この有人走行の際に所定走行距離
や走行方向等をサンプリングした走行コースのサンプリ
ング情報を記憶装置に記憶させ、この様にしてティーチ
ングされた走行コースのサンプリング情報に基いて、次
回からの作業は無人でこの所定走行コースを自動走行さ
せるものであるから、少なくとも1回は全走行コースを
人為的に運転せねはならす、1回限りの作業には全く役
立たす、更にまた、走行コースのサンプリング情報を記
憶するためのメモリ使用量が極めて多くなるという欠点
が有った。
Conventionally, there are work vehicles that have adopted a teaching playback control method as such work vehicles, but in the conventional type, the work vehicle manually runs the entire travel course that should be run unmanned in advance. During this manned driving, the sampling information of the driving course that sampled the predetermined driving distance, driving direction, etc. is stored in the storage device, and based on the sampling information of the driving course taught in this way, the next time the work will be unmanned. Since this predetermined driving course is automatically driven, it is not necessary to manually drive the entire driving course at least once, which is completely useful for a one-time operation, and furthermore, sampling information of the driving course is required. The disadvantage is that the amount of memory used to store the information becomes extremely large.

一方、前記作業地が正方形、長方形等の単純な概形形状
である場合は実際には非常に少な(、多角形や円形(楕
円を含むンに近いものである場合が多く、このことによ
っても、走行コースのサンプリング情報が多(なるとい
う欠点が有った。
On the other hand, if the work area has a simple general shape such as a square or rectangle, it is actually very rare (in many cases, it is close to a polygon or circle (including an ellipse); However, there was a drawback that there was a large amount of sampling information for the driving course.

本発明は、かかる実情に鑑みてなされたものであって、
その目的は、メモリ容量の小さな小型の装置を用いなが
らも十分なティーチング・プレイバック制御を行なえる
無人走行作業車を提供することにある。
The present invention was made in view of such circumstances, and
The purpose is to provide an unmanned working vehicle that can perform sufficient teaching and playback control while using a small device with a small memory capacity.

上記目的を達成するために、本発明による無人走行作業
車は、車体に走行方向を検出する方位センサーおよび走
行距離を検出する距離センサーを設け、前記距離センサ
ーによって検出される所定走行距離毎に前記方位センサ
ーによって検出される方位情報をサンプリングすること
によって@記外周のティーチングが行なわれ、このティ
ーチング時にサンプリングされた方位情報と積算走行距
離とに基いて、走行方向の変曲点を算出し、前記作業地
の概形形状を前記各変曲点により構成される多角形とし
て記憶するとともに、この多角形として算出、記憶され
た作業地概形形状の情報および一走行工程における作業
幅に基いて、往復走行行程数を算出、記憶することによ
って、前記外周ティーチングされた内部を覆う走行コー
スを自助生成する手段を設けである、という特徴を備え
ている。
In order to achieve the above object, an unmanned working vehicle according to the present invention is provided with a direction sensor for detecting the traveling direction and a distance sensor for detecting the traveling distance on the vehicle body, and for each predetermined traveling distance detected by the distance sensor. Teaching of the outer circumference is performed by sampling the orientation information detected by the orientation sensor, and based on the orientation information sampled during this teaching and the cumulative travel distance, an inflection point in the traveling direction is calculated, and the point of inflection in the traveling direction is calculated. The general shape of the work area is stored as a polygon formed by each of the inflection points, and based on the information on the general work land shape calculated and stored as this polygon and the working width in one traveling process, The present invention is characterized in that it is provided with means for self-generating a travel course that covers the inside of which the outer periphery has been taught by calculating and storing the number of reciprocating travel strokes.

上記特徴構成数に、下記の如き優れた効果が発揮される
に至った。
The following excellent effects have been achieved with the number of feature configurations mentioned above.

