JPS5999414A - Optical circuit parts - Google Patents

Optical circuit parts

Info

Publication number
JPS5999414A
JPS5999414A JP20888482A JP20888482A JPS5999414A JP S5999414 A JPS5999414 A JP S5999414A JP 20888482 A JP20888482 A JP 20888482A JP 20888482 A JP20888482 A JP 20888482A JP S5999414 A JPS5999414 A JP S5999414A
Authority
JP
Japan
Prior art keywords
optical
lens
input
central axis
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20888482A
Other languages
Japanese (ja)
Inventor
Shigeo Ishikawa
石川 重夫
Shigeta Ishikawa
石川 重太
Keiichi Takahashi
啓一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20888482A priority Critical patent/JPS5999414A/en
Publication of JPS5999414A publication Critical patent/JPS5999414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To improve reliability by rotating eccentric tubes of which the central axis in the cylindrical hollow part deviates from the central axis of the outside diameter in the holes of a holder, and inserting lenses for incidence and exit into the hollow parts of the eccentric tubes after making the central axis in the hollow part roughly coincident with the optical axis of a light beam. CONSTITUTION:Seven cylindrical holes are provided in a stainless steel holder 8, which is a heptagonal column, from a member 12 for fixing the position of optical fibers toward the center of the holder. Tubes 7 which have the diameter slightly smaller than the inside diameter of said holes and of which the central axis O of the outside diameter deviates from the central axis O' in the cylindrical hollow part 7' are inserted into the respective holes of the holder. Cylindrical lenses 1' having the outside diameter slightly larger than the inside diameter of the hollow part and the refractive index distribution which decreases roughly proportionally with the square of the distance from the central axis are inserted into the hollow parts 7' of the tubes 7. The lenses 1' make the light from input optical fibers into parallel light or focus the light beam to exit fibers.

Description

【発明の詳細な説明】 本発明は光フアイバケーブル通信システムに使用する光
回路部品に関し、特に光の分岐、合波および光路切換を
行なう受動光回路部品の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical circuit components used in optical fiber cable communication systems, and more particularly to the structure of passive optical circuit components that perform optical branching, multiplexing, and optical path switching.

受動光回路部品には、光信号の分岐・合流を行う光分岐
結合器、光信号の切換を行う光スィッチ、波長の異る複
数の光信号の多重を行う光合波分波器等がある。このよ
うな受動光回路部品の構成は、光ファイバとの結合部、
光ファイバからの光ビームを導き伝える導波部分、およ
び光ビームを分波・合波ある(・は偏向したりする機能
部分が主要構成部分である。中には、おのおのの主要構
成部分のうちの2つの部分が一体になっているものもあ
る。このような構成の受動光回路部品を大別すると、導
波部分として平行ビームを伝送する一様な屈折率分布を
有するレンズ部品を用いたものと、他の何らかの光導波
路で構成されているものとに分類できる。光導波路を用
いた場合は概して高度な微細加工技術を要し、充分な特
性が得られて(・ないものが多い。一方レンズを用(・
た場合、第1図のように部品数が多く1より、また入射
用光フアイバ31%レンズ1、光機能素子2、および出
射用光ファイバ32の部品を全て個々の最適位置に高精
度に配置する必要がある。その方法として筒精度な機構
部品によって無調整で固定する方法がある。しかしコス
トか極端に高くなり、又実除不可能な場合もあるため、
従来は光機構部品で概略の位置を決め、ある調整スペー
スを設け、その調整スペースの中で部品の位置を微調し
、接着剤等の固定用材料5で固定していた。しかし接着
剤等の固定用材料5は、熱的あるいは経時的な体積変化
の太き(・ものが多いため、調整スペースを接着剤によ
って埋めるとレンズ形受動光部品の信頼性が必ずしも充
分では無くなると(・う欠点があった。
Passive optical circuit components include optical branching and coupling devices that branch and combine optical signals, optical switches that switch optical signals, and optical multiplexers and demultiplexers that multiplex multiple optical signals with different wavelengths. The configuration of such passive optical circuit components includes a coupling part with an optical fiber,
The main components are the waveguide part that guides and transmits the light beam from the optical fiber, and the functional part that splits, combines, or deflects the light beam. Some passive optical circuit components have two parts integrated into one. Passive optical circuit components with this type of configuration can be roughly divided into components that use a lens component with a uniform refractive index distribution that transmits a parallel beam as a waveguide section They can be classified into those that are composed of optical waveguides and those that are composed of some other type of optical waveguide.Using optical waveguides generally requires advanced microfabrication technology, and sufficient characteristics cannot be obtained (in many cases, they are not). On the other hand, use the lens (・
In this case, as shown in Fig. 1, the number of components is larger than 1, and the components of the input optical fiber 31% lens 1, the optical functional element 2, and the output optical fiber 32 are all placed at individual optimal positions with high precision. There is a need to. One way to do this is to fix the cylinder without adjustment using mechanical parts with precision. However, the cost will be extremely high, and in some cases it may not be possible to divide the cost.
Conventionally, the approximate position was determined using an optical mechanism component, a certain adjustment space was provided, the position of the component was finely adjusted within the adjustment space, and the component was fixed with a fixing material 5 such as an adhesive. However, the fixing material 5 such as adhesive has a large volume change due to thermal or temporal changes, so if the adjustment space is filled with adhesive, the reliability of the lens-shaped passive optical component will not necessarily be sufficient. There was a drawback.