即ち、作業地の形状をそれを代表する変曲点の座標のみ
で記憶させてお(手段を採用したことにより、全ての走
行コース情報を細か(記憶する必要が無(なり、ティー
チング・プレイバック制御に要するメモリの使用量が大
幅に節約できるに至ったのであり、可及的に小型の装置
を用いながらも十分なティーチング・プレイバック制御
が行なえる汎用性の高いものにできたのである。
In other words, by adopting a method in which the shape of the work area is memorized only by the coordinates of the inflection points that represent it, there is no need to memorize all driving course information in detail (teaching/playback is possible). The amount of memory required for control can be reduced significantly, and the system can be made highly versatile, allowing sufficient teaching and playback control while using as small a device as possible.

しかも、作業地概形を実際の作業地形状に良好に近似し
た多角形状として記憶するものであるから、その後のプ
レイバック制御に必要な情報の欠落が少な(なって、少
カい記憶情報にも拘らず精度の高いルイバック制御が可
能になったのである。
Moreover, since the working terrain outline is stored as a polygonal shape that closely approximates the actual working terrain shape, there is less loss of information necessary for subsequent playback control (resulting in less memorized information). Despite this, highly accurate Louisback control has become possible.

以下、本発明の実施例を図面に基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すように、車体il+の前後輪(2+ 、 
[31の中間部に芝刈装置(4)を上下前自在に懸架す
るとともに、車体+l)前方に地磁気を感知することに
よって走行方向の方位を検出する方位センサー(5)を
設け、車体fi+後方にこの車体(11の移動距離を継
続的に検出する距離センサー(6)としての第5輪を設
け、無人走行可能な作業車としての芝刈作業車を構成し
である。
As shown in Fig. 1, the front and rear wheels (2+,
[31] A lawn mowing device (4) is suspended vertically and forwardly in the middle of the vehicle, and a direction sensor (5) is installed in front of the vehicle body + l) to detect the direction of travel by sensing the earth's magnetism, and a direction sensor (5) is installed in the front of the vehicle body fi + A fifth wheel is provided as a distance sensor (6) that continuously detects the moving distance of this vehicle body (11), and a lawn mowing work vehicle is configured as a work vehicle that can run unmanned.

前記方位センサー(5)は、第2図に示すように、トロ
イダルコア(7)に励磁コイル(CO)を施し、その上
から直径方向にお互いに直交した出力コイル(CX)、
(Cy)を巻いてあり、前記励磁コイル(Cりに交流電
流を流しであるトロイダルコア(7)に外部磁界(地磁
気)が加わると出力コイル(Cx)、(Cy)にこの外
部磁界に比例した交流信号電圧を発生すべく構成しであ
る。 そして、前記出力コイル(Cx) 、(Cy)に
発生した交流信号電圧を所定のレベルまで増幅した後、
直流電圧化し、この直流電圧(vX)、(vy)の比か
ら方位を判別子べ(構成しておる。
As shown in FIG. 2, the orientation sensor (5) includes an excitation coil (CO) provided on a toroidal core (7), and output coils (CX) arranged orthogonally to each other in the diametrical direction from above the excitation coil (CO).
(Cy) is wound, and when an external magnetic field (earth's magnetism) is applied to the toroidal core (7), which is an alternating current passed through the excitation coil (C), the output coils (Cx) and (Cy) are proportional to this external magnetic field. After amplifying the AC signal voltage generated in the output coils (Cx) and (Cy) to a predetermined level,
The voltage is converted into a DC voltage, and the direction is determined from the ratio of the DC voltages (vX) and (vy).

一方、前記距離センサー(6)は、車体(11の単位移
動距離毎に1回のパルスを発生して、このパルスをカウ
ンタ、−(8)によって所定回数カウントすることによ
って所定移動距離(、to)を検出すべく構成しである
On the other hand, the distance sensor (6) generates one pulse for every unit movement distance of the vehicle body (11), and counts this pulse a predetermined number of times by a counter, -(8), so that a predetermined movement distance (, to ) is configured to detect.