本発明の目的は、レンズ部品の位置調整が可能で、しか
も接着剤等の固定用材料で埋めるべき調整スペースをほ
とんど必要としな(・調整機構により、レンズ部品を使
用する信頼性が高(・受動光回路部品を提供づることに
ある。
The object of the present invention is to enable the position adjustment of lens components, and to require almost no adjustment space to be filled with fixing materials such as adhesives. Our objective is to provide passive optical circuit components.

本発明によれば少くとも1本の入射用光ファイバと、少
くとも1本の出射用光ファイバと、前記入射用光ファイ
バからの出射ビームを平行ビームに変換する入射用レン
ズと該平行ビームを集束し前記出射用光ファイバに入射
させる8射用レンズと、前記入出射用レンズ間に挿入さ
れた少くとも1個の光機能素子と、前記光機能素子を固
定し、前記入射用レンズまたは出射用レンズを配置する
複数個の穴を設けたホルダと、前記穴の径よりわすかに
小さな外径とこの外径の中心軸に対して偏心した位置に
中心軸を有し前記入射用レンズまたは出射用レンズを固
定する中空部とを有する偏心管とを含み、前記穴に対し
て偏心管を回転して調整固定した光回路部品が得られる
According to the present invention, at least one optical fiber for input, at least one optical fiber for output, an input lens for converting the output beam from the input optical fiber into a parallel beam, and a lens for converting the output beam from the input optical fiber into a parallel beam. an 8-injection lens that focuses the light and makes it enter the output optical fiber; at least one optical functional element inserted between the input and output lenses; a holder having a plurality of holes for arranging lenses for use in the incident light; An optical circuit component including an eccentric tube having a hollow portion for fixing an exit lens, and in which the eccentric tube is adjusted and fixed by rotating with respect to the hole is obtained.

上記光機能素子は入射用レンズからの光ビームを各出射
用レンズに分波、合波する干渉膜フィルタある(、・け
回折格子ン用(・た素子、光分岐を行うハーフミラ−を
用いた素子や、光路切換手段を用いた素子などがある。
The optical functional element mentioned above is an interference film filter that splits and multiplexes the light beam from the input lens to each output lens. There are elements such as elements and elements using optical path switching means.

一般に、光ファイバが結合された光回路部品の中で最も
、軽量、小形な部品は通常光ファイバで、その光ンアイ
パとの光軸合わせを行なうとき全ての部品の位置を微調
整する必要はな(・。すなわち、重く、大きいレンズ及
び光機能素子は機械的に位置を出すか、又は、位置を粗
調する程度にとどめ、光学系の最後の微調整は光ファイ
バの位置の微調整によって行うことが信頼性上望ましく
・0本発明は円柱状中空部の中心軸が外径の中心軸とず
れている管(以下、偏心管と言う)をホルダの穴の中で
回転させ、上記中空部の中心軸と偏心管の一端面に入射
する光機能素子からの光ビームの光軸とをほぼ一致させ
てから、偏心管の中空部に入出射用レンズを挿入し光軸
粗調を行うものである。粗調後人出射用レンズの端面に
接続される入出射用光ファイバの光軸と入出射用レンズ
の中心軸とが一致するよう人出射光ファイバを入出射用
レンズの端面に接続することにより、光機能素子、レン
ズ、光ファイバとの信頼性の高い結合が実現できる。
Generally, optical fibers are the lightest and smallest optical circuit components connected to optical fibers, and there is no need to fine-tune the position of all components when aligning the optical axis with the optical eyer. (・In other words, heavy and large lenses and optical functional elements should be mechanically positioned or only roughly adjusted, and the final fine adjustment of the optical system should be made by finely adjusting the position of the optical fiber. It is desirable from the viewpoint of reliability that the center axis of the cylindrical hollow part is deviated from the central axis of the outer diameter of the tube (hereinafter referred to as an eccentric tube), which is rotated in the hole of the holder, and the hollow part After the central axis of the eccentric tube is roughly aligned with the optical axis of the light beam from the optical functional element that enters one end surface of the eccentric tube, an input/output lens is inserted into the hollow part of the eccentric tube to coarsely adjust the optical axis. After coarse adjustment, the human output optical fiber is connected to the end surface of the input/output lens so that the optical axis of the input/output optical fiber connected to the end surface of the input/output lens matches the central axis of the input/output lens. By doing so, highly reliable coupling with optical functional elements, lenses, and optical fibers can be realized.

次に本発明の実施例につ(・て図面を参照して詳細に説
明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例を示す光合波分波器の透視平
面図、第3図は第2図をa−a’線で切断したときの断
面図を示す。入力光ファイバ3、。
FIG. 2 is a perspective plan view of an optical multiplexer/demultiplexer showing an embodiment of the present invention, and FIG. 3 is a sectional view of FIG. 2 taken along line a-a'. Input optical fiber 3.

からの多重平行光ビームを6本の出力光ファイバ3i 
(i=2〜7)へ分波したり、ある(・はその逆の動作
をして光ファイバ3.以外の光ファイバからの光ビーム
を光ファイバ3、へ合波する。第2図は分波して(・る
状態を示して(・る。7角柱のホルダ8(ステンレス製
)の内部には光フアイバ位置固定部材12かもホルダの
中心に向って円柱形の穴が7つ設けられ、その穴の内径
よりわずかに小さく・外径を有しその外径の中心軸Oと
円柱状の中空部7′(第3図)の中心軸O′がずれてい
る管(偏心管)7がそれぞれホルダの穴に挿入される。
The multiplexed parallel light beams from the six output optical fibers 3i
The light beams from the optical fibers other than the optical fiber 3 are multiplexed into the optical fiber 3 by demultiplexing into (i=2 to 7), or vice versa. The optical fiber position fixing member 12 has seven cylindrical holes provided inside the heptagonal column holder 8 (made of stainless steel) toward the center of the holder. , a tube (eccentric tube) 7 which has an outer diameter slightly smaller than the inner diameter of the hole, and in which the central axis O of the outer diameter is offset from the central axis O' of the cylindrical hollow part 7' (Fig. 3). are respectively inserted into the holes of the holder.