次に、以上の構成になる方位センサー(5)および距離
センサー(61の各検出信号に基いて、作業地外周の走
行コースをサンプリングし、このサンプリング情報に基
いて作業地概形を算出する概形ティーチング装置として
の制御装置(1]Jについて説明する。
Next, based on the detection signals of the direction sensor (5) and the distance sensor (61) configured as described above, a driving course around the outer circumference of the work site is sampled, and an outline of the work site outline is calculated based on this sampling information. The control device (1) J as a shape teaching device will be explained.

第3図に示すように、前記方位センサー(5)からの方
位検出信号としての直流゛電圧(Vx) 、 (Vy)
ハ、信号セレクタ=(9)を介してA/Dコンバータ(
10)によってデジタル信号に変換されて入出力インタ
ーフェースi12を介して制御装置(11)の演算部(
I3)に入力される。 そして、前記カウンター(8)
によってカウントされる距離センサー(6)からの所定
パルス数(前記所定移動距離(lりに対応)毎に@記方
位センサー(5)Kよって検出された方位情報としての
電圧(VX)l (VX)をサンプリングして、メモI
J f141の所定アドレス領域に順次記憶すべく構成
しである。
As shown in FIG. 3, the direct current voltage (Vx), (Vy) as the direction detection signal from the direction sensor (5)
c. Signal selector = A/D converter (
10) is converted into a digital signal and sent to the arithmetic unit (11) of the control device (11) via the input/output interface i12.
I3). And the counter (8)
A predetermined number of pulses from the distance sensor (6) counted by (corresponding to the predetermined movement distance) (voltage (V ) and memo I
The configuration is such that the information is sequentially stored in a predetermined address area of the Jf141.

次に、作業地外周ティーチング時の走行方位サンプリン
グと、そのサンプリング情=ffl K基いて、その走
行コースの変曲点の座標を算出して、作業地概形を求め
るシステムについて、第4図のティーチング概念図に基
いて説明する。
Next, we will discuss a system that calculates the coordinates of the inflection point of the traveling course based on the traveling direction sampling during teaching around the working area and the sampling information =fflK, and calculates the outline of the working area, as shown in Figure 4. The explanation will be based on the teaching conceptual diagram.

即ち、前記所定移動距離(lO)毎にサンプリングさ扛
た電圧(”X) + (vy)に基いて走向方位変化(
D)を算出し、この方位変化(D)の最大値から上位8
つの方位変化(D)点の座標(xo 、yo) 、 (
xa、ya)−゛(xg)yg)を算出して、この8つ
の座標(xo、yo、)。
That is, the strike direction change (
D), and from the maximum value of this direction change (D), the top 8
The coordinates of the orientation change (D) points (xo, yo), (
xa, ya) - ゛(xg) yg) are calculated, and these eight coordinates (xo, yo,).

(xa 、 ya )−・(xg、yg)で囲まれる範
囲を作業地概形として最終的に記憶するのである。
The range surrounded by (xa, ya) - (xg, yg) is finally stored as the working terrain outline.

そして、前記8つの変曲点座標間の距離と芝刈装置(4
)の作業幅1a)より行程数すなわち往復走行に必要な
旋回数(Nlが算出されるのである。
Then, the distance between the eight inflection point coordinates and the lawn mower (4
) The number of strokes, that is, the number of turns (Nl) required for reciprocating travel is calculated from the working width 1a).

従って、−プレイバック制御に必要な情報、すなわち、
前記旋回数fNlの他に、各行程毎の走行予定距離や全
行程の終了地点等の情報を前記8つの変曲点座標(XO
+ VO) + (xa+ ya)”゛”’(xg +
 3’g)に基いて算出できるので、可及的に記憶する
情報量が少なくできたのである。
Therefore, - the information necessary for playback control, i.e.
In addition to the number of turns fNl, information such as the scheduled travel distance for each stroke and the end point of the entire stroke is calculated using the eight inflection point coordinates (XO
+VO) + (xa+ya)"゛"'(xg +
3'g), the amount of information to be stored can be reduced as much as possible.