偏心管7の中の中空部7′(第3図)には中空部の内径
よりわずかに大きい外径を有し、中心軸から距離の2乗
にほぼ比例して減少する屈折率分布を有する円柱状レン
ズ1′が挿入される。円柱状レジメ1′は入力光ファイ
バからの光を平行光にしたり、出力ファイバへ光ビーム
を集束させたりする。ホルダ8のほぼ中央部には、七角
柱プリズム9とその各側面に、特定の波長の光ビームの
みを透過させるための干渉膜フィルタ11および偏心管
外径の中心軸とプリズムとの光路を調整するスペーサ1
0を貼合せ一体化したものをホルダ8の底面に密着固定
し、光軸合せ粗調をして光ファイバ3□〜37ト円柱レ
ンズ1′とスペーサ10をそれぞれ効率よく結合させる
ことにより、光ファイバ3、からの多重平行光ビームを
各波長ごとに6本の出力光ファイバ3□〜3.に効率よ
く分離できる。
The hollow part 7' (Fig. 3) in the eccentric tube 7 has an outer diameter slightly larger than the inner diameter of the hollow part, and has a refractive index distribution that decreases approximately in proportion to the square of the distance from the central axis. A cylindrical lens 1' is inserted. The cylindrical regime 1' collimates the light from the input optical fiber and focuses the light beam onto the output fiber. Approximately in the center of the holder 8, there is a heptagonal prism 9 and on each side thereof an interference film filter 11 for transmitting only a light beam of a specific wavelength, and an optical path between the central axis of the outer diameter of the eccentric tube and the prism is adjusted. spacer 1
0 is laminated and integrated, and is closely fixed to the bottom of the holder 8, and the optical axis alignment is roughly adjusted to efficiently couple the optical fibers 3□ to 37, the cylindrical lens 1', and the spacer 10, respectively. The multiplexed parallel light beams from the fiber 3 are connected to six output optical fibers 3□ to 3. for each wavelength. can be efficiently separated.

ここで光軸の粗調の方法について第3図を用いて説明す
る。
Here, a method for coarsely adjusting the optical axis will be explained with reference to FIG.

偏心管7の円柱状の中空部7′にレンズを挿入する前に
、中空部7′を通過する平行光ビームを観測しながら偏
心管をその外径軸Oを中心に回転させ、平行ビームの中
心と中空部7′中心との間隔が最小になるようにする。
Before inserting a lens into the cylindrical hollow part 7' of the eccentric tube 7, the eccentric tube is rotated around its outer diameter axis O while observing the parallel light beam passing through the hollow part 7'. The distance between the center and the center of the hollow portion 7' should be minimized.

一般に第4図に示すように平行光ビーム6とレンズ1の
中心軸の間隔Xに対して、光ファイバ3の位置を最適に
調整した場合の平行光ビーム6の光ファイバ3へ結合損
失は第5図の様になり結合損失が増加しないXの範囲(
x<d )が必ず存在する。この間隔dがレンズを粗調
する際に要求される精度となる。したがって第3図のよ
うに偏心穴7′の中心軸0/(円柱状レンズ1′の中心
軸)から外径軸Oへ向って、ある(・はその逆の方向へ
向かって距離dの範囲にムの光軸が存在すれば、最小結
合損失で光軸合せ粗調ができる。儒つ十斜奮0円傭癩繭
畔ζ吋層ml籾調後に、中空部7′に円柱状レンズ1′
を挿入し、接着剤等の固定用材料でホルダ8と偏心管7
との微小な間げきを埋めてから円柱状レンズ1′とホル
ダ8′との微小な間げきを同じ固定材料で埋めることに
より、レンズ及び偏心管を固定する。
Generally, as shown in FIG. 4, the coupling loss of the parallel light beam 6 to the optical fiber 3 when the position of the optical fiber 3 is optimally adjusted with respect to the distance X between the parallel light beam 6 and the center axis of the lens 1 is The range of X in which the coupling loss does not increase as shown in Figure 5 (
x<d) always exists. This interval d provides the accuracy required when coarsely adjusting the lens. Therefore, as shown in FIG. If there is an optical axis in the second layer, coarse adjustment of the optical axis can be performed with minimum coupling loss.After adjusting the cylindrical lens 1 in the hollow part 7', ′
Insert the holder 8 and eccentric tube 7 with a fixing material such as adhesive.
The lens and eccentric tube are fixed by filling the minute gap between the cylindrical lens 1' and the holder 8' with the same fixing material.

この際、固定用材料の体積は微小であり、かつ円柱状レ
ンズ1′と中空部7′が同軸構造であるため、レンズの
位置は経時的に安定となる。もし平行光ビームの光軸が
第3図の点斜線部以外の面を通過するときには、中空部
の中心軸O′と偏心管の管軸Oとの距離oo’ (偏心
量という)がd。
At this time, since the volume of the fixing material is minute and the cylindrical lens 1' and the hollow part 7' have a coaxial structure, the position of the lens becomes stable over time. If the optical axis of the parallel light beam passes through a plane other than the dotted hatched area in FIG. 3, the distance oo' (referred to as eccentricity amount) between the central axis O' of the hollow part and the tube axis O of the eccentric tube is d.

3d、・・・・・・、(2m+t)dの偏心管の中から
適当な偏心量を有する偏心管を選択することにより、偏
心管端面のあらゆる場所に入射する平行光ビームに対し
て自由にレンズの位「の粗調が可能となる。
By selecting an eccentric tube with an appropriate amount of eccentricity from among the eccentric tubes of 3d, ..., (2m+t)d, it is possible to freely control the parallel light beam incident on any location on the end surface of the eccentric tube. Coarse adjustment of the lens position is possible.

他のすべての偏心管に対しても同様な粗調を行ない、円
柱状レンズ1′を偏心管中空部に挿入固定した後、光フ
ァイバ3.〜37を接続する。その際光ファイバ31〜
37の光軸と円柱状レンズ1′の中心軸とが一致するよ
うに接続する。
After performing the same rough adjustment for all other eccentric tubes and inserting and fixing the cylindrical lens 1' into the hollow part of the eccentric tube, the optical fiber 3. Connect ~37. At that time, the optical fiber 31~
The optical axis of lens 37 and the central axis of cylindrical lens 1' are connected so as to coincide with each other.

上記実施例に使用した波長選択用の干渉膜フィルタの代
わりに回折格子を用いても同様な幼芽が得られる。また
干渉膜フィルタの代わりにハーフミラ−を使用し光分岐
結合器としてもよい。
Similar sprouts can be obtained by using a diffraction grating instead of the interference film filter for wavelength selection used in the above embodiment. Alternatively, a half mirror may be used instead of the interference film filter to serve as an optical branching coupler.

さらに本発明の上記実施例における干渉膜フィルタ、プ
リズムおよびスペーサの一体化したものを光路切換素子
に置き換えると光スィッチとして使用することもできる
Furthermore, if the integrated interference film filter, prism, and spacer in the above embodiments of the present invention is replaced with an optical path switching element, it can also be used as an optical switch.

以上述べてきた様に、高度な技術を必要としないが、部
品点数が多く信頼性が不充分である従来のレンズ形受動
光回路部品に対して、本発明のレンズ形受動光回路部品
はレンズ部品の位置調整及び固定が熱的及び経時的に対
して安定となり、高信頼性が得られる。
As described above, in contrast to conventional lens-type passive optical circuit components that do not require advanced technology but have a large number of parts and are insufficiently reliable, the lens-type passive optical circuit components of the present invention The position adjustment and fixing of parts becomes stable over heat and over time, resulting in high reliability.