尚、座標(x、o、yo)は外周ティーチングの出発点
座標である。
Note that the coordinates (x, o, yo) are the starting point coordinates for outer circumference teaching.

又、第5図(イ)は以上説明した外周ティーチングにお
ける制御装置の前作全体を示すフローチャートで、同図
(ロ)〜(ホ)は各サブルーチンを示すフローチャート
である。
FIG. 5(a) is a flowchart showing the entire previous work of the control device in the outer circumferential teaching described above, and FIG. 5(b) to (e) are flowcharts showing each subroutine.

又、上記第5図(イ)〜(ホ)中で使用したそのイ也の
記号は各制御スデ・ノブの識別用フラ・ノブであり、x
l 71θ等の変数に付した添字は第4図に示した各座
標の添字に対応するものである。
In addition, the symbols ``a'' and ``a'' used in Figures 5 (a) to (e) above are the flag knobs for identifying each control knob, and x
The subscripts attached to variables such as l71θ correspond to the subscripts of each coordinate shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る無人走行作業車の実施側]を示し、
第1図は芝刈作業車の全体側面図、第2図は方位センサ
ーの構成を示す概略図、第3図は制御システムのプロ・
ツク図、第4図はティーチング概念図、そして第5図(
イ)〜(ホ)は宙I]御装置の動作を示すフローチャー
トである。 [11・・・・・・車体、(5)・・・・・方位センサ
ー、(6)・・・・距離センサー、(lす・・・・・所
定走行距離、ω)・・・・方位情報、(xo、yす+(
xa+ya)””(xg+yg)”’ ”・変曲点、+
dl ・・・・・・作業幅。
The drawing shows the implementation side of the unmanned working vehicle according to the present invention,
Figure 1 is an overall side view of the lawn mowing vehicle, Figure 2 is a schematic diagram showing the configuration of the orientation sensor, and Figure 3 is a professional view of the control system.
Figure 4 is a teaching concept diagram, and Figure 5 (
A) to (E) are flowcharts showing the operation of the control device. [11...Vehicle body, (5)...Direction sensor, (6)...Distance sensor, (lsu...Predetermined mileage, ω)...Direction Information, (xo, ys+(
xa+ya)””(xg+yg)”’ ”・Inflection point, +
dl ・・・・・・Working width.

Claims (1)

【特許請求の範囲】 往復走行工程を繰り返して作業地の一端側から他M側に
至る間に作業地内の対地作業を行う対地作業車であって
、車体[11に走行方向を検出する方位センサー(5)
および走行距離を検出する距離センサー(6)を設け、
前記距離センサー(61によって積出される所定走行距
離(10)毎に前記方位センサー(6)Kよって検出さ
れる方位情報(θ)をサンプリングすることによって前
記外周のティーチングが行なわれ、このティーチング時
にサンプリングされた方位情報(θ)と積算走行距離と
に基いて、走行方向の変曲点(Xo 、 Yo) 、 
(Xa 。 Ya片・・・・(Xg 、Yg)を算出し、前記作業地
の概形形状を前記各変曲点(Xo、Yo)、(Xa、Y
a)−−−−(Xg、Yg)によジ槽成される多角形と
して記憶するとともに、この多角形として算出、記憶さ
れた作業地概形形状の情報および一走行工程における作
業幅++11 K基いて、往復走行行程数fn)を算出
、記憶することによって、前記外周ティーチングされた
内部を覆う走行コースを自1vJ生成する手段を設けで
あることを特徴とする無人走行作業車。
[Scope of Claims] A ground work vehicle that performs ground work within a work site while repeating a reciprocating process from one end side of the work site to the other M side, the vehicle body [11] having an azimuth sensor for detecting the traveling direction. (5)
and a distance sensor (6) that detects the distance traveled,
The teaching of the outer periphery is performed by sampling the azimuth information (θ) detected by the azimuth sensor (6) K every predetermined traveling distance (10) delivered by the distance sensor (61), and the sampling at the time of this teaching Based on the azimuth information (θ) and the cumulative travel distance, the inflection point of the traveling direction (Xo, Yo),
(Xa.Ya piece...(Xg, Yg) is calculated, and the approximate shape of the work area is determined by each of the inflection points (Xo, Yo), (Xa, Y
a) It is stored as a polygon formed by ----(Xg, Yg), and information on the general shape of the work ground calculated and stored as this polygon and the work width in one traveling process ++11K 1. An unmanned working vehicle, characterized in that the unmanned working vehicle is provided with means for calculating and storing a number of reciprocating travel strokes fn) to generate a traveling course that covers the interior of which the outer periphery has been taught.
JP57210032A 1982-11-30 1982-11-30 Unmanned traveling operation car Pending JPS5999507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210032A JPS5999507A (en) 1982-11-30 1982-11-30 Unmanned traveling operation car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210032A JPS5999507A (en) 1982-11-30 1982-11-30 Unmanned traveling operation car