さらに機構品の超高精度な加工も不要となり、高信頼化
のみならず、低価格化が実現できる。従って、本発明に
よるレンズ形受動光回路部品は実用的な光通信システム
に広く用いられることが考えられ、その工業的価値はき
わめて高い。
Furthermore, ultra-high precision machining of mechanical components is no longer necessary, making it possible to achieve not only high reliability but also low prices. Therefore, the lens-shaped passive optical circuit component according to the present invention can be widely used in practical optical communication systems, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレンズ形受動光部品の構造を示す側面図
、第2図は本発明の一実施例を示す光合波器の透視正面
図、第3図は第2図をa−a’面で切断したときの断面
図、第4図、第5図はレンズへの平行光ビーム照射位置
に対する光ファイバへの結合損失を説明するための図で
ある。 1・・・・・・レンズ、1′・・・・・・セルフォック
レンズ、2・・・・・・光学系機能素子、3゜〜3□・
・・・・・光ファイバ、4・・・・・・ベース、5・・
・・・・固定用材料、6・・・・・・平行ビーム、7・
・・・・・優心管、8・・・・・・ホルダ、9・・・・
・・七角柱プリズム、10・・・・・・スペーサ、11
・・・・・・干渉膜フィルタ。 拵1図 第2図 \7 7 華3図 第4図 を 平行ビーム2レレス°中心軸 蝮5図 の開隔 Lい渦)
FIG. 1 is a side view showing the structure of a conventional lens-type passive optical component, FIG. 2 is a perspective front view of an optical multiplexer showing an embodiment of the present invention, and FIG. 4 and 5, which are cross-sectional views taken along a plane, are diagrams for explaining the coupling loss to the optical fiber with respect to the irradiation position of the parallel light beam onto the lens. 1...Lens, 1'...Selfoc lens, 2...Optical system functional element, 3゜~3□・
...Optical fiber, 4...Base, 5...
...Fixing material, 6...Parallel beam, 7.
... Yushin tube, 8 ... Holder, 9 ...
... Heptagonal prism, 10 ... Spacer, 11
...Interference membrane filter. Koshirae 1 Figure 2 Figure 7 7 Hana 3 Figure 4 Parallel beam 2 degrees center axis 5 Figure 5 L vortex)

Claims (5)

【特許請求の範囲】[Claims] (1)少くとも1本の入射用光ファイバと、少くとも1
本の出射用光ファイバと、前記入射用光ファイバと、前
記入射用光ファイバからの出射ビームを平行ビームに変
換する入射用レンズと該平行ビームを集束し前記出射用
光ファイバに入射させる出射用レンズと、前記入出射用
レンズ間に挿入された少くとも1個の光機能素子と、前
記光機能素子を固定し、前記入射用レンズまたは出射用
レンズを配置する複数個の穴を設けたホルダと、前記穴
の径よりわずかに小さな外径とこの外径の中心軸に対し
て偏心した位置に中心軸を有し前記入射用レンズまたは
出射用レンズを固定する中空部とを有する偏心管とを含
み前記穴に対して偏心管を回転して調整固定した光回路
部品。
(1) At least one input optical fiber and at least one
The output optical fiber of the book, the input optical fiber, the input lens that converts the output beam from the input optical fiber into a parallel beam, and the output lens that focuses the parallel beam and makes it enter the output optical fiber. At least one optical functional element inserted between a lens, the input/output lens, and a holder that fixes the optical functional element and is provided with a plurality of holes in which the input lens or the output lens is arranged. and an eccentric tube having an outer diameter slightly smaller than the diameter of the hole, and a hollow portion having a central axis located eccentrically with respect to the central axis of the outer diameter and fixing the entrance lens or the exit lens. An optical circuit component including an eccentric tube which is adjusted and fixed by rotating with respect to the hole.
(2)前記光機能素子はプリズムと、プリズムの側面に
配置された干渉膜フィルタと、前記入出射用レンズの端
面に対向し該入出射用レンズの中心軸と前記プリズムと
の光路を調整するスペーサとを有する合波・分波素子で
ある特許請求の範囲第(1)項記載の光回路部品。
(2) The optical functional element includes a prism, an interference film filter disposed on the side surface of the prism, and faces an end face of the input/output lens to adjust the optical path between the central axis of the input/output lens and the prism. The optical circuit component according to claim (1), which is a multiplexing/demultiplexing element having a spacer.
(3)前記光機能素子はプリズムと、プリズムの側面に
配置した前記入出射用レンズの端面に対向し該入出射用
レンズの中心軸と前記プリズムとの光路な調整するスペ
ーサとを有する合波・分波素子である特許請求の範囲第
(1)現記Vの光回路部品。
(3) The optical functional element includes a prism and a spacer that faces the end face of the input/output lens arranged on the side surface of the prism and adjusts the optical path between the central axis of the input/output lens and the prism. - The optical circuit component according to Claim No. (1) Present V, which is a demultiplexing element.
(4)前記光機能素子は、前記入射用レンズからの光ビ
ームプリズムと、プリズムの側面に配置されたハーフミ
ラ−と前記入出射用レンズの端面に対向し該入出射用レ
ンズの中心軸と前記プリズムとの光路を調整するスペー
サとを有する光分岐素子である特許請求の範囲第(1)
項記載の光回路部品。
(4) The optical functional element includes a light beam prism from the input lens, a half mirror disposed on the side surface of the prism, and a central axis of the input/output lens that faces the end face of the input/output lens. Claim No. 1, which is an optical branching element having a spacer that adjusts the optical path with the prism.
Optical circuit components listed in section.
(5)前記光機能素子が光路切換素子である特許請求の
範囲第(1)項記載の光回路部品。
(5) The optical circuit component according to claim (1), wherein the optical functional element is an optical path switching element.
JP20888482A 1982-11-29 1982-11-29 Optical circuit parts Pending JPS5999414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20888482A JPS5999414A (en) 1982-11-29 1982-11-29 Optical circuit parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20888482A JPS5999414A (en) 1982-11-29 1982-11-29 Optical circuit parts

Publications (1)

Publication Number Publication Date
JPS5999414A true JPS5999414A (en) 1984-06-08

Family

ID=16563706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20888482A Pending JPS5999414A (en) 1982-11-29 1982-11-29 Optical circuit parts

Country Status (1)

Country Link
JP (1) JPS5999414A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136045A (en) * 1974-04-15 1975-10-28
JPS5420950A (en) * 1977-07-18 1979-02-16 Masaru Kawahara Duplication of metal member having through hole for bolts and like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136045A (en) * 1974-04-15 1975-10-28
JPS5420950A (en) * 1977-07-18 1979-02-16 Masaru Kawahara Duplication of metal member having through hole for bolts and like

Similar Documents

Publication Publication Date Title
US4474424A (en) Optical multi/demultiplexer using interference filters
US7330615B2 (en) Wavelength selective optical switch
JP4554132B2 (en) Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
TW531673B (en) System and method for collimating and redirecting beams in a fiber optic system
US6941073B2 (en) East-west separable ROADM
US7162115B2 (en) Multiport wavelength-selective optical switch
US10469923B2 (en) Routing band-pass filter for routing optical signals between multiple optical channel sets
JPWO2006006197A1 (en) Optical module and optical wavelength multiplexer / demultiplexer
US6477293B1 (en) Multiplexer/demultiplexer for WDM optical signals
US10182275B1 (en) Passive optical subassembly with a signal pitch router
KR20040016406A (en) Optical module
US11057145B2 (en) Wavelength-division multiplexing device with a unified passband
US6823102B2 (en) Highly stable opto-mechanic switches
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
US6018603A (en) Optical demultiplexing/multiplexing device having a wavelength dependent element
JPS5999414A (en) Optical circuit parts
US20170075072A1 (en) Multiport Free-Space WDM Based On Relay Lens
US7006728B1 (en) Add/drop module using two full-ball lenses
US7010228B2 (en) Optical add-drop multiplexer
US7203421B2 (en) Littrow grating based OADM
JP4632227B2 (en) Optical module
EP1008877A2 (en) Optical multiplexor or demultiplexor
JP2003043295A (en) Optical module unit and optical module using the same
JP2003149490A (en) Optical multiplexer and demultiplexer
JP2004072604A (en) Optical branching and inserting device