Publications (1)

Publication Number Publication Date
JPS5999507A true JPS5999507A (en) 1984-06-08

Family

ID=16582677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210032A Pending JPS5999507A (en) 1982-11-30 1982-11-30 Unmanned traveling operation car

Country Status (1)

Country Link
JP (1) JPS5999507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648581A1 (en) * 1989-06-16 1990-12-21 Commissariat Energie Atomique METHOD FOR CREATING AND TRACKING A TRACK FOR A VEHICLE SUCH AS A ROBOT
JPH03168811A (en) * 1989-11-29 1991-07-22 Honda Motor Co Ltd Device for setting up traveling course of self-traveling vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232806A (en) * 1985-08-02 1987-02-12 ヤンマー農機株式会社 Posture controller of rice planter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232806A (en) * 1985-08-02 1987-02-12 ヤンマー農機株式会社 Posture controller of rice planter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648581A1 (en) * 1989-06-16 1990-12-21 Commissariat Energie Atomique METHOD FOR CREATING AND TRACKING A TRACK FOR A VEHICLE SUCH AS A ROBOT
JPH03168811A (en) * 1989-11-29 1991-07-22 Honda Motor Co Ltd Device for setting up traveling course of self-traveling vehicle

Similar Documents

Publication Publication Date Title
US4600999A (en) Automatic running work vehicle
EP0475935B1 (en) Vehicle navigation system
DE112016005700T5 (en) Reversing assistance based on maneuvering difficulty
DE69725814T2 (en) Method and device for determining the rotation of wheels
GB2111204A (en) Driver guidance system for motor vehicle
WO1992021937A1 (en) Navigation apparatus and navigation method
JP2520952B2 (en) Vehicle direction detector
EP2772414A2 (en) Parking assistance apparatus and parking method
US4563685A (en) Return route indication device for automotive vehicles
JPS5999507A (en) Unmanned traveling operation car
CN109300334A (en) Car speed control method, device, equipment and computer readable storage medium
US4733181A (en) Single-winding magnetometer with Schmitt trigger output circuit
JPS59100915A (en) Unattended running service car
JPS63604A (en) Unmanned traveling service car
JPS6232806B2 (en)
JPS58155311A (en) Method for correcting residual magnetic field in vehicle
JPH0226729B2 (en)
JPH03148708A (en) Steering controller for automatic traveling working vehicle
JPS59105111A (en) Automatic ending method of work for unmanned traveling service car
JPH0327931B2 (en)
JPH0735974B2 (en) Vehicle compass
JP3682091B2 (en) Current position calculation system and current position calculation method
JPH03142509A (en) Steering controller
WO2020144723A1 (en) System for calculating curvature values at each point of a road route and operation method thereof
JPH06265615A (en) Apparatus for detecting information on road